
Searching in Metric Spaces �

Edgar Ch�avezy Gonzalo Navarroz Ricardo Baeza-Yatesz Jos�e L. Marroqu��nx

Abstract

The problem of searching the elements of a set which are close to a given query element

under some similarity criterion has a vast number of applications in many branches of computer

science, from pattern recognition to textual and multimedia information retrieval. We are

interested in the rather general case where the similarity criterion de�nes a metric space, instead

of the more restricted case of a vector space. A large number of solutions have been proposed

in di�erent areas, in many cases without cross-knowledge. Because of this, the same ideas

have been reinvented several times, and very di�erent presentations have been given for the

same approaches. We present some basic results that explain the intrinsic diÆculty of the

search problem. This includes a quantitative de�nition of the elusive concept of \intrinsic

dimensionality". We also present a uni�ed view of all the known proposals to organize metric

spaces, so as to be able to understand them under a common framework. Most approaches turn

out to be variations on a few di�erent concepts. We organize those works in a taxonomy which

allows us to devise new algorithms from combinations of concepts which were not noticed before

because of the lack of communication between di�erent communities. We present experiments

validating our results and comparing the existing approaches. We �nish with recommendations

for practitioners and open questions for future development.

1 Introduction

Searching is a fundamental problem in computer science, present in virtually every computer ap-

plication. Simple applications pose simple search problems, while a more complex application will

require, in general, a more sophisticated form of searching.

The search operation has been traditionally applied to \structured data", i.e. numerical or

alphabetical information which is searched for exactly. That is, a search query is given and the

number or string which is exactly equal to the search query is retrieved. Traditional databases

are built around the concept of exact searching: the database is divided into records, each record

having a fully comparable key. Queries to the database return all the records whose keys match the

search key. More sophisticated searches such as range queries on numerical keys or pre�x searching

on alphabetical keys still rely on the concept that two keys are or are not equal, or that there is a

total linear order on the keys. Even in recent years, when databases have included the ability to

store new data types such as images, the search has still been done on a predetermined number of

keys of numerical or alphabetical types.

With the evolution of information and communication technologies, unstructured repositories of

information have emerged. Not only new data types such as free text, images, audio and video have

�This project has been partially supported by CYTED VII.13 AMYRI Project.
yEscuela de Ciencias F��sico-Matem�aticas, Universidad Michoacana. Edi�cio \B", Ciudad Universitaria, Morelia,

Mich. M�exico 58000. elchavez@zeus.ccu.umich.mx. Partially supported by CONACyT under grant R-28923A
zDepto. de Ciencias de la Computaci�on, Universidad de Chile. Blanco Encalada 2120, Santiago, Chile.

fgnavarro,rbaezag@dcc.uchile.cl. Partially supported by Fondecyt Grant 1-000929.
xCentro de Investigaci�on en Matem�aticas (CIMAT). Callej�on de Jalisco S/N, Valenciana, Guanajuato, Gto. M�exico

36000. jlm@fractal.cimat.mx.

1

to be queried, but also it is not possible anymore to structure the information in keys and records.

Such structuring is very diÆcult (either manually or computationally) and restricts beforehand

the types of queries that can be posed later. Even when a classical structuring is possible, new

applications such as data mining require to access the database by any �eld, not only those marked

as \keys". Hence, new models for searching in unstructured repositories are needed.

The above scenarios require more general search algorithms and models than those classically

used for simple data. A unifying concept is that of \similarity searching" or \proximity searching",

i.e. searching for database elements which are similar or close to a given query element1. Similarity

is modeled with a distance function that satis�es the triangular inequality, and the set of objects

is called a metric space. Since the problem has appeared in many diverse areas, solutions have

appeared in many unrelated �elds, such as statistics, computational geometry, arti�cial intelligence,

databases, computational biology, pattern recognition and data mining, to name a few. Since the

current solutions come from so diverse �elds, it is not surprising that the same solutions have

been reinvented many times, that obvious combinations of solutions have not been noticed, and

that no thorough comparisons have been done. More importantly, there have been no attempts to

conceptually unify all those solutions.

In some applications the metric space turns out to be of a particular type called \vector space",

where the elements consist of k real-valued coordinates. A lot of work has been done on vector

spaces by exploiting their geometric properties, but normally these cannot be extended to general

metric spaces where the only available information is the distance among objects. In this general

case, moreover, the distance is normally quite expensive to compute, so the general goal is to reduce

the number of distance evaluations. In contrast, the operations in vector spaces tend to be simple

and hence the goal is mainly to reduce I/O. Some important advances have been done for general

metric spaces, in general around the concept of building an index, i.e. a data structure to reduce

the number of distance evaluations at query time. Some recent work [26, 52] tries to achieve at

the same time the goals of reducing the number of distance evaluations and the amount of I/O

performed.

The main goal of this work is to present a unifying framework to describe and analyze all the

existing solutions to this problem. We show that all the existing indexing algorithms for proximity

searching consist in building a set of equivalence classes, discarding some classes, and searching

exhaustively the rest. Two main techniques based on equivalence relations, namely pivoting and

Voronoi partitions, are shown to encompass all the existing methods. As a consequence of the

analysis we are able to build a taxonomy on the existing algorithms for proximity search, to classify

them according to their essential features, and to analyze their eÆciency. We are able to identify

essentially similar approaches, to point out combinations of ideas which have not previously been

noticed, and to identify the main open problems in this area. We also present quantitative methods

to assert the intrinsic diÆculty in searching on a given metric space and provide lower bounds on

the search problem. This includes a quantitative de�nition of the up to now conceptual notion of

\intrinsic dimensionality", which we show to be very appropriate. We present some experimental

results that help to validate our assertions.

We remark that we are concerned with the essential features of the search algorithms for general

metric spaces. That is, we try to extract the basic features from the wealth of existing solutions,

so as to be able to categorize and analyze them under a common framework. We focus mainly

on the number of distance evaluations needed to execute range queries (i.e. with �xed tolerance

radius), which are the most basic ones. However, we also pay some attention to the total CPU

1The term \approximate searching" is also used, but it is misleading and we use it here only when referring to

approximation algorithms.

2

time, time and space cost to build the indexes, nearest neighbor queries, dynamic capabilities of

the indexes and I/O considerations. There are some features which we de�nitely do not cover in

order to keep our scope reasonably bounded, such as (1) complex similarity queries involving more

than one similarity predicate [28], as few works on them exist and they are an elaboration over the

simple similarity queries (a particular case is polygon searching in vector spaces); (2) sub-queries

(i.e. searching a small element inside a larger element) since the solutions are basically the same

after a domain-dependent transformation is done; and (3) inverse queries (i.e. �nd the elements

for which q is their closest neighbor) and total queries (e.g. �nd all the closest neighbors) since the

algorithms are, again, built over the simple ones.

This paper is organized as follows. A �rst part (Sections 2{5) is a pure survey of the state of

the art in searching metric spaces, with no attempt to provide a new way to think on the problem.

A second part (Sections 6{8) presents our basic results on the diÆculty of the search problem and

our unifying model that allows understanding the essential features of the problem and its existing

solutions. Finally, Section 9 gives our conclusions and points out future research directions.

2 Motivating Applications

We present now a sample of applications where the concept of proximity searching appears. Since

we have not presented a formal model yet, we do not try to explain the connections between the

di�erent applications. We rather delay this discussion to Section 3.

2.1 Query by Content in Structured Databases

In general, the query posed to a database presents a piece of a record of information, and it needs

to retrieve the entire record. In the classical approach, the piece presented is �xed (the key).

Moreover, it is not allowed to search with an incomplete or an erroneous key. On the other hand,

in the more general approach required nowadays the concept of searching with a key is generalized

to searching with an arbitrary subset of the record, allowing errors or not.

Possible types of searches are point or key search (all the key information is given), range search

(only some �elds are given or only a range of values is speci�ed for them) and proximity search

(in addition, records \close" to the query are considered interesting). These types of search are of

use in data mining (where the interesting parts of the record cannot be predetermined), when the

information is not precise, when we are looking for a range of values, when the search key may have

errors (e.g. a misspelled word), etc.

A general solution to the problem of range queries by any record �eld is the grid �le [49]. The

domain of the database is seen as a hyper-rectangle of k dimensions (one per record �eld), where

each dimension has an ordering according to the domain of the �eld (numerical or alphabetical).

Each record present in the database is considered as a point inside the hyper-rectangle. A query

speci�es a sub-rectangle (i.e. a range along each dimension), and all the points inside the speci�ed

query are retrieved. This does not address the problem of searching on non-traditional data types,

nor allowing errors that cannot be recovered with a range query. However, it converts the original

search problem to a problem of obtaining, in a given space, all the points \close" to a given query

point. Grid �les are essentially a disk organization technique to eÆciently retrieve range queries in

secondary memory.

3

2.2 Query by Content in Multimedia Objects

New data types such as images, �ngerprints, audio and video (called \multimedia" data types)

cannot be meaningfully queried in the classical sense. Not only they cannot be ordered, but they

cannot even be compared for equality. No application will be interested in searching an audio

segment exactly equal to a given one. The probability that two di�erent images are pixel-wise

equal is negligible unless they are digital copies of the same source. In multimedia applications, all

the queries ask for objects similar to a given one. Some example applications are face recognition,

�ngerprint matching, voice recognition, and in general multimedia databases [1, 70].

Think for example in a repository of images. Interesting queries are of the type \�nd an image

of a lion with a savanna background". If the repository is tagged, and each tag contains a full

description of what is inside the image, then our example query can be solved with a classical

scheme. Unfortunately, such a classi�cation cannot be done automatically with the available image

processing technology. Object recognition in real world scenes is still in an immature state to

perform such complex tasks. Moreover, we cannot predict all the possible queries that will be

posed so as to tag the image for every possible query. An alternative to automatic classi�cation

consists in considering the query as an example image, so that the system searches all the images

similar to the query. This can be built inside a more complex feedback system where the user

approves or rejects the images found, and a new query is submitted with the approved images. It

is also possible that the query is just part of an image and the system has to retrieve the whole

image.

These approaches are based on the de�nition of a similarity function among objects. Those

functions are provided by an expert, but they pose no assumptions on the type of queries that

can be answered. In many cases, the distance is obtained via a set of k \features" which are

extracted from the object (e.g. in an image a useful feature is the average color). Then each object

is represented as its k features, i.e. a point in a k-dimensional space, and we are again in a case of

range queries on vector spaces.

There is a growing community of scientists deeply involved with the development of such simi-

larity measures [20, 12, 13].

2.3 Text Retrieval

Although not considered a multimedia data type, unstructured text retrieval poses similar problems

as multimedia retrieval. This is because textual documents are in general not structured to easily

provide the desired information. Text documents may be searched for strings that are present or

not, but in many cases they are searched for semantic concepts of interest. For instance, an ideal

scenario would allow searching a text dictionary for a concept such as \to free from obligation",

retrieving the word \redeem". This search problem cannot be properly stated with classical tools.

A large community of researchers has been working on this problem from a long time ago

[54, 38, 7]. A number of measures of similarity have emerged. The problem is basically solved by

retrieving documents similar to a given query. The user can even present a document as a query,

so that the system �nds similar documents. Some similarity approaches are based on mapping a

document to a vector of real values, so that each dimension is a vocabulary word and the relevance

of the word to the document (computed using some formula) is the coordinate of the document

along that dimension. Similarity functions are then de�ned in that space. Notice however that the

dimensionality of the space is very high (thousands of dimensions).

Another problem related to text retrieval is spelling. Since huge text databases with low quality

control are emerging (e.g. the Web), and typing, spelling or OCR (optical character recognition)

4

errors are commonplace in the text and the query, we have that documents which contain a mis-

spelled word are no longer retrievable by a correctly written query. Models of similarity among

words exist (variants of the \edit distance" [56]) which capture very well those kind of errors. In

this case, we give a word and want to retrieve all the words close to it. Another related application

is spelling checkers, where we look for close variants of the misspelled word.

In particular, OCR can be done using a low-level-classi�er, so that misspelled words can be

corrected using the edit distance to �nd promising alternatives to replace incorrect words.

2.4 Computational Biology

ADN and protein sequences are the basic object of study in molecular biology. As they can be

modeled as texts, we have the problem of �nding a given sequence of characters inside a longer

sequence. However, an exact match is unlikely to occur, and computational biologists are more

interested in �nding parts of a longer sequence which are similar to a given short sequence. The fact

that the search is not exact is due to minor di�erences in the genetic streams that describe beings

of the same or closely related species. The measure of similarity used is related to the probability

of mutations such as reversals of pieces of the sequences and other rearrangements [64, 56].

Other related problems are to build phylogenetic trees (a tree sketching the evolutionary path

of the species), to search patterns for which only some properties are known, and others.

2.5 Pattern Recognition and Function Approximation

A simpli�ed de�nition of pattern recognition is the construction of a function approximator. In this

formulation of the problem one has a �nite sample of the data, and each data sample is labeled as

belonging to a certain class. When a fresh data sample is provided, the system is required to label

this new sample with one of the known data labels. In other words, the classi�er can be thought of

as a function de�ned from the object (data) space to the set of labels. In this sense all the classi�ers

are considered function approximators.

If the objects are m-dimensional vectors of real numbers then a natural choice is neural nets

and fuzzy function approximators. Another popular universal function approximator, the k-nearest

neighbor classi�er, consists in �nding the k objects nearest to the unlabeled sample, and assigning

to this sample the label having majority among the k nearest objects. Opposed to neural nets and

fuzzy classi�ers, the k-nearest neighbor rule has zero training time, but if no indexing algorithm is

used it has linear complexity [33].

Other applications of this universal function approximator are density estimation [32] and re-

inforcement learning [59]. In general, any problem where we want to infer a function based on a

�nite set of samples is a potential application.

2.6 Audio and Video Compression

Audio and video transmission over a narrow-band channel is an important problem, for example

in Internet-based audio and video conferencing or in wireless communication. A frame (a static

picture in a video, or a fragment of the audio) can be thought of as formed by a number of (possibly

overlapped) subframes (16� 16 subimages in a video, for example). In a very succinct description,

the problem can be solved by sending the �rst frame as-is and for the next frames sending only the

subframes having a signi�cative di�erence from the previously sent subframes. This description

encompasses the MPEG standard.

5

The algorithms use in fact a subframe bu�er. Each time a frame is about to be sent it is

searched (with a tolerance) in the subframe bu�er and if it is not found then the entire subframe

is added to the bu�er. If the subframe is found then only the index of the similar frame found is

sent. This implies, naturally, that a fast similarity search algorithm has to be incorporated to the

server to maintain a minimum of frames-per-second rate.

3 Basic Concepts

All the applications presented in the previous section share a common framework, which is in essence

to �nd close objects, under some suitable similarity function, among a �nite set of elements. In

this section we present the formal model comprising all the above cases.

3.1 Metric Spaces

We introduce now the basic notation for the problem of satisfying proximity queries and for the

model used to group and analyze the existing algorithms.

The set X will denote the universe of valid objects. A �nite subset of it, U, of size n = jUj, is
the set of objects where we search. U will be called the dictionary, database or simply our set of

objects or elements. The function

d : X � X �! R

will denote a measure of \distance" between objects (i.e. the smaller the distance, the closer or

more similar are the objects). Distance functions have the following properties:

(p1) 8x; y 2 X; d(x; y) � 0 positiveness,

(p2) 8x; y 2 X; d(x; y) = d(y; x) symmetry,

(p3) 8x 2 X; d(x; x) = 0 re
exivity,

and in most cases

(p4) 8x; y 2 X; x 6= y) d(x; y) > 0 strict positiveness.

The similarity properties enumerated above only ensure a consistent de�nition of the function,

and cannot be used to save comparisons in a proximity query. If d is indeed a metric, i.e. if it

satis�es

(p5) 8x; y; z 2 X; d(x; y) � d(x; z) + d(z; y) triangular inequality,

then the pair (X; d) is called a metric space.

If the distance does not satisfy the strict positiveness property (p4) then the space is called

a pseudo-metric space. Although for simplicity we do not consider pseudo-metric spaces in this

work, all the presented techniques are easily adapted to them by simply identifying all the objects

at distance zero as a single object. This works because, if (p5) holds, one can easily prove that

d(x; y) = 0) 8z; d(x; z) = d(y; z).

In some cases we may have a quasi-metric, where the symmetry property (p2) does not hold.

For instance, if the objects are corners in a city and the distance corresponds to how much a

car must travel to move from one to the other, then the existence of one-way streets makes the

6

distance asymmetric. There exist techniques to derive a new, symmetric, distance function from

an asymmetric one, such as d0(x; y) = d(x; y) + d(y; x). However, to be able to bound the search

radius of a query when using the symmetric function we need speci�c knowledge of the domain.

Finally, we can relax the triangular inequality (p5) to d(x; y) � �d(x; z)+�d(z; y)+Æ, and after

some scaling we can search in this space using the same algorithms designed for metric spaces. If

the distance is symmetric we need � = � for consistency.

In the rest of paper we use the term distance in the understanding that we refer to a metric.

