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Abstract

A distributed multimedia information system allows applications to access a variety of data, of dif-
ferent modalities, stored in data sources with their own specialized search capabilities. In such a system,
the user can request that a set of objects be ranked by a particular property, or by a combination of
properties. In [Fag96], Fagin gives an algorithm for efficiently merging multiple ordered streams of ranked
results, to form a new stream ordered by a combination of those ranks. In this paper, we describe the
implementation of Fagin’s algorithm in the Garlic middleware system [CT95], including a novel, incre-
mental version of the algorithm well-suited to an environment in which users are dynamically exploring
their data. While the algorithm is a simple one, designed with the distributed environment in mind, we
found that the assumptions it makes about random access limit its applicability dramatically. Having
implemented Fagin’s algorithm, we compared it with other execution strategies for the type of self-join
queries for which it might be used. The results of these experiments show that the algorithm would
perform well as part of a single multimedia server, and can even be effective in the distributed environ-
ment (for this limited set of queries). Our experience provides a better understanding of an important
algorithm, and exposes an open problem for distributed multimedia information systems.

1 Introduction

Multimedia data is becoming increasingly important, as hardware and software advances make using multi-
media practical in a broad range of disciplines. Data of different modalities (for example, text, image and
video data) are being used and accumulated in business as well as scientific applications, on the Web as
well as on the intranet. With the increasing volumes of data comes the need to search that data efficiently.
Querying by content is an important research topic in multimedia, and research prototypes and commercial
products are now available for searching image, video, and audio [NT93, KKOH92, PPS94, Vir, Exc]. These
systems, as well as many text search engines, and other, more specialized content-based search tools, return
the user a ranked set of results. That is, rather than simply telling the user “here are the results that meet
your requirements”, these search engines associate a score with each item returned that tells the user to

what degree the item matches their request. Typically, they return the results ordered by this score, from
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best match to worst. Often the user is only interested in the best results, and may request (or look at) only
the top few.

As applications make more use of multimedia data, they also need composite objects, e.g., objects with
both a text and a visual component, and need to search over these objects, possibly combining searches over
the different modalities. Consider a multimedia information system which stores news articles consisting of
the text of the story, and a picture. Suppose the user wants to find articles about beaches with a picture
of a sunset. The system must be able to do both a text search, to find text about beaches, and an image
search (perhaps on average color) to find sunset pictures, and it must be able to combine the results. The
difficulty is that it is quite possible to find articles about beaches where the picture is not really at sunset,
and equally possible to find articles with nice sunset pictures that have nothing to do with a beach. In other
words, the same articles may be ranked quite differently by the two searches. To get the user useful results,
some function will have to be applied to produce a single score for an article from the separate scores for
text and image, and return the articles ordered by this new score.

In [Fag96], Fagin proposes an efficient algorithm for merging multiple streams of ranked results, given
a combining function that obeys certain properties. While there are other ways to do such a merge, his
algorithm is appealing, as, with very high probability, the number of objects that must be retrieved in order
to get the top few results is sublinear in the total number of objects in the database. This is in contrast to
naive algorithms which, even to get only the top candidate, would have to retrieve and rank all the objects
in the database, combine their scores, and sort them by the new score. The algorithm has received much
favorable notice in the theoretical community, resulting in an invited keynote on the same topic [Fag98§].

Fagin developed his algorithm for the Garlic multimedia middleware system [C195]. Garlic provides users
with the ability to search over data stored by multiple disparate data sources, exploiting the specialized search
capabilities of each source. In addition, Garlic provides users with the notion of a complex object that links
together data from different sources. In the above example, newspaper articles might be complex objects,
with the text stored in one source with a text search engine, and the pictures stored in a source providing
image content search. Garlic, and systems like it, could use Fagin’s algorithm to merge the results of searches
over the different data sources.

However, Fagin’s work makes some assumptions about the multimedia system which do not always hold in
the middleware environment. Chief among these are the assumption that random access is possible, and that
it is easy to know, when looking at part of an object, to what object it belongs. (In our example, given the
text of the news article, it must be easy to determine from which news article this text comes). In addition,
Fagin looked at a particular, rather simple class of queries, whereas a general-purpose multimedia middleware
must be able to handle arbitrarily complex queries in its query language. Thus, it is not immediately obvious
how Fagin’s algorithm will perform, and how useful it will be, in a real middleware system environment.