3.2 Proximity Queries

There are basically three types of queries of interest in metric spaces:

Range query (q; r)d. Retrieve all elements which are within distance r to q. This is, fu 2
U = d(q; u) � rg.

Nearest neighbor query NN(q). Retrieve the closest elements to q in U. This is, fu 2 U = 8v 2
U; d(q; u) � d(q; v)g. In some cases we are satis�ed with one such element (in continuous

spaces there is normally just one answer anyway). We can also give a maximum distance r�

such that if the closest element is at distance more than r� we do not want anyone reported.

k-Nearest neighbor query NNk(q). Retrieve the k closest elements to q in U. This is, retrieve

a set A � U such that jAj = k and 8u 2 A; v 2 U �A; d(q; u) � d(q; v). Note that in case of

ties we are satis�ed with any set of k elements satisfying the condition.

The most basic type of query is the range query. The left part of Figure 1 illustrates a query

on a set of points which will be our running example, using R2 as the metric space for clarity.

A range query will be therefore a pair (q; r)d with q an element in X and r a real number

indicating the radius (or tolerance) of the query. The set fu 2 U; d(q; u) � rg will be called the

outcome of the range query.

We use \NN" as an abbreviation of \nearest neighbor", and give the generic name \NN-query"

to the last two types of queries and \NN searching" to the techniques to solve them. As we see

later, NN-queries can be systematically built over range queries.

The total time to evaluate a query can be split as

T = # of distance evaluations � complexity of d() + extra CPU time + I=O time

and we would like to minimize T . In many applications, however, evaluating d() is so costly that

the other components of the cost can be neglected. This is the model we use in this paper, and

hence the number of distance evaluations performed will be the measure of the complexity of the

algorithms. We can even allow a linear in n (but reasonable) amount of CPU work and a linear

traversal over the database on disk, as long as the number of distance computations is kept low.

However, we will pay some marginal attention to the so-called extra CPU time. The I/O time can

be the dominant factor in some applications and negligible in others, depending on the amount of

main memory available and the relative cost to compute the distance function. We cover the little

existing work on relating metric spaces and I/O considerations in Section 5.3.2.

It is clear that either type of query can be answered by examining the entire dictionary U. In

fact if we are not allowed to preprocess the data, i.e. to build an index data structure, then this

exhaustive examination is the only way to proceed. An indexing algorithm is an o�-line procedure

to build beforehand a data structure (called index) designed to save distance computations when

7

answering proximity queries later. This data structure can be expensive to build, but this will be

amortized by saving distance evaluations over many queries to the database. The aim is therefore

to design eÆcient indexing algorithms to reduce the number of distance evaluations. All these

structures work on the basis of discarding elements using the triangular inequality (the only property

that allows saving distance evaluations).

4 The Case of Vector Spaces

If the elements of the metric space (X; d) are indeed tuples of real numbers (actually tuples of any

�eld) then the pair is called a �nite dimensional vector space, or vector space for short.

A k-dimensional vector space is a particular metric space where the objects are identi�ed with

k real-valued coordinates (x1; :::; xk). There are a number of options for the distance function to

use, but the most widely used is the family of Ls (or Minkowski) distances, de�ned as

Ls((x1; :::; xk); (y1; :::; yk)) =

kX

i=1

jxi � yijs
!1=s

The right part of Figure 1 illustrates some of these distances. For instance, the L1 distance

accounts for the sum of the di�erences along the coordinates. It is also called \block" or \Manhat-

tan" distance, since in two dimensions it corresponds to the distance to walk between two points

in a city of rectangular blocks. The L2 distance is better known as \Euclidean" distance, as it

corresponds to our notion of spatial distance. The other most used member of the family is L1,

which corresponds to taking the limit of the Ls formula when s goes to in�nity. The result is that

the distance between two points is the maximum di�erence along a coordinate:

L1((x1; :::; xk); (y1; :::; yk)) =
k

max
i=1
jxi � yij

Searching with the L1 distance corresponds directly to a classical range search query, where

the range is the k-dimensional hyper-rectangle. This distance plays a special role in this survey.

L

L

L

L1 2

6

u10

u13
u5

u4

u11

u2

u12
u3

u7

u1

u15

u14

u6

u8

u9

q

Figure 1: On the left, an example of a range query on a set of points. On the right, the set of

points at the same distance to a center point, for di�erent Minkowski distances.

In many applications the metric space is indeed a vector space, i.e. the objects are k-dimensional

points and the similarity is interpreted geometrically. A vector space permits more freedom than

8

a general metric space when designing search approaches, since it is possible to use geometric and

coordinate information which is unavailable in a general metric space.

In this framework optimal algorithms (on the database size) exist in both the average and the

worst case [10] for closest point search. Search structures for vector spaces are called spatial ac-

cess methods (SAM). Among the most popular are kd-trees [8, 9], R-trees [40], quad-trees [55] and

the more recent X-trees [11]. These techniques make extensive use of coordinate information to

group and classify points in the space. For example kd-trees divide the space along di�erent coor-

dinates and R-trees groups points in hyper-rectangles. Unfortunately the existing techniques are

very sensitive to the vector space dimension. Closest point search algorithms have an exponential

dependency on the dimension of the space (this is called the curse of dimensionality).

Vector spaces may su�er from large di�erences between their representational dimension (k) and

their intrinsic dimension (i.e. the real number of dimensions in which the points can be embedded

while keeping the distances among them). For example a plane embedded in a 50-dimensional

space has intrinsic dimension 2 and representational dimension 50. This is in general the case of

real applications, where the data is clustered, and it has lead to attempts to measure the intrinsic

dimension such as the concept of \fractal dimension" [35]. Despite that no techniques can cope

with intrinsic dimension higher than 20, much higher representational dimensions can be handled

by dimensionality reduction techniques [36, 30, 41].

Since eÆcient techniques to cope with vector spaces exist, application designers try to give their

problems a vector space structure. However, this is not always easy or feasible at all. For example,

experts in image processing try to express the similarity between images as the distance between

\vectors" of features extracted from the images, although in many cases better results are obtained

by coding speci�c functions that compare two images, despite that they cannot be easily expressed

as the distance between two vectors (e.g. cross-talk between features [34]). Another example that

resists conversion into a vector space is similarity functions between strings, to compare DNA

sequences for instance.

For this reason several authors resort to general metric spaces, even knowing that the search

problem is much more diÆcult. Of course it is also possible to treat a vector space as a general metric

space, by using only the distances between points. One immediate advantage is that the intrinsic

dimension of the space shows up, independent of any representational dimension (this requires

extra care in vector spaces). It is interesting to remark that in [26] they present preliminary results

showing that a metric space data structure (the M-tree) can outperform a well known vector space

data structure (the R�-tree) when applied to a vector space.

Speci�c techniques for vector spaces is a whole di�erent world which we do not intend to cover

in this work (see [55, 65, 39] for good surveys). However, we discuss in the next section a technique

which, instead of treating a vector space as a metric space, tries to embed a general metric space

into a vector space. This concept is central in this survey, despite that speci�c knowledge on speci�c

techniques for vector spaces is, as we shortly show, not necessary to understand it.

4.1 Resorting to Vector Spaces

An interesting and natural reduction of the similarity search problem consists in a mapping � from

the original metric space into a vector space. In this way, each element of the original metric space

will be represented as a point in the target vector space. The two spaces will be related by two

distances: the original one d(x; y) and the distance in the projected space D(�(x);�(y)). If the

mapping is contractive, i.e. D(�(x);�(y)) � d(x; y) for any pair of elements, then one can process

range queries in the projected space with the same radius. Since some spurious elements can be

9

captured in the target space, the outcome of the query in the projected space is a candidate list,

which is later veri�ed element-wise with the original distance to obtain the actual outcome of the

query.

Intuitively, the idea is to \invent" k coordinates and map the points onto a vector space, using

some vector space technique as a �rst �lter to the actual answer to a query. One of the main

thesis of this work is a large subclass of the existing algorithms can be regarded as relying on

some mapping of this kind. A widely used method (explained in detail in Section 6.6) is to select

fp1 : : : pkg � U and map each u 2 U to (Rk ; L1) using �(u) = (d(u; p1); : : : ; d(u; pk)). It can be

seen that this mapping is contractive but not proximity preserving.

If, on the other hand, the mapping is proximity preserving, i.e. d(x; y) � d(x; z)) D(�(x);�(y)) �
D(�(x);�(z)), then NN-queries can be directly performed in the projected space. Indeed, most

current algorithms for NN-queries are based in range queries, and with some care they can be done

in the projected space if the mapping is contractive, even if it is not proximity preserving.

This type of mapping is a special case of a general idea in the literature which says that one

can �nd cheaper to compute distances that lower-bound the real one, and use the cheaper distance

to �lter out most elements (e.g. for images, the average color is cheaper to compute than the

di�erences in the color histograms). While in general this is domain-dependent, mapping onto a

vector space can be done without knowledge of the domain. After the mapping is done and we

have identi�ed each data element with a point in the projected space, we can use a general purpose

spatial access method (SAM) for vector spaces to retrieve the candidate list. The elements found

in the projected space must be �nally checked using the original distance function.

Therefore, there are two types of distance evaluations: �rst to obtain the coordinates in the

projected space and later to check the �nal candidates. These are called \internal" and \external"

evaluations, respectively, later in this work. Clearly, incrementing internal evaluations improves

the quality of the �lter and reduces external evaluations, and therefore we seek for a balance.

Notice �nally that the search itself in the projected space does not use evaluations of the original

distance, and hence it is costless under our complexity measure. Therefore, the use of kd-trees,

R-trees or other data structure aims at reducing the extra CPU time, but it makes no di�erence

in the number of evaluations of the d distance.

How well do metric space techniques perform in comparison to vector space methods? It is

diÆcult to give a formal answer because of the di�erent cost models involved. In metric spaces

we use the number of distance evaluations as the basic measure of complexity, while vector space

techniques may very well use many coordinate manipulations and not a single evaluation of the

distance. Under our model, the cost of a method that maps to a vector space to trim the candidate

list is measured as the number of distance evaluations to realize the mapping plus the �nal distances

to �lter the trimmed candidate list, while the work on the arti�cial coordinates is seen as just extra

CPU time.

A central question related to this reduction is: how well can a metric space be embedded into

a vector space? How many coordinates have to be considered so that the original metric space and

the target vector spaces are similar enough so that the candidate list given by the vector space is

not much larger than the actual outcome of the query in the original space? This is a very diÆcult

question that lies behind all this paper, and we return to it in Section 7.

The issue is better developed in vector spaces. There are di�erent techniques to reduce the

dimensionality of a set of points while preserving the original distances as much as possible [30, 41,

36], that is, to �nd the intrinsic dimension of the data.

10

5 Current Solutions for Metric Spaces

In this section we explain the existing indexes to structure metric spaces and how are they used for

range and NN searching. Since we have not yet developed the concepts of a unifying perspective,

the description will be kept at an intuitive level, without any attempt to analyze why some ideas

are better or worse. We add a �nal subsection devoted to more advanced issues such as dynamic

capabilities, I/O considerations and approximate and probabilistic algorithms.

5.1 Range Searching

We divide the presentation in three parts. The �rst one deals with tree indexes for discrete distance

functions, that is, functions that deliver a small set of values. The second part corresponds to tree

indexes for continuous distance functions, where the set of alternatives is in�nite or very large.

Third, we consider other methods that are not tree-based.

Table 1 summarizes the complexities of the di�erent structures. These are obtained from the

source papers, which use di�erent (and incompatible) assumptions and in many cases give just gross

analyses or no analysis at all (just heuristic considerations). Therefore, we give the complexities as

claimed by the authors of each paper, not as a proven fact. At best, the results are analytical but rely

on diverse simplifying assumptions. At worst, the results are based on a few incomplete experiments.

Keep also in mind that there are hidden factors depending (in many cases exponentially) on the

dimension of the space, and that the query complexity is always on average, as in the worst case we

can be forced to compare all the elements. Even in the simple case of orthogonal range searching

on vector spaces there exist
(n�) lower bounds for the worst case [44].

5.1.1 Trees for Discrete Distance Functions

We start by describing tree data structures that apply to distance functions that return a small set

of di�erent values. At the end we show how to cope with the general case with these trees.

BKT Probably the �rst general solution to search in metric spaces was presented in [19]. They

propose a tree (thereafter called Burkhard-Keller Tree, or BKT), which is suitable for discrete-

valued distance functions. It is de�ned as follows: an arbitrary element p 2 U is selected as the

root of the tree. For each distance i > 0, we de�ne Ui = fu 2 U; d(u; p) = ig as the set of all the
elements at distance i to the root p. Then, for any nonempty Ui , we build a child of p (labeled i),

where we recursively build the BKT for Ui . This process can be repeated until there is only one

element to process, or until there are no more than b elements (and we store a bucket of size b).

All the elements selected as roots of subtrees are called pivots.

When we are given a query q and a distance r, we begin at the root and enter into all children

i such that d(p; q) � r � i � d(p; q) + r, and proceed recursively. If we arrive to a leaf (bucket of

size one or more) we compare sequentially all its elements. Each time we perform a comparison

(against pivots or bucket elements u) where d(q; u) � r, we report the element u.

The triangular inequality ensures that we cannot miss an answer. All the subtrees not traversed

contain elements u which are at distance d(u; p) = i from some node p, where jd(p; q)� ij > r. By

the triangular inequality, d(p; q) � d(p; u) + d(u; q), and therefore d(u; q) � d(p; q)� d(p; u) > r.

Figure 2 shows an example, where the element u11 has been selected as the root. We have built

only the �rst level of the BKT for simplicity. A query q is also shown, and we have emphasized the

branches of the tree that would have to be traversed. In this and all the examples of this section

we discretize the distances of our example, so that they return integer values.

11

Data Space Construction Claimed Query Extra CPU

Structure Complexity Complexity Complexity query time

BKT [19, 58] n pointers O(n logn) O(n�) |

FQT [5] n::n logn pointers O(n logn) O(n�) |

FHQT [5, 4, 6] n::nh pointers O(nh) O(logn) (*) O(n�)

FQA [24] nhb bits O(nh) O(logn) (*) O(n� logn)

VPT [61, 67, 25] n pointers O(n logn) O(log n) (**) |

MVPT [16, 15] n pointers O(n logn) O(log n) (**) |

VPF [68] n pointers O(n2��) O(n1�� logn)(��) |

BST [43, 51] n pointers O(n logn) not analyzed |

GHT [61, 18] n pointers O(n logn) not analyzed |

GNAT [16] nm
2 distances O(nm logm n) not analyzed |

VT [31, 50, 62] n pointers O(n logn) not analyzed |

MT [26] n pointers O(n(m::m
2) logm n) not analyzed |

SAT [47] n pointers O(n logn= log logn) O(n1��(1= log logn)) |

AESA [63] n
2 distances O(n2) O(1) (***) O(n)::O(n2)

LAESA [46, 45, 48, 23] kn distances O(kn) k +O(1) (***) O(log n)::O(kn)

(*) If h = logn.

(**) Only valid when searching with very small radii.

(***) Empirical conclusions without analysis, in case of LAESA for \large enough" k.

Table 1: Average complexities of the existing approaches, according to the source papers. Time

complexity considers only n, not other parameters such as dimension. Space complexity mentions

the most expensive storage units used. � is a number between 0 and 1, di�erent for each structure,

while the other letters are parameters particular of each structure.

u13

u4

u11

u2

u12
u3

u7

u1

u15

u14

u6

u8

u10

u5

u9

u11

2 3 4 5 6

u2 u9 u8u3 u5 u12 u13u1 u10u4 u6 u7 u14 u15q

Figure 2: On the left, the division of the space obtained when u11 is taken as a pivot. On the right,

the �rst level of a BKT with u11 as root. We also show a query q and the branches that it has to

traverse. We have discretized the distances so they return integer values.

12

The results of Table 1 for BKTs are extrapolated from those made for Fixed Queries Trees [5],

which can be easily adapted to this case. The only di�erence is that the space overhead of BKTs

is O(n) because there is exactly one element of the set per tree node.

FQT A further development over BKTs is the \Fixed-Queries Tree" or FQTs [5]. This tree is

basically a BKT where all the pivots stored in the nodes of the same level are the same (and of

course do not necessarily belong to the set stored in the subtree). The actual elements are all

stored at the leaves. The advantage of such construction is that some comparisons between the

query and the nodes are saved along the backtracking that occurs in the tree. If we visit many

nodes of the same level, we do not need to perform more than one comparison because all the pivots

in that level are the same. This is at the expense of somewhat taller trees. FQTs are shown to

be superior to BKTs in [5]. Under some simplifying assumptions (experimentally validated in the

paper) they show that FQTs built over n elements are O(log n) height on average, are built using

O(n log n) distance evaluations, and that the average number of distance computations is O(n�),

where 0 < � < 1 is a number that depends on the range of the search and on the structure of the

space (this analysis is easy to extend to BKTs as well). The space complexity is superlinear since,

unlike BKTs, it is not true that a di�erent element is placed at each node of the tree. An upper

bound is O(n logn) since the average height is O(log n).