To answer this question, we have implemented Fagin’s algorithm in the Garlic middleware system. In this
paper, we describe the implementation, including a novel, incremental version of the algorithm well-suited to

an environment in which users are dynamically exploring their data. We identify a necessary condition for



the application of Fagin’s algorithm in a given query plan, and show that this condition effectively limits the
use of Fagin’s algorithm to self-joins. However, when it can be used, experiments show that it out-performs
other approaches to merging and reordering ranked results. Our experience provides a better understanding
of an important algorithm, and exposes an open problem for distributed multimedia information systems.

There is as yet very little work related to this topic. In addition to Fagin’s original paper [Fag96]
and invited follow-on [Fag98], there have been a few papers proposing extensions or modifications to the
algorihm [CG96, FW97]. Other papers have looked at related issues, such as how to ensure that ranked
results from different sources share a common scale [GGM97]. To the best of our knowledge, ours is the first
attempt to implement this algorithm and to study its implications.

In the next section, we describe Fagin’s algorithm for merging streams of ranked results. Section 3 presents
an architecture for multimedia middleware systems, and describes Garlic as an example of that architecture.
We give examples of the kinds of queries for which Fagin’s algorithm may be applicable in Section 4. In
Section 5, we discuss the implementation of Fagin’s algorithm in Garlic, including our incremental version of
the algorithm. Then in Section 6 we focus on the problem of random access in a middleware environment,
and show how it both limits the applicability of the algorithm, and complicates its implementation. Section 7
describes some experiments with the algorithm that show that when it can be applied, the performance lives

up to expectations under a broad range of conditions. Section 8 summarizes our findings.

2 Fagin’s Algorithm

In this section, we briefly review via an example how Fagin’s algorithm merges ordered streams of ranked
results. Although Fagin’s algorithm can merge n streams at a time, we use two streams for simplicity. The
extension to the n-way case is straightforward.

Assume that we have two streams of data, each containing at least the identifier of an object and a
score, as well as, perhaps, other attributes. We will assume in this section that the object identifiers for the
two streams are from the same domain, as would be the case if they were both from a single collection at
one source. A score is a value in the interval [0,1], where the higher the score, the more closely an object
matches the criteria. Each stream is ordered by decreasing score. In addition, assume that we are given
a combining function for the scores. For the algorithm to work, the function must be monotonic [Fag96]'.
Finally, assume that we are given a value, k, representing the number of results the user has requested (i.e.,
the user is looking for the top k results). Tables 1 and 2 show the elements of two streams of data, which
we want to merge to find the top two objects (hence k = 2). The combining function for this example will
be average. The algorithm proceeds in three phases: a sorted access phase, a random access phase, and a
final sort.

In the sorted access phase, the algorithm reads from both input streams until it finds & matches. A match
occurs when the object from one stream has already been found in the other stream, i.e., when both scores

for an object have been found. In essence, this phase creates a table in memory, which has three columns:

! A monotonic function is one for which, if a; < b; for s = 1,2, then f(a1,a2) < f(b1,b2).



| OID | Stream 1 Score | OID | Stream 2 Score

a .90 e .96
d .85 f .84
e .83 b .83
h .75 d .55
i 71 h 53
b 66 3 46
f .40 c .38
g 32 i 37
c 21 g 21
1 17 a .13
Table 1: Example: Data in Stream 1 Table 2: Example: Data in Stream 2

one for the object id, one for the attributes associated with that object id in the first stream, and one for
the attributes associated with that object id in the second stream. When k rows of this table are complete,
this phase terminates. Table 3 shows the table that results at the end of this first phase for our example.

Four elements were read from each stream before two matches were found.

| OID | Stream 1 Score | Stream 2 Score |

a .90
e .83 .96
d .85 .55
f .84
b .83
h .75

Table 3: Example: Table after Sorted Access

In the random access phase, the table is completed. Matches are found for those objects which were only
seen in one of the two streams, by asking the source of the other stream for the score (and other attribute
values) of that object. To complete the process, the algorithm applies the combining function to the pair of
scores for each object, and sorts by the combined score, returning the top k£ objects. Table 4 shows the table
for our example after random access, with the combining function computed for each row. After sorting, the
top two elements, namely e and b, would be returned to the user. A proof of correctness in the general case

(assuming that the combining function is monotonic) is given in [Fag96].