FHQT In [5, 4], the authors propose a variant which is called \Fixed-Height FQT" (or FHQT

for short), where all the leaves are at the same depth h, regardless of the bucket size. This makes

some leaves deeper than necessary, which makes sense because we may have already performed

the comparison between the query and the pivot of an intermediate level, therefore eliminating for

free the need to consider the leaf. In [4, 6] it is shown that by using O(log n) pivots, the search

takes O(logn) distance evaluations (although the cost depends exponentially on the search radius

r). The extra CPU time, i.e. number of nodes traversed, remains however O(n�). The space, like

FQTs, is somewhere between O(n) and O(nh). In practice the optimal h = O(logn) cannot be

achieved because of space limitations.

FQA In [24], the Fixed Queries Array (FQA) is presented. The FQA, although not properly a

tree, is no more than a compact representation of the FHQT. Imagine that an FHQT of �xed height

h is built on the set. If we traverse the leaves of the tree left to right and put the elements in an

array, the result is the FQA. For each element of the array we compute h numbers representing the

branches to take in the tree to reach the element from the root (i.e. the distances to the h pivots).

Each of these h numbers is coded in b bits and they are concatenated in a single (long) number so

that the higher levels of the tree are the most signi�cant digits.

As a result the FQA is sorted by the resulting hb-bits number, each subtree of the FHQT cor-

responds to an interval in the FQA, and each movement in the FHQT is simulated with two binary

searches in the FQA (at O(log n) extra CPU cost factor, but no extra distances are computed).

There is a similarity between this idea and suÆx trees versus suÆx arrays [38]. This idea of using

fewer bits to represent the distances appeared also in the context of vector spaces [14].

Using the same memory, the FQA simulation is able to use much more pivots than the original

FHQT, which improves the eÆciency. The b bits needed by each pivot can be lowered by merging

branches of the FHQT, trying that about the same number of elements lies in each cell of the next

level. This allows using even more pivots with the same space usage. For reasons that are made

clear later, the FQA is also called FMVPA in this work.

13

Figure 3 shows an arbitrary BKT, FQT, FHQT and FQA built on our set of points. Notice

that, while in the BKT there is a di�erent pivot per node, in the others there is a di�erent pivot

per level, the same for all the nodes of that level.

BKT u11

2 3 4 5 6

u2 u9 u8u1 u10u7

3 4

u6

u5

5 6 7

u13 u3 u12u14

2 3

u15 u4

0

u11

4

2

u7

3

2

u14

4

u10

3

6

2

u15

3

2

u4

5

2

u6

5

u1

3

3

4

u5

0

4

u13

5

4

u3

6

4

u12

7

5

u2

7

5

u9

7

6

u8

7

3 6543 7 7

FQHT

0 2 3 4 5 6

u5

u11

u11

u5

2 3 4 5 6

u2 u9 u8u1 u10

3 4 5

u7 u15 u14 u4 u6

FQT

0

4

u12u3u13

7650

u5

u11

7650

FQA

u14 u4 u6 u2 u9 u8u7 u15u11 u12u3u13u5u10u1

Figure 3: Example BKT, FQT, FHQT and FQA for our set of points. We use b = 2 for the BKT

and FQT, and h = 2 for FHQT and FQA.

Hybrid In [58], the use of more than one element per node of the tree is proposed. Those k

elements allow eliminating more elements per level at the cost of doing more distance evaluations.

The same e�ect would be obtained if we had a mixture between BKTs and FQTs, so that for k

levels we had �xed keys per level, and then we allowed a di�erent key per node of the level k + 1,

continuing the process recursively on each subtree of the level k + 1. The authors conjecture that

the pivots should be selected to be outside the clusters.

Adapting to continuous functions If we have a continuous distance or if it gives too many

di�erent values, it is not possible to have a child of the root for any such value. If we did that, the

tree would degenerate into a
at tree of height 2, and the search algorithm would be almost like

sequential searching for the BKT and FQT. FHQTs and FQAs do not degenerate in this sense, but

they loose they sublinear extra CPU time.

In [5] the authors mention that the structures can be adapted to a continuous distance by

assigning a range of distances to each branch of the tree. However, they do not specify how to do

this. Some approaches explicitly de�ned for continuous functions are explained later (VPTs and

others), which assign the ranges trying to leave the same number of elements at each class.

5.1.2 Trees for Continuous Distance Functions

We present now the data structures designed for the continuous case. They can be used also for

discrete distance functions with virtually no modi�cations.

VPT The �rst tree designed for continuous distance functions is called \Metric Trees" in [61]. A

more complete work on the same idea [67, 25] calls them \Vantage-Point Trees" or VPTs. They

14

build a binary tree recursively, taking any element p as the root and taking the median of the set of

all distances, M = medianfd(p; u) = u 2 Ug. Those elements u such that d(p; u) �M are inserted

into the left subtree, while those such that d(p; u) > M are inserted into the right subtree. The

VPT takes O(n) space and is built in O(n log n) worst case time, since it is balanced. To solve

a query in this tree, we measure d = d(q; p). If d � r � M we enter into the left subtree, and if

d+ r > M we enter into the right subtree (notice that we can enter into both subtrees). We report

every element considered which is close enough to the query. See Figure 4.

u13

u4

u11

u2

u12
u3

u7

u1

u15

u14

u6

u8

u9

u11 VPT

u7 u9

u15

> 2.9 > 4.0

> 3.1

u14 u4

u6

u10 u1

u8

u13 u2

u3

u12 u6

u5

u10
<= 3.1

<= 2.9 <= 4.0

Figure 4: Example VPT with root u11. We plot the radiusM used for the root. For the �rst levels

we show explicitly the radii used in the tree.

The query complexity is argued to be O(logn) in [67], but as they point out, this is true only

for very small search radii, too small to be an interesting case.

In trees for discrete distance functions, the exact distance between an element in the leaves and

any pivot in the path to the root can be inferred. However, here we only know that the distance

is larger or smaller than M . Unlike the discrete case, it is possible that we arrive to an element

in a leaf which we do not need to compare, but the tree has not enough information to discover

that. Some of those exact distances lost can be stored explicitly, as proposed in [67], to prune more

elements before checking them. Finally, the author of [67] considers the problem of pivot selection

and argues that it is better to take elements far away from the set.

MVPT The VPT can be extended to m-ary trees by using the m�1 uniform percentiles instead

of just the median. This is suggested in [16, 15]. In [15], the \Multi-Vantage-Point Tree" (MVPT)

is presented. They propose the use of many elements in a single node, much as in [58]. It can

be seen that the space is O(n), since each internal node needs to store the m percentiles but the

leaves do not. The construction time is O(n log n) if we search the m percentiles hierarchically at

O(n logm) instead of O(mn) cost. The authors of [15] show experimentally that the idea of m-ary

trees slightly improves over VPTs (and not in all cases), while a larger improvement is obtained by

using many pivots per node. The analysis of query time for VPTs can be extrapolated to MVPTs

in a straightforward way.

VPF Another generalization of the VPT is given by the VPF (shorthand for Excluded Middle

Vantage Point Forest) [68]. This algorithm is designed for radii limited NN search (an NN(q) query

with a maximum radius r�), but in fact the technique is perfectly compatible with a range search

query. The method consists in excluding, at each level, the elements at intermediate distances

to their pivot (this is the most populated part of the set): if r0 and rn stand for the closest and

farthest elements to the pivot p, the elements u 2 U such that d(p; r0) + Æ � d(p; u) � d(p; rn)� Æ

15

are excluded from the tree. A second tree is built with the excluded \middle part" of the �rst tree,

and so on to obtain a forest. With this idea they eliminate the backtracking when searching with a

radius r� � (rn� r0�2Æ)=2, and in return they have to search all the trees of the forest. The VPF,

of O(n) size, is built using O(n2��) time and answers queries in O(n1�� log n) distance evaluations,

where 0 < � < 1 depends on r�. Unfortunately, to achieve � > 0, r� has to be quite small.

BST In [43], the \Bisector Trees" (BSTs) are proposed. The BST is a binary tree built recursively

as follows. At each node, two \centers" c1 and c2 are selected. The elements closer to c1 than to c2
go into the left subtree and those closer to c2 into the right subtree. For each of the two centers, its

\covering radius" is stored, i.e. the maximum distance from the element to any other element in

its subtree. At search time, we enter into each subtree if d(q; ci)� r is not larger than the covering

radius of ci. That is, we can discard a branch if the query ball (i.e. the hypersphere of radius r

centered in the query) does not intersect the ball that contains all the elements inside that branch.

In [51], the \Monotonous BST" is proposed, where one of the two elements at each node is indeed

the parent center. This makes the covering radii to decrease as we move downward in the tree.

Figure 5 illustrates the �rst step of the tree construction.

u2 u5

u4 u6 u12 u10 u9 u8 u3 u7 u11 u15 u14 u1 u13

u10

u13
u5

u2

u12
u3

u7

u1

u15

u6

u8

u9
u14

q

u11

u4

Figure 5: Example of the �rst level of a BST or GHT and a query q. Either using covering radii

(BST) or hyperplanes (GHT), both subtrees have to be considered in this example.

GHT Proposed in [61], the \Generalized-Hyperplane Tree" (GHT) is identical in construction

to a BST. However, the algorithm uses the hyperplane between c1 and c2 as the pruning criterion

at search time, instead of the covering radius. At search time we enter into the left subtree if

d(q; c1) � r < d(q; c2) + r and into the right subtree if d(q; c2) � r � d(q; c1) + r. Again, it is

possible to enter into both subtrees. In [61] it is argued that GHTs could work better than VPTs

in high dimensions. The same idea of reusing the parent node is proposed in [18], this time to avoid

performing two distance evaluations at each node.

GNAT The GHT is extended in [16] to an m-ary tree, called GNAT (Geometric Near-neighbor

Access Tree), keeping the same essential idea. We select, for the �rst level, m centers c1:::cm, and

de�ne Ui = fu 2 U; d(ci ; u) < d(cj ; u);8j 6= ig. That is, Ui are the elements closer to ci than to

any other cj . From the root, m children numbered i = 1::m are built, each one recursively as a

GNAT for Ui . Figure 6 shows a simple example of the �rst level of a GNAT. Notice the relationship

between this idea and a Voronoi-like partition of a vector space [3].

16

u10

u13
u5

u4

u2

u12
u3

u7

u1

u15

u14

u8

u9

u2 u5 u3 u9

u10 u12 u6 u14 u13 u8u4u7 u11 u15 u1

u11
u6

Figure 6: Example of the �rst level of a GNAT with m = 4.

The search algorithm, however, is quite di�erent. At indexing time, the GNAT stores at each

node an O(m2) size table rangeij = [minu2Uj
(ci; u);maxu2Uj

(ci; u)], which stores minimum and

maximum distances from each center to each class. At search time the query q is compared against

some center ci and then it discards any other center cj such that d(q; ci) � r does not intersect

rangei;j. All the subtree Uj can be discarded using the triangle inequality. The process is repeated

with random centers until no one can be discarded. The search then enters recursively in each non

discarded subtree. In the process, any center close enough to q is reported.

The authors use a gross analysis to show that the tree takes O(nm2) space and is built in close

to O(nm logm n) time. Experimental results show that the GHT is worse than the VPT, which is

only beaten with GNATs of arities between 50 and 100. Finally, they mention that the arities of

the subtrees could depend on their depth in the tree, but give no clear criteria to do this.

VT The \Voronoi Tree" (VT) is proposed in [31] as an improvement over BSTs, where this time

the tree has 2 or 3 elements (and children) per node. When a new tree node has to be created

to hold an inserted element, its closest element from the parent node is also inserted in the new

node. VTs have the property that the covering radius is reduced as we move downwards in the tree,

which provides better packing of elements in subtrees. It is shown in [31] that VTs are superior

and better balanced than BSTs. In [50] they show that balanced VTs can be obtained by insertion

procedures similar to those of B-trees, a fact later exploited in M-trees (see next).

MT The M-tree (MT) data structure is presented in [26], aiming at providing dynamic capabilities

and good I/O performance in addition to few distance computations. The structure has some

resemblances with a GNAT, since it is a tree where a set of representatives are chosen at each

node and the elements closer to each representative2 are organized into a subtree rooted by that

representative. The search algorithm, however, is closer to BSTs. Each representative stores its

covering radius. At query time, the query is compared against all the representatives of the node

and the search algorithm enters recursively into all those that cannot be discarded using the covering

radius criterion.

The main di�erence of the MT is the way in which insertions are handled. An element is

inserted into the \best" subtree, de�ned as that causing the subtree covering radius to expand

less (zero expansion is the ideal), and in case of ties selecting the closest representative. Finally,

2There are many variants but this is reported as the most e�ective.

17

the element is added to the leaf node and if the node over
ows (i.e. becomes of size m + 1) it is

split in two and one node element is promoted upwards, as in a B-tree or an R-tree [40]. Hence

the MT is a balanced data structure, much as the VP family. There are many criteria to select

the representative and to split the node, the best results being obtained by trying a split that

minimizes the maximum of the two covering radii obtained. They show experimentally that the

MT is resistant to the dimensionality of the space and that it is competitive against R�-trees.

SAT The algorithm SAT (\Spatial Approximation Tree") [47] does not use centers to split the set

of candidate objects, but rather relies on \spatial" approximation. An element p is selected as the

root of a tree, and it is connected to a set of \neighbors" N , de�ned as a subset of elements u 2 U
such that u is closer to p than to any other element in N (note that the de�nition is self-referential).

The other elements (not in N [fpg) are assigned to their closest element in N . Each element in

N is recursively the root of a new subtree containing the elements assigned to it.

This allows searching elements with radius zero by simply moving from the root to its \neighbor"

(i.e. connected element) which is closest to the query q. If a radius r > 0 is allowed, then we

consider that an unknown element q0 2 U is searched with tolerance zero, from which we only

know that d(q; q0) � r. Hence, we search as before for q and consider that any distance measure

may have an \error" of at most �r. Therefore, we may have to enter into many branches of the

tree (not only the closest one), since the measuring \error" could make that a di�erent neighbor

is the closest one. That is, if c 2 N is the closest neighbor of q, we enter into all c0 2 N such

that d(q; c0) � r � d(q; c) + r. The tree is built in O(n log n= log log n) time, takes O(n) space

and inspects O(n1��(1= log log n)) elements at query time. Covering radii are also used to increase

pruning. Figure 7 shows an example and the search path for a query.

u13

u4

u2

u12
u3

u7

u15

u6

u8

u9
u14

u11

u1
q

u5

u10

Figure 7: Example of a SAT and the traversal towards a query q, starting at u11.

5.1.3 Other Techniques

AESA An algorithm which is close to many of the presented ideas but performs surprisingly

better by an order of magnitude is [63] (called AESA, for \Approximating Eliminating Search

Algorithm"). The structure is simply a matrix with the n(n� 1)=2 precomputed distances among

the elements of U. At search time, they select an element p 2 U at random and measure rp = d(p; q),

eliminating all elements u of U which do not satisfy rp � r � d(u; p) � rp + r. Notice that all the

d(u; p) distances are precomputed, so only d(p; q) has been calculated at search time. This process

of taking a random pivot among the (not yet eliminated) elements of U and eliminating more

18

elements from U is repeated until few enough elements remain in the set. These are compared

against q directly. Figure 8 shows an example with a �rst pivot u11.

u10

u13
u5

u4

u11

u2

u12

u7

u1

u15

u14

u6

u8

u9
q

u3

Figure 8: Example of the �rst iteration of AESA. The points between both rings centered at u11
qualify for the next iteration.

Although this idea seems very similar to FQTs, there are some key di�erences. The �rst

one, only noticeable in continuous spaces, is that there are no prede�ned \rings" so that all the

intersected rings qualify (recall Figure 2). Instead, only the minimal necessary area of the rings

quali�es. The second di�erence is that the second element to compare against q is selected from

the qualifying set, instead of from the whole set as in FQTs. Finally, the algorithm determines on

the
y whether to take more pivots, while FQTs must precompute that decision (i.e. bucket size).

The problem with the algorithm [63] is that it needs O(n2) space and construction time. This

is unacceptably high for all but very small databases. In this sense the approach is close to [57],

although in this latter case they may take fewer distances and bound the unknown ones. AESA is

experimentally shown to have O(1) query time.

LAESA and variants In a newer version of AESA, called LAESA (for Linear AESA) [46], they

propose to use k �xed pivots, so that the space and construction time is O(kn). In this case, the

only di�erence with an FHQT is that �xed rings are not used, but the exact set of elements in

the range is retrieved. FHQT uses �xed rings to reduce the extra CPU time, while in this case no

such an algorithm is given. In LAESA, the elements are simply linearly traversed, and those that

cannot be eliminated after considering the k pivots are directly compared against the query.

A way to reduce the extra CPU time is presented later in [45], which builds a GHT-like structure

using the same pivots. The algorithm is argued to be sublinear in CPU time. Alternative search

structures to reduce CPU time not loosing information on distances are presented in [48, 23], where

the distances to each pivot are sorted separately so that the relevant range [d(q; p)�r; d(q; p)+r] can
be binary searched3. Extra pointers are added to be able to trace an element across the di�erent

orderings for each pivot (this needs more space, however).

Clustering approaches Clustering is a very wide area with lots of applications [42]. The general

goal is to divide a set in subsets of elements close to each other in the same subset. A few approaches

to index metric spaces based on clustering exist.

A technique proposed in [19] is to recursively divide the set U in compact subsets Ui and choose

a representative ci for each. They compute covering radii ri. To search for the closest neighbor, the

3Although in [48] they consider only vector spaces, the same technique can be used here.

19

query q is compared against all the ci and the sets are considered from smallest to largest distance.

The ri are used to determine that there cannot be interesting elements in some sets Ui . They

propose a complex \clique" criterion to select the sets and their representatives. The experimental

results show that this method is slightly worse than the BKT, and that the algorithm to �nd the

cliques is very slow. They also propose that the elements in a clique could be in turn subdivided

into clusters, which is a formulation very similar to (though less complete than) GNATs and MTs.

5.2 Nearest Neighbor Queries

We have concentrated in range search queries up to now. This is because, as we show in this

section, most of the existing solutions for NN-queries are built systematically over range searching

techniques, and indeed can be adapted to any of the data structures presented (despite having been

originally designed for speci�c ones).

5.2.1 Increasing Radius

The simplest NN search algorithm is based on using a range searching algorithm as follows. Search

q with �xed radii r = ai" (a > 1), starting with i = 0 and increasing it until at least the desired

number of elements (1 or k) lies inside the search radius r = ai". Later, the radius is re�ned

between r = ai�1" and r = ai" until the exact number of elements is included.

Since the complexity of the range searching normally grows sharply on the search radius, the

cost of this method can be very close to the cost of a range searching with the appropriate r (which

is not known in advance). The increasing steps can be made smaller (a ! 1) to avoid searching

with a radius much larger than necessary.

5.2.2 Backtracking with Decreasing Radius

A more elaborated technique is as follows. We �rst explain the search for the closest neighbor. Start

the search on any data structure using r� =1. Each time q is compared against some element p,

update the search radius as r� min(r�; d(q; p)) and continue the search with this reduced radius.

This has been for example proposed for BKTs and FQTs [19, 5].

As closer and closer elements to q are found, we search with smaller radius and the search

becomes cheaper. For this reason it is important to try to �nd quickly elements that are close to

the query (which is unimportant in range queries). The way to achieve this is dependent on the

particular data structure. For example, in BKTs and FQTs we can begin at the root and measure

i = d(p; q). Now, we consider the edges labeled i, i� 1, i+ 1, i� 2, i+ 2, and so on, and proceed

recursively in the children (other heuristics may be better). Therefore, the exploration ends just

after considering the branch i+ r� (r� is reduced along the process). At the end r� is the distance

to the closest neighbors and we have already seen all of them.

NNk(q) queries are solved as an extension of the above technique, where we keep the k elements

seen that are closest to q and set r� as the maximum distance between those elements and q (clearly

we are not interested in elements farther away than the current k-th closest element). Each time

a new element is seen whose distance is relevant, it is inserted as one of the k nearest neighbors

known up to now (possibly displacing one of the old candidates out of the list) and r� is updated.

In the beginning we start with r� =1 and keep this value until the �rst k elements are found.

A variant of this type of queries is the limited radius NN searching. Here we start with the

maximum expected distance between the query element and its nearest neighbor. This type of

queries has been the focus of [68, 69].

20

5.2.3 Priority Backtracking

The previous technique can be improved by a smarter selection of which elements to consider �rst.

For clarity we consider backtracking in a tree, although the idea is general. Instead of following the

normal backtracking order of the range query, modifying at most the order in which the subtrees are

traversed, we give much more freedom to the traversal order. The goal is to increase the probability

of quickly �nding elements close to q and therefore reduce r� fast. This technique has been used

in vector and metric spaces several times [60, 53, 26].

At each point of the search we have a set of possible subtrees that can be traversed (not

necessarily all at the same level). We select among them using some heuristic (e.g. �rst traverse

subtrees whose root is closest to q). Once a subtree has been selected we compare q against its

root, update r� and the candidates for output if necessary, and determine which of the children

of the considered root deserve traversal. Unlike the normal backtracking, those children are not

immediately traversed but added to the set of subtrees that have to be traversed at some moment.

Then we select again a subtree from the set using the optimization heuristic.

The best way to implement this search is with a priority queue ordered by the heuristic \good-

ness", where the subtrees are inserted and removed. We start with an empty queue where we insert

the root of the tree. Then, we repeat the step of removing the most promising subtree, processing

it, and inserting the relevant subtrees until the queue gets empty.

If applied to a BKT or a FQT, this method yields the same result as the previous section, but

this technique is superior to deal with continuous distances.

5.2.4 Speci�c NN Algorithms

The techniques described above cover almost all the existing proposals for solving NN-queries. The

only exception we are aware of was presented in [29], which is a GNAT-like data structure where the

points are inserted into more than one subtree to limit backtracking (hence the space requirement

is superlinear).

After selecting the representatives for the root of the tree, each element u is not only inserted

into the subtree of its closest representative p, but also in the tree of any other representative p0 such

that d(u; p0) � 3d(u; p). At search time, the query q enters not only into its nearest representative

p but also into every other representative p0 such that d(q; p0) � 3d(q; p). As shown in [29] this is

enough to guarantee that the nearest neighbor will be reached.

By using subsets of size n1=2
k+1

at depth k in the tree, the search time is polylogarithmic in n

and the space requirement is O(n polylog n) if some conditions hold in the metric space.

5.3 Extensions

We cover in this section the work that has been pursued on extensions of the basic problems or in

alternative models. None of these are the main focus of our survey.

5.3.1 Dynamic Capabilities

Many of the data structures for metric spaces are designed to be built on a static data set. In many

applications this is not reasonable because elements have to be inserted and deleted dynamically.

Some data structures tolerate insertions well, but not deletions.

We �rst consider insertions. Among the structures that we have surveyed, the least dynamic is

SAT, which needs full knowledge of the complete set at index construction time and has diÆculty in

handling later insertions (some workarounds are described in [47]). The VP family (VPT, MVPT,

21

VPF) has the problem of relying on global statistics (such as the median) to build the tree, so later

insertions can be performed but the performance of the structure may deteriorate. Finally, the FQA

needs in principle insertion in the middle of an array, but this can be handled by using standard

techniques. All the other data structures can handle insertions in a reasonable way. There are some

structure parameters that may depend on n and thus require periodical structural reorganization,

but we disregard this issue here (e.g. adding or removing pivots is generally problematic).

Deletion is a little more complicated. In addition to the above structures, which present the same

problems as for insertion, BKTs, GHTs, BSTs, VTs, GNATs and the VP family cannot tolerate

deletion of an internal tree node because it plays an essential role in organizing the subtree. Of

course this can be handled as just marking the node as removed and actually keeping it for routing

purposes, but the quality of the data structure is a�ected over time.

Therefore, the only structures that fully support insertions and deletions are the FQ family

(FQT, FQHT, FQA, since there are no truly internal nodes), AESA and LAESA approaches (since

they are just vectors of coordinates), the MT (which is designed with dynamic capabilities in

mind and whose insertion/deletion algorithms remind those of the B-tree), and a variant of GHTs

designed to support dynamic operations [62]. The analysis of this latter structure shows that

dynamic insertions can be done in O(log2 n) amortized worst case time, and that deletions can be

done at similar cost under some restrictions.

5.3.2 I/O Considerations

Most of the research on metric spaces deals with reducing the number of distance evaluations or

at most the total CPU time. However, depending on the application, the I/O cost may play an

important role. As most of the research on metric spaces has focused on algorithms to discard

elements, I/O considerations have been normally left aside.

The only exception to the rule is MT, designed speci�cally for secondary memory. The tree

nodes in the MT are to be stored in a single disk page (indeed, the MT does not �x an arity but

rather a node capacity in bytes). Earlier balanced trees exist (such as the VP family), but the

purpose of this balancing is to keep low the extra CPU costs. As we show later, unbalanced data

structures perform much better in high dimensions and it is unlikely that the reduced CPU costs

may play an important role. The purpose of balancing the MT, on the other hand, is to keep I/O

costs low, and depending on the application this may be even more important than the number of

distance evaluations.

Other data structures could probably be adapted to perform well in secondary memory, but the

authors simply have not considered the problem. For instance, it is not hard to imagine strategies

for the tree data structures to pack \compact" subtrees in disk pages, so as to make as good use

as possible of a page that is read from disk. When a subtree grows larger than a page it is split

in two pages of approximately the same number of nodes. Of course, a B-tree like scheme as that

of MT has to be superior in this respect. Finally, array oriented approaches such as FQA, AESA

and LAESA are likely to read all the disk pages of the index for each query, hence having bad I/O

performance.

5.3.3 Approximate and Probabilistic Algorithms

For the sake of a complete overview we include a brief description of an important branch of

similarity searching, where a relaxation on the query precision is allowed to obtain a speedup

in the query time complexity. This is reasonable in some applications because the metric space

22

modelization involves already an approximation to the true answer (recall Section 2), and therefore

a second approximation at search time may be acceptable.

Additionally to the query one speci�es a precision parameter " to control how far away (in

some sense) we want the outcome of the query from the correct result. A reasonable behavior for

this type of algorithms is to asymptotically approach to the correct answer as " goes to zero, and

complementarily to speed up the algorithm, loosing precision, as " moves in the opposite direction.

This alternative to exact similarity searching is called approximate similarity searching, and

encompasses approximate and probabilistic algorithms. We do not cover them in depth here but

present a few examples. Approximation algorithms for similarity searching are considered in depth

in [65].

As a �rst example, we mention an approximate algorithm for NN search in real vector spaces

using any Minkowski metric Ls [2]. They propose a data structure, the BBD-tree, inspired in kd-

trees, that can be used to �nd \(1+") nearest neighbors": instead of �nding u such that d(u; q) �
d(v; q) 8v 2 U, they �nd an element u�, an (1 + ")-nearest neighbor, di�ering from u by a factor

of (1 + "), i.e. u� such that d(u�; q) � (1 + ")d(v; q) 8v 2 U.
The essential idea behind this algorithm is to locate the query q in a cell (each leaf in the tree

is associated with a cell in the decomposition). Every point inside the cell is processed to obtain

the current nearest neighbor (u). The search stops when no promising cells are encountered, i.e.

when the radius of any ball centered at q and intersecting a nonempty cell exceeds the radius

d(q; p)=(1 + "). The query time is O(d1 + 6k="ekk log n).
A second example is a probabilistic algorithm for vector spaces [69]. The data structure is like

a standard kd-tree, using \aggressive pruning" to improve the performance. The idea is to increase

the number of branches pruned at the expense of losing some candidate points in the process. This

is done in a controlled way, so the probability of success is always known. In spite of the vector

space focus of the algorithm, it could be generalized to metric spaces as well. The data structure

is useful fof �nding only limited radius nearest neighbors, i.e. neighbors within a �xed distance to

the query. Finally, an example of a probabilistic NN algorithm for general metric spaces is that

of [29]. The original intention is to build a Voronoi-like data structure on a metric space. As

this is not possible in general because there is no enough knowledge of the characteristics of the

queries that will come later [47], the author of [29] chooses to have a \training set" of queries and

to build a data structure able to answer correctly only queries belonging to the training set. The

idea is that this is enough to answer correctly an arbitrary query with high probability. Under

some probabilistic assumptions on the distribution of the queries, it is shown that the probability

of not �nding the nearest neighbor is O(log n)2=K), where K can be made arbitrarily large at the

expense of O(Kn�) space and O(K� log n) expected search time. Here � is the logarithm of the

ratio between the farthest and the nearest pairs of points in the union of U and the training set.

6 A Unifying Model

At �rst sight, the indexes and the search algorithms seem to emerge from a great diversity, and

di�erent approaches are analyzed separately, often under di�erent assumptions. Currently, the only

realistic way to compare two di�erent algorithms is to apply them to the same data set.

In this section we make a formal introduction to our unifying model. Our intention is to provide

a common framework to analyze all the existing approaches to proximity searching. As a result,

we will be able to capture the similarities of apparently di�erent approaches. We will also obtain

truly new ways of viewing the problem.

The conclusion of this section can be summarized in Figure 9. All the indexing algorithms

23

partition the set U into subsets. An index is built which allows determining a set of candidate

subsets where the elements relevant to the query can appear. At query time, que index is searched

to �nd the relevant subsets (the cost to do this is called \internal complexity") and those subsets

are checked exhaustively (which corresponds to the \external complexity" of the search).

The last two subsections describe the two main approaches to similarity searching in abstract

terms.

Index

Equivalence classes

Data

Query q

Traverse index
(internal
complexity)

q

Search in candidate classes
(external complexity)

Indexing Querying

Figure 9: The uni�ed model for indexing and querying metric spaces.

6.1 Equivalence Relations

The relevance of equivalence classes for this paper comes from the possibility of partitioning a

metric space so that a new metric space is derived from the quotient set. Readers familiar with

equivalence relations can safely skip this short section.

Given a set X, a partition �(X) = f�1; �2; : : : g is a collection of pairwise disjoint subsets whose

union is X, i.e. [�i = X and 8i 6= j; �i \ �j = ;.
A relation, denoted by �, is a subset of the cross product X � X (the set of ordered pairs) of

X. Two elements x; y are said to be related, denoted by x � y, if the pair (x; y) is in the subset.

A relation � is said to be an equivalence relation if it satis�es, for all x; y; z 2 X, the properties of
re
exivity (x � x), symmetry (x � y , y � x) and transitivity (x � y ^ y � z) x � z).

Every partition �(X) induces an equivalence relation � and, conversely, every equivalence re-

lation induces a partition: two elements are related if they belong to the same partition element.

Every element �i of the partition is then called an equivalence class. An equivalence class is often

named after one of its representatives (any element of �i can be taken as a representative). An

alternative de�nition of an equivalence class of an element x is the set of all y such that x � y. We

will denote the equivalence class of x as [x] = fy; x � yg:
Given the set X and an equivalence relation �, we obtain the quotient �(X) = X=�. It indicates

the set of equivalence classes (or just classes), obtained when applying the equivalence relation to

the set X.

24

6.2 Indexing and Partitions

The equivalence classes in the quotient set �(X) of a metric space X can be considered themselves

as objects in a new metric space, provided we de�ne a distance function in �(X).

We introduce a new function D0 : �(X) � �(X) �! R now de�ned in the quotient.

De�nition 1. Given a metric space (X; d) and a partition �(X), the extension of d to �(X) is

de�ned as D0([x]; [y]) = infx2[x];y2[y]fd(x; y)g.

D0 gives the maximum possible values that keep the mapping contractive (i.e. D0([x]; [y]) �
d(x; y) for any x; y). Unfortunately, D0 does not satisfy the triangle inequality, just (p1) to (p3),

and in most cases (p4) (recall Section 3.1). Hence, D0 itself is not suitable for indexing purposes.

However, we can use any metricD that lower boundsD0 (i.e. D([x]; [y]) � D0([x]; [y])). SinceD

is a metric, (�(X);D) is a metric space and therefore we can make queries in �(X) in the same way we

have done in X. We rede�ne the outcome of a query in �(X) as ([q]; r)D = fu 2 U; D([u]; [q]) � rg
(although formally we should retrieve classes, not elements).

Since the mapping is contractive (D([x]; [y]) � d(x; y)) we can convert one search problem into

another, hopefully simpler, search problem. For a given query (q; r)d we �nd out which equivalence

class the query q belongs to (i.e. [q]). Then, using the new distance function D the query is

transformed into ([q]; r)D. As the mapping is contractive, we have (q; r)d � ([q]; r)D. That is,

([q]; r)D is indeed a candidate list, so it is enough to perform an exhaustive search on that candidate

list (now using the original distance d), to obtain the actual outcome of the query (q; r)d.

Our main thesis is that the above procedure is in fact used in virtually every indexing algorithm

(recall Figure 9). In other words:

Proposition. All the existing indexing algorithms for proximity searching consist in building an

equivalence relation, so that at search time some classes are discarded and the others are exhaustively

searched.

As we see shortly, the most important tradeo� when designing the partition is to balance the

cost to �nd ([q]; r)D and the cost to verify this candidate list.

In Figure 10 we can see a schematic example of the idea. We divide the space in several regions

(equivalence classes). The objects inside each region become indistinguishable. We can consider

them as elements in a new metric space. To �nd the answer, instead of exhaustively examining the

entire dictionary we just examine the classes that contain potentially interesting objects. In other

words, if a class can contain an element that should be returned in the outcome of the query, then

the class will be examined (see also the rings considered in Figure 2).

We recall that this property is not enough for an arbitrary NN search algorithm to work (since

the mapping would have to preserve proximity instead), but most existing algorithms for NN are

based on range queries (recall Section 5.2), and these algorithms can be applied as well.

Some examples may help to understand the above de�nitions, for both the concept of equivalence

relation and the obtained distance function.