| OID | Stream 1 Score | Stream 2 Score | Combined Score |

a .90 13 .515
e .83 .96 .895
d .85 .55 .70
f .40 .84 .62
b .66 .83 .745
h .75 .63 .64

Table 4: Example: Table after Random Access (with Combined Score)

Of course, there are other approaches to merging our two streams. A simple solution would be to join

the two streams on the object id, using a standard join method such as nested loop. Then the combining
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Figure 1: A Typical Middleware Architecture

function could be applied to the joined tuples, and they could be sorted by the resulting final score. However,
in order to return the top k objects, this approach requires reading all the objects in the database (in order
to compute the full join as input to the sort). Fagin’s algorithm, by contrast, is sublinear in the number of
objects in the database. In particular, for two sources? the cost in terms of the total number of objects in
the database, N, and the number requested, k, is proportional to VN * k.

For large sets of objects, therefore, Fagin’s algorithm promises much better performance than traditional
join methods when the number of results requested is much smaller than the total number of objects. Thus

1t 1s appealing to add this algorithm to the “bag of tricks” of a multimedia middleware query processor.

3 Multimedia Middleware

In Section 2, we presented Fagin’s algorithm without reference to the system in which it might be used. In
this section, we describe the architecture of the Garlic multimedia middleware. This provides the context
for Section b, where we look at implementing Fagin’s algorithm in such a system.

Figure 1 shows the Garlic architecture, which is typical of many heterogeneous database middleware
systems [PGMW95, TRV96, ACPS96, SADT94]. Data sources store data and provide functions to access
and manipulate their data. Multimedia middleware must potentially integrate a large variety of data sources;
e.g., image systems, video systems, text retrieval systems, WWW search engines, and legacy systems with
specialized sets of functions. Garlic is an example of a multimedia middleware system based on an object-
oriented data model. Wrappers in Garlic [RS97] describe the data in their source as objects, and Garlic
refers to these objects using an OID the wrapper manufactures. This OID allows Garlic to apply methods
to objects; from the OID, Garlic can determine the appropriate wrapper, and the wrapper can locate the
necessary data and apply the method. Wrappers provide methods to get the value of each attribute of an
object, and to encapuslate any specialized search capabilities of the source. (These methods are typically
implemented as commands in the native language or programming interface of the underlying source). The
wrapper also defines object collections (the targets of queries in Garlic). Finally, the wrapper provides a
description of the source’s query processing capabilities [RS97].

Different sources may vary greatly in their query processing capabilities. Most sources are able to scan a

collection, retrieving OIDs and possibly other attributes as needed. Most multimedia sources can also order

2 Again, see [Fag96], for a more complete and general analysis of the algorithm’s costs.



objects in a collection according to some criteria (e.g., how blue an image is, or the distribution of colors in
an image), and return the OID and score (according to that criteria) of each object. This corresponds to
the “sorted access” required by Fagin’s algorithm. “Random access” can be provided via method calls; we
assume for the purposes of this paper that the wrapper provides a method for each type of search it supports
that can return the score of an object according to that search. For example, an image wrapper providing a
histogram-color search would provide a method matches_color_histogram( “filename”) that when invoked on
an object returns the score for that object relative to how well it matches “filename”.

The Garlic middleware is essentially a sophisticated query processor. Queries asked by the user are
translated into requests on the underlying data sources. Garlic’s query services have two major components:
a query compiler, and a distributed query execution engine. The query compiler takes a query as input
and obtains an execution plan for the query through parsing, semantic checking, query rewrite, and query
optimization (as in Starburst [HFLP89]). Garlic’s query language is an extension of SQL along the lines
of SQL3 [Mel97], that includes support for such object-oriented features as path expressions, methods and
nested sets. The Garlic optimizer [HKWW97] constructs and selects an “optimal” plan for each query, based
on a cost model. All alternative methods for executing a given logical operation (e.g., a join or an access to
a particular collection) are considered. Once the plan has been determined by the optimizer, its execution
1s coordinated by Garlic’s query execution engine, which passes requests to the wrappers and assembles the
final query result. Garlic’s execution engine is a powerful system able to perform joins, apply predicates,
invoke methods, sort, aggregate, and so on. This allows Garlic to combine data from different sources, and
to compensate for functionality not present in the data sources or not reflected by their wrappers.