Example 1. Say that we have an arbitrary reference pivot p 2 X and the equivalence relation is

given by x � y , d(p; x) = d(p; y). In this case D([x]; [y]) = jd(x; p) � d(y; p)j is a safe lower

bound for the D0 distance (guaranteed by the triangle inequality). For a query of the form (q; r)d
the candidate list ([q]; r)D consists of all elements x such that D([q]; [x]) � r, or which is the

same, jd(q; p) � d(x; p)j � r. Graphically, this distance represents a ring centered at p containing

a ball centered at q with radius r (recall Figures 10 and 8). This is the familiar rule used in many

independent algorithms to trim the space.

25

D([x],[y])

y

d(x,y)

x

p

[y]

[x]

Figure 10: Two points x and y, and their equivalence classes (the shaded rings). D gives the

minimal distance among rings, which lower bounds the distance between x and y.

Example 2. As explained, the similarity search problem was �rstly introduced in vector spaces,

and the very �rst family of algorithms used there was based on a partition operation. These

algorithms were called bucketing methods, and consist in the construction of cells or buckets [10].

Searching for an arbitrary point in Rk is converted into an exhaustive search in a �nite set of cells.

The procedure used two steps: (1) �rst they �nd which cell the query point belongs to and then

they build a set of candidate cells using the query range; (2) they inspect this set of candidate cells

exhaustively to �nd the actual points inside the query range4. In this case the equivalence classes

are the cells, and the tradeo� is that the larger the cells, the cheaper it is to �nd the appropriate

ones, but the more costly is the �nal exhaustive search.

6.3 Coarsening and Re�ning a Partition

We start by de�ning the concept of re�nement and coarsening.

De�nition 2. Let �1 and �2 be two equivalence relations over a set X. We say that �1 is a

re�nement of �2 or that �2 is a coarsening of �1 if for any pair x; y 2 X such that x �1 y it holds

x �2 y. The same terms can be applied to the corresponding partitions �1(X) and �2(X).

Re�nement and coarsening are important concepts for the topic we are discussing. The following

lemma shows the e�ect of coarsening on the e�ectiveness of the partition for searching purposes.

Lemma 1. If �1is a coarsening of �2 then their extended distances D1 and D2 have the property

D1([x]; [y]) � D2([x]; [y]).

Proof. Let us denote [x]i and [y]i the equivalence classes of x and y under equivalence relation �i.

Then, D1([x]; [y]) = infx2[x]1;y2[y]1fd(x; y)g � infx2[x]2;y2[y]2fd(x; y)g = D2([x]; [y]), since [x]2 � [x]1
and [y]2 � [y]1.

An interesting idea arising from the above lemma is to build a hierarchy of coarsening operations.

Using this hierarchy we could proceed downwards from a very coarse level building a candidate list

of equivalence classes of the next level. This candidate list will be re�ned using the next distance

function and so on until we reach the bottom level.

4The algorithm is in fact a little more sophisticated because they try to �nd the nearest neighbor of a point.

However, the version presented here for range queries is in the same spirit as the original one.

26

6.4 Discriminative Power

As sketched previously, most indexing algorithms rely on building an equivalence relation. The

corresponding search algorithms have two parts:

1. Find the classes that may be relevant for the query.

2. Exhaustively search all the elements of these classes.

The �rst part involves performing some evaluations of the d distance, as shown in the Example 1

above. It may also involve some extra CPU time (which although not the central point in this paper,

must be kept reasonable). The second part consists of directly comparing the query against the

candidate list. The following de�nition gives a name to both parts of the search cost.

De�nition 3. Let A be a search algorithm over (X; d) based on a mapping to (�(X); D), and let

(q; r)d be a range query. Then the internal complexity of A is the number of evaluations of d

necessary to compute ([q]; r)D, and the external complexity is j([q]; r)Dj.

We recall that j([q]; r)Dj refers to the number of elements in the original metric space, not the

number of classes retrieved.

There is a concept related to the external complexity of a search algorithm, which we de�ne

next.

De�nition 4. The discriminative power of a search algorithm based on a mapping from (X; d) to

(�(X);D), with regard to a query (q; r)d of nonempty outcome, is de�ned as j(q; r)dj=j([q]; r)D j.

Although the de�nition depends on q and r, we can speak in general terms of the discriminative

power by averaging over the q's and r's of interest. The discriminative power serves as an indicator

of the performance or �tness of the equivalence relation.

In general, it will be more costly to have more discriminative power. The indexing scheme needs

to �nd a balance between the complexity to �nd the relevant classes and the discriminative power.

Let us consider Example 1. The internal complexity is 1 distance evaluation (the distance from

q to p), and the external complexity will correspond to the number of elements that lie in the

selected ring. We could intersect it with more rings (increasing internal complexity) to reduce the

external complexity.

The tradeo� is partially formalized with this lemma.

Lemma 2. If A1 and A2 are search algorithms based on equivalence relations �1 and �2, respec-

tively, and �1 is a coarsening of �2, then A1 has higher external complexity than A2.

Proof. We have to show that, for any r, ([q]; r)D2
� ([q]; r)D1

. But this is clear, sinceD1([x]; [y]) �
D2([x]; [y]) implies ([q]; r)D2

= fy 2 U; D2([q]; [y]) � rg � fy 2 U; D1([q]; [y]) � rg = ([q]; r)D1
:

Although having more discriminative power normally costs more internal evaluations, one can

make better or worse use of the internal complexity. We elaborate more on this next.

6.5 Locality of a Partition

The equivalence classes can be thought of as a set of non intersecting cells in the space, where

every element inside a given cell belongs to the same equivalence class. However, the mathematical

de�nition of an equivalence class is not con�ned to a single cell. We de�ne \locality" as a property

of a partition that stands for how much the classes resemble cells. More formally,

27

De�nition 5. The non-locality of a partition �(X) = f�1; �2; : : : g with respect to a �nite dictionary
U is de�ned as maxifmaxx;y2�i\U d(x; y)g, that is, as the maximum distance between elements lying

in the same class.

We say that a partition is \local" or \non local" meaning that it has high or low locality.

Figure 11 shows an example of a non local partition (u5 and u12 lie in separate fragments of a

single class). It is natural to expect more discriminative power from a local partition than from a

non-local one. This is because in a non local partition the candidate list tends to contain elements

actually far away from the query.

u13

u4

u11

u2

u12
u3

u7

u1

u15

u14

u6

u8

u8

u11

u3

u7u4

u8

u9

u10

u11

u6

u15

q

u5

u5

q

u10

u9
u13

u1

u14

u2

u12

Figure 11: An equivalence relation induced by intersecting rings centered in two pivots, and how a

query is transformed.

Notice that in Figure 11 the locality would improve sharply if we added a third pivot. In a

vector space of k dimensions, it suÆces to consider k + 1 pivots in general position5 to obtain a

highly local partition. In general metric spaces we can also take a suÆcient number of pivots so as

to obtain highly local partitions.

However, obtaining local partitions may be expensive in internal complexity and not enough to

achieve low external complexity, otherwise the bucketing method for vector spaces [10] explained

in Example 2 would have excellent performance. Even with such a local partition and assuming

uniformly distributed data, a number of empty cells are veri�ed, whose volume grows exponentially

with the dimension. We return later to this issue.

6.6 The Pivot Equivalence Relation

A large class of algorithms to build the equivalence relations are based on pivoting. This consists in

considering the distances between an element and a number of preselected \pivots" (i.e. elements

of U or even X, called also reference points, vantage points, keys, queries, etc. in the literature).

The equivalence relation is de�ned in terms of the distances of the elements to the pivots, so

that two elements are equivalent if they are at the same distance to all the pivots. If we consider

one pivot p, then this equivalence relation is

x �p y () d(x; p) = d(y; p)

The equivalence classes correspond to the intuitive notion of the family of sphere shells with

center p. Points falling in the same sphere shell (i.e. at the same distance to p) are equivalent from

the view point of p.

5That is, not lying on a (k � 1)-hyperplane.

28

The above equivalence relation is easily generalized to k pivots.

De�nition 6. The pivot equivalence relation based on elements fp1; : : : ; pkg (the k pivots) is

de�ned as

x �fpig y () 8i; d(x; pi) = d(y; pi)

A graphical representation of the class in the general case corresponds to the intersection of

several sphere shells centered at the points pi (recall Figure 11).

The distance d(x; y) cannot be smaller than jd(x; p) � d(y; p)j for any element p, because of

the triangular inequality. Hence D([x]; [y]) = jd(x; p) � d(y; p)j is a safe lower bound to the D0

function corresponding to the class of sphere shells centered in p. With k pivots, this becomes

D([x]; [y]) = maxifjd(x; pi)� d(y; pi)jg. This D distance lower bounds d and hence can be used as

our distance in the quotient space.

Alternatively, we can consider the equivalence relation as a projection to the vector space Rk ,

being k the number of pivots used. The i-th coordinate of an element is the distance of the element

to the i-th pivot. Once this is done, we can identify points in Rk with elements in the original space

with the L1 distance. As we have described in Section 6, the indexing algorithm will consist in

�nding the set of equivalence classes such that they fall inside the radius of the search when using

D in the quotient space. In this particular case for a query of the form (q; r)d we have to �nd the

candidate list as the set ([q]; r)D, i.e. the set of equivalence classes [y] such that D([q]; [y]) � r. In

other words, we want the set of objects y such that maxifjd(q; pi)�d(y; pi)jg � r. This is equivalent

to search with the L1 distance in the vector space Rk where the equivalence classes are projected.

Figure 12 illustrates this concept (Figure 11 is also useful).

u1

u2

q

q

a1

b1

a2

b2

d(x,u1)

d(x,u2)

a2

b1a1

b2

Figure 12: Mapping from a metric space onto a vector space under the L1 metric, using two pivots.

Yet a third way to see the technique, less formal but perhaps more intuitive, is as follows: to

check if an element u 2 U belongs to the query outcome, we try a number of random pivots pi. If,

for any such pi, we have jd(q; pi) � d(u; pi)j > r, then by the triangular inequality we know that

d(q; u) > r without need to actually evaluate d(q; u). At indexing time we precompute the d(u; pi)

values and at search time we compute the d(q; pi) values. Only those elements u that cannot be

discarded by looking at the pivots are actually checked against q.

6.7 The Voronoi Equivalence Relation

A di�erent type of equivalence relation, used by another large class of algorithms, is de�ned with

respect to the proximity to a set of elements (that we call \centers" to distinguish them from the

pivots of the previous section).

29

De�nition 7. The Voronoi equivalence relation based on fc1; : : : ; cmg (the centers) is

x �fcig y () closest(x; fcig) = closest(y; fcig)

where closest(z; S) = fw 2 S; 8w0 2 S; d(z; w) � d(z; w0)g. The associated partition is called a

Voronoi partition.

That is, we divide the space with one partition for each ci and the class of ci is that of the

points that have ci as their closest center
6. Figure 13 shows an example in (R2 ; L2). In particular

note that we can select U as the set of centers, in which case the partition has optimal locality.

Even if fcig is not U, Voronoi partitions have good locality.

u10

u13
c1

u4

c3

u12
c2

u7

u1

u15

u14
c4

u6

u8

q1

u11

q2

Figure 13: A Voronoi partition using four centers and two query balls intersecting some classes.

Note that the class of c3 could be excluded from consideration for q1 by using the covering radius

criterion but not the hyperplane criterion, while the opposite happens to discard c4 for q2.

In vector spaces the Voronoi partition is assumed to use U as the set of centers. Its associated

concept, the \Delaunay tesselation" is a graph whose nodes are the elements of U and whose

edges connect nodes whose classes share a border. The Delaunay tesselation is the basis of very

good algorithms for proximity searching [3, 66]. For example, an O(log n) NN algorithm exists

in two dimensions. Unfortunately, this algorithm does not generalize eÆciently to more than two

dimensions. The Delaunay tesselation, which has O(n) edges in two dimensions, can have O(n2)

edges in three and more dimensions.

In a general metric space, the D0([x]; [y]) distance in the space �(X) of the Voronoi classes is,

as before, the smallest distance between points x 2 [x] and y 2 [y]. To �nd [q] we basically need to

�nd the nearest neighbor of q in the set of centers. The outcome of the query ([q]; r)D0
is the set

of classes intersected by query ball (see Figure 13).

A problem in general metric spaces is that it is not easy to bound a class so as to determine

whether or not the query ball intersects it. From the many possible criteria, two are the most

popular:

Hyperplane criterion: this is the most basic one and the one that best express the idea of a

Voronoi partition. In essence, if c is the center of the class [q] (i.e. the center closest to q), then

(1) the query ball of course intersects [c]; (2) the query ball does not intersect [ci] if d(q; c) + r <

6We are using our own de�nition of \Voronoi partition", which matches with the concept of \Dirichlet domain" if

all the elements of the set are centers.

30

d(q; ci) � r. Graphically, if the query ball does not intersect the hyperplane dividing its closest

neighbor and another center ci, then the ball is totally outside the class of ci.

Covering radius criterion: this tries to bound the class [ci] by considering a ball centered at

ci that contains all the elements of U that lie in the class. We de�ne

De�nition 8. The covering radius of c for U is cr(c) = maxu2[c]\U d(c; u).

Now it is clear that we can discard ci if d(q; ci)� r > cr(ci).

7 The Curse of Dimensionality

As explained, one of the major obstacles for the design of eÆcient search techniques on metric

spaces is the existence and ubiquity in real applications of the so called high dimensional spaces.

Traditional indexing techniques for vector spaces (such as kd-trees) have an exponential dependency

on the representational dimension of the space (as the volume of a box or hypercube containing

the answers grows exponentially with the dimension).

More recent indexing techniques for vector spaces and those for generic metric space can get rid

of the representational dimension of the space. This makes a big di�erence in many applications

that handle vector spaces of representational high dimension but intrinsic low dimension (e.g. a

plane immersed in a 50-dimensional vector space, or simply clustered data). However, in some cases

even the intrinsic dimension is very high and the problem becomes intractable for exact algorithms,

and we have to resort to approximate or probabilistic algorithms (Section 5.3.3).

Our aim in this section is (a) to show that the concept of intrinsic dimensionality can be

conceived even in a general metric space; (b) to give a quantitative de�nition of the intrinsic

dimensionality; (c) to show analytically the reason for the so-called \curse of dimensionality"; and

(d) to discuss the e�ects of pivot selection techniques.

7.1 Intrinsic Dimensionality

Let us start with a well-known example. Consider a distance such that d(x; x) = 0 and d(x; y) = 1

for all x 6= y. Under this distance (in fact an equality test), we do not obtain any information from

a comparison except that the element considered is or is not our query. It is clear that it is not

possible to avoid a sequential search in this case, no matter how smart is our indexing technique.

Let us consider the histogram of distances between points in the metric space X. This can be

approximated by using the dictionary U as a random sample of X. This histogram is mentioned in

many papers, e.g. [16, 22, 27], as a fundamental measure related to the intrinsic dimensionality of

the metric space. The idea is that, as the space has higher intrinsic dimension, the mean � of the

histogram grows and its variance �2 is reduced. Our previous example is an extreme case.

Figure 14 gives an intuitive explanation of why the search problem is harder when the histogram

is concentrated. If we consider a random query q and an indexing scheme based on random pivots,

then the possible distances between q and a pivot p are distributed according to the histogram

of the �gure. The elimination rule says that we can discard any point u such that d(p; u) 62
[d(p; q)� r; d(p; q) + r]. The grayed areas in the �gure show the points that we cannot discard. As

the histogram is more and more concentrated around its mean, less and less points can be discarded

using the information given by d(p; q).

This phenomenon is independent on the nature of the metric space (vectorial or not, in partic-

ular) and gives us a way to quantify how hard is to search on an arbitrary metric space.

31

2r

d(p,q)

2r

d(p,q)

d(p,x) d(p,x)

Figure 14: A low-dimensional (left) and high-dimensional (right) histogram of distances, showing

that on high dimensions virtually all the elements become candidates for the exhaustive evaluation.

Moreover, we should use a larger r in the second plot in order to retrieve some elements.

De�nition 9. The intrinsic dimensionality of a metric space is de�ned as � = �2

2�2
, where � and

�2 are the mean and variance of its histogram of distances.

The technical convenience of the exact de�nition is made clear shortly. The important part

is that the intrinsic dimensionality grows with the mean and shrinks with the variance of the

histogram.

The particular cases of the Ls distances in vector spaces are useful illustrations. As shown in

[68], a uniformly distributed k-dimensional vector space under the Ls distance has mean �(k1=s)

and standard deviation �(k1=s�1=2). Therefore its intrinsic dimensionality is �(k) (although the

constant is not necessarily 1). So the intuitive concept of dimensionality in vector spaces matches

our general concept of intrinsic dimensionality.

7.2 A Lower Bound for Pivoting Algorithms

Our main result in this section relates the intrinsic dimensionality with the diÆculty of searching

with a given search radius r using a pivoting equivalence relation that chooses the pivots at random.

As we show next, the diÆculty of the problem is related to r and the intrinsic dimensionality �.