Middleware systems allow users to exploit existing data and existing search engines, combining them
to build powerful new applications. But to inter-relate data from different sources, the middleware must
know about relationships between data in the different sources. For example, in the news article example
of Section 1, the text is stored in one source, and the pictures in another, and yet the middleware must
somehow know which text and which pictures belong together. This could happen in one of several ways.
For example, the data in both the text and the image repository could share a common key, perhaps the
title of the article. Or, the data in one source could refer to the other, for example, the text source might
in addition to the text have the 1d of the picture for that text. However, if data is actually legacy data that
1s being combined for a new application, such links may not exist. Garlic handles this case by providing
complezr objects, new objects that can be used to record the relationship between two or more pre-existing
objects. In our running example, even if the text and images had no common key, and no links to each other,
a collection of news articles could be created, where each news article would be a complex object consisting
of a reference to the text for that article, and a reference to the image for that article. This would allow our

“text about beaches and image of sunset” query to be expressed against the collection of news articles.



4 Queries Merging Multiple Streams of Ranked Results

We have seen how Fagin’s algorithm works, but for what sorts of queries can it be used? In this section,
we present a sample schema and some queries against that schema, which might benefit if Fagin’s algorithm
were used to execute them. In our version of SQL, users can issue queries in which the ranked results of
two different searches (often expressed as method calls to specialized search methods) are “joined” using a
combining function (which can be an arbitrary expression), and are used in the ORDER BY clause of an
SQL query to indicate that output is needed order according to the result of the combing function. 3. If
clipping the results below a certain score is desired, the WHERE clause may have a further restriction on
the combined expression.

Let us look at some examples. Assume that we have two data sources, a text search engine and an
image source. The text engine can rank documents via an is_about method, which takes a string and gives
a document a score based on the number of occurences of that string (and maybe related terms) in the
document. The image source provides two methods, matches_avg_color and matches_histogram_color. These
methods take the name of a .gif file, and return a score indicating how well the object matches the .gif file
argument. The image source exports two collections, NewsPhotos and AdPhotos. The text source exports
the collections News and AdCopy. Again for the sake of the example, assume that both NewsPhotos
and News objects contain the name of the article to which they belong; AdPhotos and AdCopy, however,
have no common key. Finally, let Advertisements be a collection of complex objects having two attributes:
a reference to an image, and a reference to the text of the ad. This schema i1s summarized in Figure 2, using
a simple variant of the ODMG [Cat96] data description language.

Below we present several queries which specify multiple scored searches for which Fagin’s algorithm might
be useful. For simplicity, the examples use only two scored searches each, but there is no limitation in the

language on the number of searches to be combined.

SELECT A1.0ID,

(A1 .matches_avg color(“mustard.gif’) +

A2.matches histogram color( brown+yellow.gif“))/2 as relevance
FROM AdPhotos A1, AdPhotos A2 (Q1)
WHERE A1.0ID = A2.0ID
ORDER BY relevance
STOP AFTER 10

Query Q1 finds the ten AdPhotos that have the most mustardy average color, and whose color histogram
1s closest to a certain breakdown of brown and yellow. The scoring expression appears in the select list, where
it is given a name (“relevance”), for reference in the ORDER BY clause. This name “relevance” is optional,
the expression could have been referred to in the ORDER BY by its position in the select list. The combining
function used here is average, a monotonic and strict function. In Garlic’s extended SQL, an ampersand

before a quantifier name stands for the OID of the objects referenced by the quantifier; hence, A1.OID is the

3Since in SQL results can only be ordered by elements mentioned in the SELECT clause, this means that the combined
scoring expression must appear in the SELECT list.



Image Wrapper Schema

Collections:
AdPhotos of <Image>;
NewsPhotos of <NewsImage>;
interface Image
attribute String thumbnail;
attribute String fulllmage;
method Float matches_avg color(String);
method Float matches histogram color(String);
end;
interface NewsImage
attribute String thumbnail;
attribute String fulllmage;
attribute String article;
method Float matches_avg color(String);
method Float matches histogram color(String);
end;

Text Wrapper Schema

Collections:
AdCopy of <Text>;
News of <NewsText>;
interface Text
attribute String body;
attribute String author;
method Float is_about(String);
end;
interface NewsText
attribute String body;
attribute String author;
attribute String article;
method Float is_about(String);
end;

Complex Object Wrapper Schema

Collections:

Advertisements of <Ad>;

interface Ad

attribute String appeared;
attribute Date when;
reference <Text> copy;
reference <Image> photo;

end;

Figure 2: The Example Schema

OID of the AdPhotos ranged over by Al. The STOP AFTER clause [CK97] tells how many results should

be returned. Query Q2 asks for the same results, however, it is written as a simple ordering of a single scan

of the AdPhotos collection. Since it asks for the same result, we would expect Fagin’s algorithm to be

equally applicable to this query.