We are considering independent identically distributed (i.i.d.) random variables for the distri-

bution of distances between points. Although not accurate, this simpli�cation is optimistic and

hence can be used to lower bound the performance of the indexing algorithms. We come back to

this shortly after the discussion.

Let (q; r)d be a range query over a metric space indexed by means of k random pivots, and

let u be an element of U. The probability that u cannot be excluded from direct veri�cation after

considering the k pivots is exactly

Pr(jd(q; p1)� d(u; p1)j � r; : : : ; jd(q; pk)� d(u; pk)j � r)

Since all the pivots are assumed to be random and their distance distributions i.i.d. random

variables, this expression is the product of probabilities

Pr(jd(q; p1)� d(u; p1)j � r) � : : : � Pr(jd(q; pk)� d(u; pk)j � r)

which for the same reason can be simpli�ed to

Pr(not discarding u) = Pr(jd(q; p)� d(u; p)j � r)k

32

for a random pivot p.

IfX and Y are two i.i.d. random variables with mean � and variance �2, then the mean of X�Y
is 0 and its variance is 2�2. Using Chebyschev's inequality7 we have that Pr(jX�Y j > ") < 2�2="2.

Therefore,

Pr(jd(q; p)� d(u; p)j � r) � 1� 2�2

r2

where �2 is precisely the variance of the distance distribution in our metric space. The argument

that follows is valid for 2�2=r2 < 1 (large enough radii). Then, we have

Pr(not discarding u) �
�
1� 2�2

r2

�k

We have now that the total search cost is the number of internal distance evaluations (k) plus

the external evaluations, whose number is on average n� Pr(not discarding u). Therefore

Cost � k + n

�
1� 2�2

r2

�k

is a lower bound to the average search cost by using pivots. Optimizing we obtain that the best k

is

k� =
lnn + ln ln(1=t)

ln(1=t)

where t = 1� 2�2=r2. Using this optimal k�, we obtain an absolute (i.e. independent on k) lower

bound for the average cost of any random pivot-based algorithm:

Cost � lnn + ln ln(1=t) + 1

ln(1=t)
� lnn

ln(1=t)
� r2

2�2
lnn

which shows that the cost depends strongly on �=r. As r increases t tends to 1 and the scheme

requires more and more pivots and it is anyway more and more costly. We have just proved

Theorem 1. Any pivot based algorithm using random pivots has a lower bound
r2

2�2
lnn in the

average number of distance evaluations performed for a range query (q; r) with random q, where �

is the standard deviation of the distance distribution. If r = �f , where � is the mean of the distance

distribution, then the lower bound can be expressed as �f2 lnn, where � is the intrinsic dimension

of the space.

This result matches that of [4, 6] on FHQTs, about obtaining �(log n) search time using �(log n)

pivots.

The theorem shows clearly that the parameter governing the performance of range searching

algorithms is �f2, not just �. As the dimension � grows we have to reduce the search radius (seen

as a fraction f of the average distance) in order to keep the same performance. Of course, this is

not reasonable for many applications. For example, in vector spaces we need to keep f constant (r

growing) in order to get a �xed percentage of the database elements. As another example, many

of the algorithms for NN searching use random distances to q as temporary upper bounds to the

7For an arbitrary distribution Z with mean �z and variance �2z , Pr(jZ � �j > ") < �2z="
2.

33

distance to the nearest neighbor. As the mean distance is larger in higher dimensions, those bounds

are worse and the search cost is higher. Moreover, if q is random then its actual distance to its

nearest neighbor is indeed larger.

On the other hand, it is possible that in some applications the query q is known to be a

perturbation of some element of U and therefore we can keep a constant search radius r as the

dimension grows. Even in those cases �f2 may grow if � shrinks with the dimension, as in the Ls

vector spaces with s > 2.

We have considered i.i.d. random variables for each pivot and the query. This is a reasonable

approximation, as we do not expect much di�erence between the \view points" from the general

distribution of distances to the individual distributions (see Section 7.4). The expression given in

Eq. (7.2) cannot be obtained without this simpli�cation.

A stronger assumption comes from considering all the variables as independent. This is an

optimistic consideration equivalent to assuming that in order to discard each element u of the set

we take k new pivots at random. The real algorithm �xes k random pivots and uses them to try

to discard all the elements u of the set. The latter alternative can su�er from dependencies from a

point u to another, which cannot happen in the former case (for example, if u is close to the 3rd

pivot and u0 is close to u then the distance from u0 to the third pivot carries less information). Since

the assumption is optimistic, using it to reduce the joint distribution in Eq. (7.2) to the expression

given in Eq. (7.2) keeps the lower bound valid.

Figure 15 shows an experiment on the search cost in (R`; L2) using di�erent number of pivots k

and dimensions `. The n = 100; 000 elements are generated at random and the pivots are randomly

chosen from the set. We average over 1,000 random queries whose radius is set to retrieve 10

elements of the set. We count the number of distance evaluations. The left plot shows the existence

of an optimum k� = 110, while the right plot shows the predicted O(n(1� 1=�(`))k) behavior. We

have not enough memory in our machine to show the predicted growth in k� � �(`) ln(n).

0

100

200

300

400

500

600

700

800

900

1000

0 50 100 150 200 250 300

D
is

ta
nc

e
C

om
pu

ta
tio

ns

 [pivots] 100,000 elements. Radius captures 0.01% of N

 8 [ext]
 8 [in+ext]

 8 [in]

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

4 6 8 10 12 14 16 18 20

D
is

ta
nc

e
co

m
pu

ta
tio

ns

 [dimension] 100,000 elements. Radius captures 0.01% of N

k = 4 pivots
k = 8 pivots

k = 16 pivots
k = 32 pivots
k = 64 pivots

k = 128 pivots
k = 256 pivots

Figure 15: On the left, internal, external and overall distance evaluations in 8 dimensions, using

di�erent number of pivots k. On the right, overall distance evaluations as the dimension grows for

�xed k.

Figure 16 shows the e�ect in a di�erent way. As the dimension grows, the histogram of L2 moves

to the right (� = �(
p
`)). Yet the pivot distance D (in the projected space (R` ; L1)) remains about

the same for �xed k. Increasing k from 32 to 512 moves the histogram slightly to the right. This

shift is e�ective in low dimensional metric spaces, but it is une�ective in high dimensions. The

plots of these two histograms can measure how good are the pivoting algorithms. Intuitively, the

34

overlap between the histogram for the pivot distance and the histogram for the original distance is

directly proportional to the discriminative power of the pivot mapping. As the overlap increases

the algorithms becomes more e�ective.

The particular behavior of D in �gure 16 is due to the fact that D is the maximum of k random

variables whose mean is �(�) (i.e. jd(p; q)� d(p; x)j). The fact that D does not grow with ` means

that, as a lower bound for d, it gets less e�ective in higher dimensions.

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8

16 dimensions. 32 pivots

L2
MaxDist

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8

16 dimensions. 512 pivots

L2
MaxDist

0

100

200

300

400

500

600

700

0 1 2 3 4 5 6 7 8

128 dimensions. 32 pivots

L2
MaxDist

0

100

200

300

400

500

600

700

800

0 1 2 3 4 5 6 7 8

128 dimensions. 512 pivots

L2
MaxDist

Figure 16: Histograms comparing the L2 distance in di�erent `-dimensional Euclidean spaces and

the pivot distance (MaxDist) obtained using di�erent numbers k of pivots. In the top row ` = 16

and in the bottom row ` = 128. On the left k = 32 and on the right k = 512.

7.3 A Lower Bound for Voronoi Algorithms

We now try to obtain a lower bound to the search cost of algorithms based on the Voronoi partition.

The result is surprisingly similar to that of the previous section. Our lower bound considers only

the hyperplane criterion, which is the most purely associated to the Voronoi partition. We assume

just the same facts about the distribution of distances as in the previous section: all of them are

i.i.d. random variables.

Let (q; r)d be a range query over a metric space indexed by means of m random centers

fc1 : : : cmg. The m distances d(q; ci) can be considered random variables X1 : : : Xm whose dis-

tribution is that of the histogram of the metric space. The distribution of the distance from q

to its closest center c is that of Y = minfX1 : : : Xmg. The hyperplane criterion speci�es that a

35

class [ci] cannot be excluded if d(q; c) + r � d(q; ci) � r. The probability that this happens is

Pr(Y � Xi � 2r). But since Y is the minimum over m variables with the same distribution, the

probability is Pr(Z � X � 2r)m, where X and Z are two random variables distributed according

to the histogram. Using Chebyschev's inequality and noticing that if Z < X � 2r then X or Z are

at distance at least r from their mean, we can say that

Pr(not discarding [ci]) = Pr(Z � X � 2r)m �
�
1� �2

r2

�m

On average each class has n=m elements, so that the external complexity is n�Pr(not discarding
[ci]). The internal cost to �nd the intersected classes deserves some discussion. In all the hierarchical

schemes that exist, we consider that the real partition is that induced by the leaves of the trees, i.e.

the most re�ned ones. We see all the rest of the hierarchy as a mechanism to reduce the internal

complexity of �nding the small classes (hence the m we use here is not, say, the m of GNATs, but

the total number of �nal classes). It is diÆcult to determine this internal complexity (an upper

bound is m), so we call it CI(m), knowing that it is between
(logm) and O(m). Then a lower

bound to the search complexity is

Cost � CI(m) + n

�
1� �2

r2

�m

which indeed is very similar to the lower bound on pivot based algorithms. Optimizing on m yields

m� =
lnn + ln ln(1=t0)� ln i0(m�)

ln(1=t0)

where t0 = 1� �2=r2. Using the optimal m� the search cost is lower bounded by

Cost =

�
CI(log1=t0 n)

�
=

�
CI
�
r2

�2
lnn

��

which also shows an increase in the cost as the dimensionality grows. We have just proved

Theorem 2. Any Voronoi based algorithm based on random centers has a lower bound CI((r=�)2 lnn)
in the average number of distance evaluations performed for a range query (q; r) with random q,

where � is the standard deviation of the distance distribution and CI() is the internal complexity

to �nd the relevant classes, where
(logm) = CI(m) = O(m). If r = �f , where � is the mean

of the distance distribution, then the lower bound can be expressed as CI(2�f2 lnn), where � is the

intrinsic dimension of the space.

This result is weaker than Theorem 1 because of our inability to give a good lower bound on i,

so we cannot ensure more than a logarithmic increase with respect to �. However, even assuming

CI(m) = �(m) (i.e. exhaustive search of the classes), when the theorem becomes very similar to

Theorem 1, there is an important reason that explains why the Voronoi based algorithms can in

practice be better than pivot based ones. We can in this case achieve the optimal number of centers

m�, which is impossible in practice for pivot-based algorithms. The reason is that it is much more

economical to represent the Voronoi partition using m centers than the pivot partition using k

pivots.

Figure 17 shows an experiment on the same dataset, where we have used di�erent m values and

a hierarchical Voronoi partitioning based on them. We have used the hyperplane and the maximum

36

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

4 6 8 10 12 14 16 18 20

D
is

ta
nc

e
C

om
pu

ta
tio

ns

 [dimension] 100,000 elements. Radius captures 0.01% of N

m = 2
m = 4
m = 8
m = 16
m = 32
m = 64
m = 128
m = 256

Figure 17: Overall distance evaluations using a hierarchical Voronoi partitioning with di�erent

arities.

radius criteria to prune the search. As can be seen, the dependency on the dimension of the space

is not so sharp as for pivot based algorithms, and is closer to a dependency of the form �(`).

The general conclusion is that, even if the lower bounds using pivot based or Voronoi based

algorithms look similar, the �rst ones need much more space to store the classes resulting from k

pivots than the last ones using the same number of partitions. Hence, the latter can reallistically

use the optimal number of classes, while the former cannot. If pivot based algorithms are given

all the necessary memory, then using the optimal number of pivots they can improve over Voronoi

based algorithms, because t is better than t0, but this is more and more diÆcult as the dimension

grows.

Figure 18 compares both types of partitioning. As can be seen, the pivoting algorithm improves

over the Voronoi partitioning if we give it enough pivots. However, \enough" is a number that

increases with the dimension and with the search radius (i.e. � and f). For �f2 large enough, the

required number of pivots will be unacceptably high in terms of memory requirements.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

4 6 8 10 12 14 16 18 20

D
is

ta
nc

e
co

m
pu

ta
tio

ns

 [dimension] 100,000 elements. Radius captures 0.01% of n

k=4 pivots
k=16 pivots
k=64 pivots

Voronoi m=128

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

4 6 8 10 12 14 16 18 20

D
is

ta
nc

e
co

m
pu

ta
tio

ns

 [dimension] 100,000 elements. Radius captures 0.10% of n

k=4 pivots
k=16 pivots
k=64 pivots

Voronoi m=128

Figure 18: Distance evaluations for increasing dimension. We compare the Voronoi algorithm of

Figure 17 using 128 centers per level against the �ltration using k pivots for k = 4, 16, 64. On the

left plot the search radius captures 0.01% of the set, on the right 0.1%.

37

7.4 Pivot and Center Selection Techniques

In [37], they prove formally that if the dimension is constant, then after properly selecting (not at

random!) a constant number k of pivots the exhaustive search costs O(1). This contrasts with our

(log n) lower bound. The di�erence is that they do not take the pivots at random but select a set

of pivots which is assumed to have certain selectivity properties. This shows that the way in which

the pivots are selected can a�ect the performance. Unfortunately, their theorem is not constructive

and does not show how to select such a set of pivots.

Little is known about pivot/center (let us call them collectively \references") selection policies,

and in practice most methods choose them at random, with a few exceptions. For instance, in [58]

it is recommended to select pivots outside the clusters while in [5] they suggest to use one pivot

from each cluster. All authors agree in that the references should be far apart from each other,

which is evident since close references will give almost the same information. On the other hand,

references selected at random are already far apart in a high-dimensional space.

The histogram of distances gives a formal characterization of good references. Let us start with

a de�nition.

De�nition 10. The local histogram of an element u is the distribution of distances from u to every

x 2 X.

A good reference has a
atter histogram, which means that it will discard more elements at query

time. The measure � = �2=(2�2) of intrinsic dimensionality (now de�ned on the local histogram

of u) can be used as a good parameter to evaluate how good is a reference (good references have

local histograms with small �).

This is related to the di�erence in viewpoints (histograms) between di�erent references, a subject

discussed in depth in [27]. The idea is that the local histogram of a reference umay be quite di�erent

from the global histogram (especially if u is not selected at random). This is used in [27] to show

that if the histograms for di�erent references are similar then they can accurately predict the

behavior of instances of their data structure (the MT), a completely di�erent issue.

Note also that good reference selection becomes harder as the intrinsic dimension grows. As

the global histogram reduces its variance, it becomes more diÆcult to �nd references that deviate

signi�cantly from it, as already noted in [27].

The histogram characterization explains a well-known phenomenon: to discriminate among the

elements in the class of a local partition (or in a cluster), it is a good idea to select a pivot from

the same class. This makes it more probable to select an element close to them (the ideal would be

a centroid). In this case, the distances tend to be smaller and the histogram is not so concentrated

in large values. For instance, for LAESA [46] they do not use the pivots in a �xed order, but the

next one is that with minimal L1 distance to the current candidates. On the other hand, outliers

can be good at a �rst approximation, in order to discriminate among clusters, but later they are

unable to separate well the elements of the same cluster.

Selecting good individual references, i.e. with a
atter histogram, is not enough to ensure a

good performance. For example, a reference close to a good one is probably good as well, but

using both of them gives almost the same information as using only one. It is necessary to include

a variety of independent viewpoints in the selection. If we consider the selection of references as

an optimization problem, the goal is to obtain a set of references that are collectively good for

indexing purposes. The set of references is good if it approximates the original distance well. This

is more evident in the case of pivoting algorithms, where a contractive distance is implicitly used.

A practical way to decide whether our set of centers is e�ective is to compare the histograms of

38

the original distance and the pivot distance as in Figure 16. A good reference set will give a pivot

distance histogram with a large intersection with the histogram of the original distance.

7.5 The E�ect on the Discriminative Power

Another reason that explains the curse of dimensionality is related to the decrease in the discrimi-

native power of a partition, because of the odd \shapes" of the classes.

As explained before, a non local partition su�ers from the problem of being unable to discrim-

inate between points that are actually far away from each other, which leads to unnecessarily high

external complexity. The solution is to select enough pivots or to use a Voronoi method that yields

a local partition. However, even in a local partition, the shape of the cell is �xed at indexing

time, while the shape of the space region de�ned as interesting for a query q is a ball dynamically

determined at query time. The discriminative power can ve visualized as the volume of the query

ball divided by the total volume of the classes intersected by that ball.

A good example is that of a ball inside a box in a k-dimensional L2 space. The box is the class

obtained after using k orthogonal pivots, and the partition obtained is quite local. Yet the volume

of the ball is smaller, and the ratio with respect to the volume of the box (i.e. the discriminative

power) decreases exponentially with k. This means that we have to examine a volume (and a

number of candidate elements) that, with respect to the size of the �nal result, grows exponentially

with the dimension k. This fact is behind the exponential dependency on the dimension in data

structures for vector spaces such as the kd-tree or the R-tree.

The same phenomenon occurs in general metric spaces, where the \shapes" of the cells cannot

possibly �t an unknown query ball. We can add more pivots to bound better any possible ball, but

this increases the internal complexity and becomes more diÆcult as the intrinsic dimension grows

(the smaller the variance, the more pivots are needed to make a di�erence).

8 A Taxonomy of Search Algorithms

In this section we apply our unifying model to organize all the known approaches in a taxonomy.

This helps to identify the essential features of all the existing techniques, to �nd possible combi-

nations of algorithms not noticed up to now, and to detect which are the most promising areas for

optimization.

We �rst concentrate on pivoting algorithms. They di�er in their method to select the pivots,

in when is the selection made, and in how much information on the comparisons is used. Later, we

consider the Voronoi algorithms. These di�er in their methods to select the centers and to bound

the equivalence classes.

Figure 19 summarizes our classi�cation of methods attending to their most important features

(explained throughout the section).

8.1 Pivot Based Algorithms

8.1.1 Search Algorithms

Once we have determined the equivalence relation to use (i.e. the k pivots), we preprocess the

dictionary by storing, for each element of U, its k coordinates (i.e. distance to the k pivots). This

takes O(kn) preprocessing time and space overhead. The \index" can be seen as a table of n rows

and k columns storing d(ui; pj).

39

BKT

Coarsified

Arrays

FHQAFMVPA

FHQT

FQT

FMVPT

VPFGHT Covering Radius

BST VT MT

SAT

Voronoi Type Pivot-Based

Trees

MVPT

LAESA-like

AESA

Fixed Height

Scope Coarsened

Indexing Algorithms

GNATHyperplane

Figure 19: Taxonomy of the existing algorithms. The methods in italics are combinations that

appear naturally as soon as the taxonomy is built.

At query time, we �rst compare the query q against the k pivots, hence obtaining its k coordi-

nates [q] = (y1; :::; yk) in the target space, i.e. its equivalence class. The cost of this is k evaluations

of the distance function d, which corresponds to the internal complexity of the search. We have

now to determine, in the target space, which classes may be relevant to the query (i.e. which ones

are at distance r or less in the L1 metric, which corresponds to the D distance). This does not use

further evaluations of d, but it may take extra CPU cost. Finally, the elements belonging to the

qualifying classes (i.e. those that cannot be discarded after considering the k pivots) are directly

compared against q (external complexity).

The simplest search algorithm proceeds row-wise: consider each element of the set (i.e. each row

(x1; :::; xk) of the table) and see if the triangular inequality allows discarding that row, i.e. whether

maxi=1::kfjxi � yijg > r. For each row not discarded using this rule, compare the element directly

against q. This is equivalent to traversing the quotient space, using D to discard uninteresting

classes.

Although this traversal does not perform more evaluations of d than necessary, it is not the

best choice. The reasons will be made clear later, as we discover the advantages of alternative

approaches. First, notice that the amount of CPU work is O(kn) in the worst case. However, as

we abandon a row as soon as we �nd a di�erence larger than r along a coordinate, the average case

is much closer to O(n) for queries of reasonable selectivity.

The �rst improvement is to process the set column-wise. That is, we compare the query against

the �rst pivot p1. Now, we consider the �rst column of the table and discard all the elements which

satisfy jx1 � y1j > r. Then, we consider the second pivot p2 and repeat the process only on the

elements not discarded up to now. An algorithm implementing this idea is LAESA.

It is not hard to see that the amount of evaluations of d and the total CPU work remains the

40

same as for the row-wise case. However, we can do better now, since each column can be sorted

so that the range of qualifying rows can be binary instead of sequentially searched [48, 23]. This is

possible because we are interested, at column i, in the values [yi � r; yi + r]. The extra CPU cost

gets closer to O(k log n) than to O(n) by using this technique.

This is not the only improvement allowed by a column-wise evaluation which cannot be done

row-wise. A very important one is that it is not necessary to consider all the k coordinates (recall

that we have to perform one evaluation of d to obtain each new query coordinate yi). As soon as

the remaining set of candidates is small enough, we can stop considering the remaining coordinates

and directly verify the candidates using the d distance. This point is diÆcult to estimate before-

hand: despite the (few) theoretical results existing [37, 4, 6], one cannot normally understand the

application well enough to predict the actual optimal number of pivots k� (i.e. the point where it

is better to switch to exhaustive evaluation).

Another improvement that can be used with column-wise evaluation is that the selection of

the pivots can be done on the
y instead of beforehand as we have presented it. That is, once we

have selected the �rst pivot p1 and discarded all the uninteresting elements, the second pivot p2
may depend on which was the result of p1. However, for each potential pivot p we have to store

the coordinates of all the elements of the set for p (or at least some, as we see later). That is, we

select k potential pivots and precompute the table as before, but we can choose in which order are

the pivots used (according to the current state of the search) and where we stop using pivots and

compare directly.

An extreme case of this idea is AESA, where k = n, i.e. all the elements are potential pivots,

and the new pivot at each iteration is randomly selected among the remaining elements. Despite

its practical inapplicability because of its O(n2) preprocessing time and space overhead (i.e. all the

distances among the known elements are precomputed), the algorithm performs a surprisingly low

number of distance evaluations, much better than when the pivots are �xed. This shows that it is a

good idea to select pivots from the current set of candidates (as discussed in the previous sections).

Finally, we notice that instead of a sequential search in the mapped space, we could use an

algorithm to search in vector spaces of k dimensions (e.g. kd-trees or R-trees). Depending on

their ability to handle larger k values, we could be able to use more pivots without signi�cantly

increasing the extra CPU cost. Recall also that, as more pivots are used, the search structures for

vector spaces perform worse. This is a very interesting subject which has not been pursued yet,

that accounts for balancing between distance evaluations and CPU time.

8.1.2 Coarsening the Equivalence Relation

The alternative of not considering all the k pivots if the remaining set of candidates is small is an

example of coarsening an equivalence relation. That is, if we do not consider a given pivot p, we

are merging all the classes that di�er only in that coordinate. In this case we prefer to coarsify the

pivot equivalence relation because computing it with more precision is worse than checking it as is.

There are many other ways to coarsify the equivalence relation, and we cover them here. How-

ever, in these cases the coarsi�cation is not done for the sake of reducing the number of distance

evaluations, but to improve space usage and precomputation time, as O(kn) can be prohibitively

expensive for some applications. Another reason is that, via coarsening, we obtain search algo-

rithms that are sublinear in their extra CPU time. We consider in this section range coarsening,

bucket coarsening and scope coarsening. Their ideas are roughly illustrated in Figure 20.

It must be clear that all these types of coarsenings reduce the discriminative power of the

resulting equivalence classes, making it necessary to exhaustively consider more elements that in

41

u1
u2

un
p3p2p1

d(ui,pj)

Bucket CoarseningRange Coarsening

of cell values
Restricted domain

Original

Last coordinates
not always computed

Pivots have
only local scope

Scope Coarsening

Figure 20: Di�erent coarsi�cation methods.

the uncoarsened versions of the relations. In the example of the previous section this is amortized

by the lower cost to obtain the coarsened equivalence relation. Here we reduce the e�ectiveness of

the algorithms via coarsening, for the sake of reduced preprocessing time and space overhead.

However, space reduction may have a counterpart in time eÆciency. If we use less space, then

with the same amount of memory we can have more pivots (i.e. larger k). This can result in an

overall improvement. The fair way to compare two algorithms is to give them the same amount of

memory to use.

8.1.3 Range Coarsening

The auxiliary data structures proposed by most authors for continuous distance functions are aimed

at reducing the amount of space needed to store the coordinates of the elements in the mapped

space, as well as the time to �nd the relevant classes. The most popular form is to reduce the

precision of d. This is written as

x �p;frig y () 9i; ri � d(x; p) < ri+1 and ri � d(y; p) < ri+1

with frig a partition of the interval [0;1). That is, we assign the same equivalence class to

elements falling in the same range of distances with respect to the same pivot p. This is obviously

a coarsening of the previous relation �p and can be naturally extended to more than one pivot.

Figure 2 exempli�es a pivoting equivalence relation where range coarsening is applied, for one

pivot. Points in the same ring are in the same equivalence class, despite that their exact distance

to the pivot may be di�erent.

A number of actual algorithms use one or another form of this coarsening technique. VPTs and

MVPTs divide the distances in slices so that the same number of elements lie in each slice (note

that the slices are di�erent for each pivot). VPTs use two slices and MVPTs use many. Their goal

is to obtain balanced trees. BKTs, FQTs and FHQTs, on the other hand, propose range coarsening

for continuous distance functions but do not specify how to coarsify.

In this work we consider that the \natural" extension of BKTs, FQTs and FHQTs assigns slices

of the same width to each branch, and that the tree has the same arity across all its nodes. At

each node, the slice width is recomputed so that using slices of that �xed width the node has the

desired arity.

42

Fixed percentiles Fixed width

Di�erent pivot VPT, MVPT BKT

per node

(scope coarsening)

Di�erent slice FMVPT FQT, FHQT

Di�erent pivot per node

per level Di�erent slice FMVPA (FQA) FHQA

per level

Table 2: Di�erent options for range coarsening. We put in italics the new structures created to �ll

the empty holes.

Therefore, we can have slices of �xed width (BKT, FQT, FHQT) or determined by percentiles

(VPT, MVPT, FQA). We may have a di�erent pivot per node (BKT, VPY, MVPT) or per level

(FQT, FHQT, FQA). Among the last, we can de�ne the slices at each node (FQT, FHQT) or for

the whole level (FQA). All these choices are drawn in Table 2. The empty slots have been �lled

with new structures that are de�ned now.

FHQA Is similar to an FQA except because the slices are of �xed width. At each level the slice

width is recomputed so that a maximum arity is guaranteed. In the FHQT, instead, each node has

a di�erent slice width.

FMVPT Is a cross between an MVPT and a FHQT. The range of values is divided using the

m � 1 uniform percentiles to balance the tree, as in MVPTs. The tree has a �xed height h, as

FHQTs. At each node the ranges are recomputed according to the elements lying in that subtree.

The particular case where m = 2 will be called FHVPT.

FMVPA Is just a new name for the FQA, more appropriate for our discussion since it is to

MVPTs as FHQAs to FHQTs: the FMVPA uses variable width slices to ensure that the subtrees

are balanced in size, but the same slices are used for all the nodes of a single level, so that the

balance is only level-wise.

The combinations we have just created allow us to explain some important concepts.

Amount of range coarsening. Let us consider FHQAs and FMVPAs. They are no more than

LAESA with di�erent forms of range coarsening. They use k �xed pivots and use b bits to represent

the coordinates (i.e. the distances from each point to each of the h pivots). So only 2b di�erent

values can be expressed. The two structures di�er only in how they coarsify the distances to put

them into 2b ranges. Their total space requirement is then reduced to kbn bits.

However, range coarsening is not just a technique to reduce space, but the same space can be

used to accommodate more pivots. It is not immediate how much is it convenient to coarsify in

order to use more pivots, but it is clear that this technique can improve the overall e�ectiveness of

the algorithm.

Percentiles versus �xed width. Another unclear issue is whether �xed slices is better or worse

than percentile splitting. On one hand, a balanced data structure has obvious advantages because

43

the internal complexity may be reduced. Fixed slices produce unbalanced structures since the

outer rings have much more elements (especially on high dimensions). On the other hand, in high

dimensions the outer rings tend to be too narrow if percentile splitting is used (because a small

increment in radius gets many new elements inside the ring). If the rings are too narrow, many rings

will be frequently included in the radius of interest of the queries (see Figure 21). An alternative

idea is shown in [21], where the slices are optimized to minimize the number of branches that must

be considered. In this case, each class can be an arbitrary set of slices.

Uniform percentilesUniform width

Figure 21: The same query intersects more rings when using uniform percentiles.

Trees versus arrays FHQTs and FMVPTs are almost tree versions of FHQAs and FMVPAs,

respectively. They are m-ary trees where all the elements belonging to the same coarsened class

are stored in the same subtree. Instead of explicitly storing the m coordinates, the trees store them

implicitly : the elements are at the leaves, and their path from the root spell out the coarsened

coordinate values. This makes the space requirements closer to O(n) in practice, instead of O(bkn)

(although the constant is very low for the array versions, which may actually take less space).

Moreover, the search for the relevant elements can be organized using the tree: if all the interesting

elements have their �rst coordinate in the i-th ring, then we just traverse the i-th subtree. This

reduces the extra CPU time. If the distance is too �ne-grained, however, the root will have nearly

n children and the subtrees will have just 1 child. The structure will be very similar to a table of

k coordinates per element and the search will degenerate into a linear row-wise traversal. Hence,

range coarsening is also a tool to reduce the extra CPU time.

We have given the trees the ability to de�ne the slices at each node instead of at each level as

the array versions. This allows them to adapt better to the data, but the values of the slices used

need more space. It is not clear whether it pays o� or not to store all these slice values.

Summarizing, range coarsening can be applied using �xed-width or �xed-percentile slices. They

can reduce the space necessary to store the coordinates, which can allow the use of more pivots

with the same amount of memory. Therefore, it is not just a technique to reduce space but it

can improve the search complexity. Range coarsening can also be used to organize tree-like search

schemes which are sublinear in extra CPU time.

8.1.4 Bucket Coarsening

To reduce space requirements in the above trees, we can avoid building subtrees which have few

elements. Instead, all their elements are stored in a bucket. When the search arrives to a bucket,

it has to exhaustively consider all the elements.

44

This is a form of coarsening, since for the elements in the bucket we do not consider the last

pivots, and resembles the previous idea (Section 8.1.1) of not computing the k pivots. However, in

this case the decision is taken o�-line, at index construction time, and this allows reducing space

by not storing those coordinates. In the previous case the decision was taken at search time. The

crucial di�erence is that if the decision is taken at search time, we can know exactly the total

amount of exhaustive work to do by not taking further coordinates. On the other hand, in an

o�-line decision we can only consider the search along this branch of the tree, while we cannot

predict how many branches will be considered at search time.

This idea is used for discrete distance functions in FQTs, which are similar to FHQTs except

for the use of buckets. It has been also applied to continuous setups to reduce space requirements

further.

8.1.5 Scope Coarsening

The last and least obvious form of coarsening is the one we call \scope coarsening". In fact, the

use of this form of coarsening makes it diÆcult to notice that many algorithms based on trees are

in fact pivoting algorithms.

This coarsening is based on, instead of storing all the coordinates of all the elements, just

storing some of them. Hence, comparing the query against some pivots helps to discriminate on

some subset of the database only. To use this fact to reduce space, we must determine o�-line

which elements will store their distance to which pivots. There is a large number of ways to use

this idea, but it has been used only in the following way.

In FHVPTs there is a single pivot per level of the tree, as in FHQTs. The left and right subtrees

of VPTs, on the other hand, use di�erent pivots. That is, if we have to consider both the left and

right subtrees (because the radius r does not allow us to completely discard one), then comparing

the query q against the left pivot will be useful for the left subtree only. There is no information

stored about the distances from the left pivot to the elements of the right subtree, and vice-versa.

Hence, we have to compare q against both pivots. This continues recursively. The same idea is

used for BKTs and MVPTs.

Although at �rst sight it is clear that we reduce space, this is not the direct way in which the

idea is used in those schemes. Instead, they combine it with a huge increase in the number of

potential pivots. For each subtree, an element belonging to the subtree is selected as the pivot

and deleted from the set. If no bucketing is used, the result is a tree where each element is a

node somewhere in the tree and hence a potential pivot. The tree takes O(n) space, which shows

that we can successfully combine a large number of pivots with scope coarsening to have low space

requirements (n instead of n2 as in AESA).

The possible advantage (apart from guaranteed linear space and slightly reduced space in prac-

tice) of these structures over those that store all the coordinates (as FQTs and FHQTs) is that

the pivots are better suited to the searched elements in each subtree, since they are selected from

the same subset. This same property is which makes AESA such a good (though impractical)

algorithm.

In [58, 15] they propose hybrids (for BKT and VPT, respectively) where a number of �xed

pivots are used at each node, and for each resulting class a new set of pivots is selected. Note that,

historically, FQTs and FHQTs are an evolution over BKTs.

45

With hyperplanes GHT, SAT

With balls BST, VT, MT, SAT

With rings GNAT

Table 3: Di�erent options for limiting classes.

8.2 Voronoi Partition Algorithms

All the remaining algorithms (GHTs, BSTs, GNATs, VTs, MTs, SATs) rely on a hierarchical

Voronoi partition of the metric space. A �rst source of di�erences is in how the centers are selected

at each node. GHTs and BSTs take two elements per level. VTs repeat previous centers when

creating new nodes. GNATs select m centers far apart. MTs try to minimize covering radii. SATs

select a variable number of close neighbors of the parent node.

The main di�erence, however, lies in the search algorithm. While GHTs use purely the hyper-

plane criterion, BSTs, VTs and MTs use only the covering radius criterion. SATs use both criteria

to increase pruning. In all these algorithms the query q is compared against all the centers of the

current node and the criteria are used to discard subtrees.

GNATs are a little di�erent, as they use none of the above criteria. Instead, they apply an

AESA-like search over the m centers considering their \range" values. That is, a center ci is

selected, and if the query ball does not intersect a ring around ci that contains all the elements

of cj , then cj and all its class (subtree) can be safely discarded. In other words, GNATs limit the

class of each center by intersecting rings around the other centers. This way of limiting the extent

of a class is di�erent from both the hyperplane and the covering radius criteria. It is probably more

eÆcient, but it requires storing O(m2) distances at each level.

Table 3 summarizes the di�erences. It is clear that there are many possible combinations that

have not been tried, but we do not attempt to enumerate all them.

The Voronoi partition is an attempt to obtain local classes, more local than those based on

pivots. A general technique to do this is to identify clusters of close objects in the set. There exist

many clustering algorithms to build equivalence relations. However, most are de�ned on vector

spaces instead of general metric spaces. An exception is [17], which reports very good results.

However, it is not clear that good clustering algorithms directly translate into good algorithms for

proximity searching. Another clustering algorithm, based on cliques, is presented in [19], but the

results are similar to the simpler BKT. This area is largely unexplored, and the developments here

could be converted into improved search algorithms.

9 Conclusions

Metric spaces are becoming a popular model for similarity retrieval in many unrelated areas. We

have surveyed the algorithms that index metric spaces to answer proximity queries. We have not

just enumerated the existing approaches to discuss their good and bad points. We have, in addition,

presented a uni�ed framework that allows understanding the existing approaches under a common

view. It turns out that most of the existing algorithms are indeed variations on a few common

ideas, and by identifying them, previously unnoticed combinations have naturally appeared. We

have also analyzed the main factors that a�ect the eÆciency when searching metric spaces. The

main conclusions of our work are summarized as follows

1. The concept of intrinsic dimensionality can be de�ned on general metric spaces as an abstract

46

and quanti�able measure that a�ects the search performance.

2. The main factors that a�ect the eÆciency of the search algorithms are the intrinsic dimen-

sionality of the space and the search radius.

3. Equivalence relations are a common ground underlying all the indexing algorithms, and they

divide the search cost in terms of internal and external complexity.

4. A large class of search algorithms rely on taking k pivots and mapping the metric space onto

R
k using the L1 distance. Another important class uses Voronoi-like partitions.

5. The equivalence relations can be coarsened to save space or to improve the overall eÆciency by

making better use of the pivots. A hierarchical re�nement of classes can improve performance.

6. Although there is an optimal number of pivots to use, this number is too high in terms of

space requirements. In practical terms, a pivot based index can outperform a Voronoi based

index if it has enough memory.

7. As this amount of memory becomes unfeasible as the dimension grows, Voronoi based algo-

rithms normally outperform pivot based ones in high dimensions.

8. In high dimension the search radius needed to retrieve a �xed percent of the database is very

large. This is the reason of the failure to overcome the brute force search with an exact

indexing algorithm.

A number of open issues require further attention. The main ones follow.

� For pivot based algorithms, understand better the e�ect of pivot selection, devising methods

to choose e�ective pivots. The subject of the appropriate number of pivots and its relation

to the intrinsic dimensionality of the space plays a role here. The histogram of distances may

be a good tool for pivot selection.

� For Voronoi based algorithms, work more on clustering schemes in order to select good centers.

Find ways to reduce construction times (which are in many cases too high).

� Search for good hybrids between Voronoi and pivoting algorithms. The �rst ones cope better

with high dimensions and the second ones improve as more memory is given to them. After

the space is clustered the intrinsic dimension of the clusters is smaller, so a top-level clustering

structure joined with a pivoting scheme for the clusters is an interesting alternative. Those

pivots should be selected from the cluster because the clusters have high locality.

� Take extra CPU complexity into account, which we have barely considered in this work. In

some applications the distance is not so expensive that one can disregard any other type of

CPU cost. The use of specialized search structures in the mapped space (especially Rk) and

the resulting complexity tradeo� deserves more attention.

� Take I/O costs into account, which may very well dominate the search time in some applica-

tions. The only existing work on this is the M-tree [26].

� Focus on nearest neighbor search. Most current algorithms for this problem are based on range

searching, and despite that the existing heuristics seem diÆcult to improve, truly independent

ways to address the problem could exist.

47

� Consider approximate and probabilistic algorithms, which may give much better results at a

cost that, especially for this problem, seems acceptable.

References

[1] P. Apers, H. Blanken, and M. Houtsma. Multimedia Databases in Perspective. Springer, 1997.

[2] S. Arya, D. Mount, N. Netanyahu, R. Silverman, and A. Wu. An optimal algorithm for ap-

proximate nearest neighbor searching in �xed dimension. In Proc. 5th ACM-SIAM Symposium

on Discrete Algorithms (SODA'94), pages 573{583, 1994.

[3] F. Aurenhammer. Voronoi diagrams { a survey of a fundamental geometric data structure.

ACM Computing Surveys, 23(3), 1991.

[4] R. Baeza-Yates. Searching: an algorithmic tour. In A. Kent and J. Williams, editors, Ency-

clopedia of Computer Science and Technology, volume 37, pages 331{359. Marcel Dekker Inc.,

1997.

[5] R. Baeza-Yates, W. Cunto, U. Manber, and S. Wu. Proximity matching using �xed-queries

trees. In Proc. 5th Combinatorial Pattern Matching (CPM'94), LNCS 807, pages 198{212,

1994.

[6] R. Baeza-Yates and G. Navarro. Fast approximate string matching in a dictionary. In Proc.

5th South American Symposium on String Processing and Information Retrieval (SPIRE'98),

pages 14{22. IEEE CS Press, 1998.

[7] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison-Wesley, 1999.

[8] J. Bentley. Multidimensional binary search trees used for associative searching. Comm. of the

ACM, 18(9):509{517, 1975.

[9] J. Bentley. Multidimensional binary search trees in database applications. IEEE Trans. on

Software Engineering, 5(4):333{340, 1979.

[10] J. Bentley, B. Weide, and A. Yao. Optimal expected-time algorithms for closest point problems.

ACM Trans. on Mathematical Software, 6(4):563{580, 1980.

[11] S. Berchtold, D. Keim, and H. Kriegel. The X-tree: an index structure for high-dimensional

data. In Proc. 22nd Conference on Very Large Databases (VLDB'96), pages 28{39, 1996.

[12] B. Bhanu, J. Peng, and S. Qing. Learning feature relevance and similarity metrics in image

databases. In Proc. IEEE Workshop on Content-Based Access of Image and Video Libraries,

pages 14{18, Santa Barbara, California, 1998. IEEE Computer Society.

[13] A. Del Bimbo and E. Vicario. Using weighted spatial relationships in retrieval by visual

contents. In Proc. IEEE Workshop on Content-Based Access of Image and Video Libraries,

pages 35{39, Santa Barbara, California, 1998. IEEE Computer Society.

[14] S. Blott and R. Weber. A simple vector-approximation �le for similarity search in high-

dimensional vector spaces. Technical report, Institute for Information Systems, ETH Zentrum,

Zurich, Switzerland, 1997.

48

[15] T. Bozkaya and M. Ozsoyoglu. Distance-based indexing for high-dimensional metric spaces.

In Proc. ACM SIGMOD International Conference on Management of Data, pages 357{368,

1997. Sigmod Record 26(2).

[16] S. Brin. Near neighbor search in large metric spaces. In Proc. 21st Conference on Very Large

Databases (VLDB'95), pages 574{584, 1995.

[17] M. Brito, E. Ch�avez, A. Quiroz, and J. Yukich. Connectivity of the mutual k-nearest neighbor

graph in clustering and outlier detection. Statistics & Probability Letters, 35:33{42, 1996.

[18] E. Bugnion, S. Fhei, T. Roos, P. Widmayer, and F. Widmer. A spatial index for approximate

multiple string matching. In R. Baeza-Yates and N. Ziviani, editors, Proc. 1st South American

Workshop on String Processing (WSP'93), pages 43{53, 1993.

[19] W. Burkhard and R. Keller. Some approaches to best-match �le searching. Comm. of the

ACM, 16(4):230{236, 1973.

[20] M. La Cascia, S. Sethi, and S. Sclaro�. Combining textual and visual cues for content-based

image retrieval on the world wide web. In Proc. IEEE Workshop on Content-Based Access

of Image and Video Libraries, pages 24{28, Santa Barbara, California, 1998. IEEE Computer

Society.

[21] E. Ch�avez. Optimal discretization for pivot based algorithms. Manuscript. ftp://-

garota.fismat.umich.mx/pub/users/elchavez/minimax.ps.gz, 1999.

[22] E. Ch�avez and J. Marroqu��n. Proximity queries in metric spaces. In R. Baeza-Yates, editor,

Proc. 4th South American Workshop on String Processing (WSP'97), pages 21{36. Carleton

University Press, 1997.

[23] E. Ch�avez, J. Marroqu��n, and R. Baeza-Yates. Spaghettis: an array based algorithm for similar-

ity queries in metric spaces. In Proc. String Processing and Information Retrieval (SPIRE'99),

pages 38{46. IEEE CS Press, 1999.

[24] E. Ch�avez, J. Marroqu��n, and G. Navarro. Overcoming the curse of dimensionality. In European

Workshop on Content-Based Multimedia Indexing (CBMI'99), pages 57{64, 1999. ftp://-

garota.fismat.umich.mx/pub/users/elchavez/fqa.ps.gz.

[25] T. Chiueh. Content-based image indexing. In Proc. of the 20th Conference on Very Large

Databases (VLDB'94), pages 582{593, 1994.

[26] P. Ciaccia, M. Patella, and P. Zezula. M-tree: an eÆcient access method for similarity search

in metric spaces. In Proc. of the 23rd Conference on Very Large Databases (VLDB'97), pages

426{435, 1997.

[27] P. Ciaccia, M. Patella, and P. Zezula. A cost model for similarity queries in metric spaces. In

Proc. 17th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems

(PODS'98), 1998.

[28] P. Ciaccia, M. Patella, and P. Zezula. Processing complex similarity queries with distance-based

access methods. In Proc. 6th International Conference on Extending Database Technology

(EDBT'98), 1998.

49

[29] K. Clarkson. Nearest neighbor queries in metric spaces. Discrete Computational Geometry,

22(1):63{93, 1999.

[30] T. Cox and M. Cox. Multidimensional Scaling. Chapman and Hall, 1994.

[31] F. Dehne and H. Nolteimer. Voronoi trees and clustering problems. Information Systems,

12(2):171{175, 1987.

[32] L. Devroye. A Course in Density Estimation. Birkhauser, 1987.

[33] R. Duda and P. Hart. Pattern Classi�cation and Scene Analysis. Wiley, 1973.

[34] C. Faloutsos, W. Equitz, M. Flickner, W. Niblack, D. Petkovic, and R. Barber. EÆcient and

e�ective querying by image content. J. of Intelligent Information Systems, 3(3/4):231{262,

1994.

[35] C. Faloutsos and I. Kamel. Beyond uniformity and independence: analysis of R-trees using

the concept of fractal dimension. In Proc. 13th ACM Symposium on Principles of Database

Principles (PODS'94), pages 4{13, 1994.

[36] C. Faloutsos and K. Lin. Fastmap: a fast algorithm for indexing, data mining and visualization

of traditional and multimedia datasets. ACM SIGMOD Record, 24(2):163{174, 1995.

[37] A. Farag�o, T. Linder, and G. Lugosi. Fast nearest-neighbor search in dissimilarity spaces.

IEEE Trans. on Pattern Analysis and Machine Intelligence, 15(9):957{962, 1993.

[38] W. Frakes and R. Baeza-Yates, editors. Information Retrieval: Data Structures and Algo-

rithms. Prentice-Hall, 1992.

[39] V. Gaede and O. G�unther. Multidimensional access methods. ACM Computing Surveys,

30(2):170{231, 1998.

[40] A. Guttman. R-trees: a dynamic index structure for spatial searching. In Proc. ACM SIGMOD

International Conference on Management of Data, pages 47{57, 1984.

[41] J. Hair, R. Anderson, R. Tatham, and W. Black. Multivariate Data Analysis with Readings.

Prentice-Hall, 4th edition, 1995.

[42] A. Jain and R. Dubes. Algorithms for Clustering Data. Prentice-Hall, 1988.

[43] I. Kalantari and G. McDonald. A data structure and an algorithm for the nearest point

problem. IEEE Transactions on Software Engineering, 9(5), 1983.

[44] K. Melhorn. Data Structures and Algorithms, volume III - Multidimensional Searching and

Computational Geometry. Springer, 1984.

[45] L. Mic�o, J. Oncina, and R. Carrasco. A fast branch and bound nearest neighbour classi�er in

metric spaces. Pattern Recognition Letters, 17:731{739, 1996.

[46] L. Mic�o, J. Oncina, and E. Vidal. A new version of the nearest-neighbor approximating and

eliminating search (AESA) with linear preprocessing-time and memory requirements. Pattern

Recognition Letters, 15:9{17, 1994.

50

[47] G. Navarro. Searching in metric spaces by spatial approximation. In Proc. String Processing

and Information Retrieval (SPIRE'99), pages 141{148. IEEE CS Press, 1999.

[48] S. Nene and S. Nayar. A simple algorithm for nearest neighbor search in high dimensions.

IEEE Trans. on Pattern Analysis and Machine Intelligence, 19(9):989{1003, 1997.

[49] J. Nievergelt and H. Hinterberger. The grid �le: an adaptable, symmetric multikey �le struc-

ture. ACM Trans. on Database Systems, 9(1):38{71, 1984.

[50] H. Nolteimer. Voronoi trees and applications. In Proc. International Workshop on Discrete

Algorithms and Complexity, pages 69{74, Fukuoka Recent Hotel, Fukuoka, Japan, 1989.

[51] H. Nolteimer, K. Verbarg, and C. Zirkelbach. Monotonous Bisector� Trees { a tool for eÆ-

cient partitioning of complex schenes of geometric objects. In Data Structures and EÆcient

Algorithms, LNCS 594, pages 186{203. Springer-Verlag, 1992.

[52] S. Prabhakar, D. Agrawal, and A. El Abbadi. EÆcient disk allocation for fast similarity

searching. In Proc. ACM SPAA'98, Puerto Vallarta, Mexico, 1998.

[53] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor queries. In Proc. ACM SIG-

MOD'95, pages 71{79, 1995.

[54] G. Salton and M. McGill. Introduction to Modern Information Retrieval. McGraw-Hill, 1983.

[55] H. Samet. The quadtree and related hierarchical data structures. ACM Computing Surveys,

16(2):187{260, 1984.

[56] D. Sanko� and J. Kruskal, editors. Time Warps, String Edits, and Macromolecules: the Theory

and Practice of Sequence Comparison. Addison-Wesley, 1983.

[57] D. Sasha and T. Wang. New techniques for best-match retrieval. ACM Trans. on Information

Systems, 8(2):140{158, 1990.

[58] M. Shapiro. The choice of reference points in best-match �le searching. Comm. of the ACM,

20(5):339{343, 1977.

[59] R. Sutton and A. Barto. Reinforcement Learning : an Introduction. MIT Press, 1998.

[60] J. Uhlmann. Implementing metric trees to satisfy general proximity/similarity queries.

Manuscript, 1991.

[61] J. Uhlmann. Satisfying general proximity/similarity queries with metric trees. Information

Processing Letters, 40:175{179, 1991.

[62] K. Verbarg. The C-Ttree: a dynamically balanced spatial index. Computing Suppl., 10:323{

340, 1995.

[63] E. Vidal. An algorithm for �nding nearest neighbors in (approximately) constant average time.

Pattern Recognition Letters, 4:145{157, 1986.

[64] M. Waterman. Introduction to Computational Biology. Chapman and Hall, 1995.

51

[65] D. White and R. Jain. Algorithms and strategies for similarity retrieval. Technical Report

VCL-96-101, Visual Computing Laboratory, University of California, La Jolla, California, July

1996.

[66] A. Yao. Computational Geometry, chapter 7, pages 345{380. Elsevier Science, 1990. J. Van

Leeuwen, editor.

[67] P. Yianilos. Data structures and algorithms for nearest neighbor search in general metric

spaces. In Proc. 4th ACM-SIAM Symposium on Discrete Algorithms (SODA'93), pages 311{

321, 1993.

[68] P. Yianilos. Excluded middle vantage point forests for nearest neighbor search. In DIMACS

Implementation Challenge, ALENEX'99, Baltimore, MD, 1999.

[69] P. Yianilos. Locally lifting the curse of dimensionality for nearest neighbor search. In Proc.

11st ACM-SIAM Symposium on Discrete Algorithms (SODA'00), 2000. To appear.

[70] A. Yoshitaka and T. Ichikawa. A survey on content-based retrieval for multimedia databases.

IEEE Trans. on Knowledge and Data Engineering, 11(1):81{93, 1999.

52