SELECT A1.0ID,

FROM AdPhotos A1l
ORDER BY relevance
STOP AFTER 10

(A1 .matches_avg color(“mustard.gif ) +
Al.matches histogram color( brown+yellow.gif“))/2 as relevance

(Q2)

Another way to limit the number of results returned would be to clip the output at a certain level of

relevance:

SELECT A1.0ID,

(A1 .matches_avg color(“mustard.gif’) +

A2.matches histogram color( brown+yellow.gif“))/2 as relevance
FROM AdPhotos A1, AdPhotos A2
WHERE A1.0ID = A2.0ID and relevance > .75
ORDER BY relevance

(Q3)

Of course, general predicates can also be placed on one or both streams. Query Q4, for example, finds

NewsPhotos that match the above specification, where the article name is similar to “Haze”.



SELECT N1.0ID,

(N1.matches_avg color(“mustard.gif’) +

N2.matches histogram color( brown+yellow.gif“))/2 as relevance
FROM NewsPhotos N1, NewsPhotos N2 (Q4)
WHERE N1.0ID = N2.0ID and Ni.article like “%Haze’~’
ORDER BY relevance
STOP AFTER 10

Our next query joins the two streams using their common key. Note that since NewsPhotos and News
are from different data sources, objects will have different OIDs even if they belong to the same article.
Thus, a join on OID would not be possible here. The query finds articles that are about beaches, with a

picture having a color distribution similar to a sunset.

SELECT N.0ID, P.0ID,

(N.is_about( beaches”) +

P.matches histogram color( red-orange-yellow.gif“))/2 as relevance
FROM NewsPhotos P, News N (Q5)
WHERE P.article = N.article
ORDER BY relevance
STOP AFTER 15

SELECT A.0ID,

binary min(A.copy->is_about( perfume”),

A .photo->matches histogram color( red-orange-yellow.gif~)) (Q6)
FROM Advertisements A
ORDER BY 2
STOP AFTER 5

Finally, Query Q6, finds the five Advertisements best matching the criteria “about perfume with a
picture of a sunset”. In this example, the combining function is a user-defined function, binary_man, which
takes the minimum of its two arguments. This function is also monotonic and strict. The query ranges
over the complex objects, Advertisements, using path expressions (indicated by the — in the query) to
reach the associated AdCopy and AdPhoto for each. This is semantically equivalent to the explicit join in
Query Q7 (assuming that every Advertisement has exactly one AdCopy and one AdPhoto associated with
it). In fact, the Garlic query processor will rewrite Query Q6 as Query Q7 in order to allow more scope for
optimization (more plans are possible in this formulation of the query than in the original, single collection

access).

SELECT A.0ID,
binary min(C.is_about (" perfume”),
P.matches histogram color( red-orange-yellow.gif "))

FROM Advertisements A, AdCopy C, AdPhotos P (Q7)
WHERE A.copy = C.0ID and A.photo = P.0ID
ORDER BY 2

STOP AFTER 5




The above examples all involve multiple searches that return ranked results. As such, all might be
candidates for evaluation using Fagin’s algorithm. However, as we will see in Section 6, for some of these
queries it will be difficult (if not impossible) for the query compiler to determine that the algorithm is
applicable, and for still others, the algorithm cannot be used without significant extensions to either the

execution engine or the algorithm itself.

5 Implementing Fagin’s Algorithm

We have implemented Fagin’s algorithm as part of the Garlic middleware’s repertoire. In this section, we
describe the basic implementation, focusing on how plans using the algorithm are generated, and on how the
algorithm works at runtime. In implementing the algorithm, we realized that the need for random access
severely limited the set of queries to which the algorithm could be applied in a middleware environment.

The effects that this requirement has on both compilation and runtime are discussed in Section 6.

5.1 Generating Plans that Use Fagin’s Algorithm

As discussed in Section 3, the Garlic query compiler starts by building up an internal representation of
the query in terms of its logical operations. Each logical operation typically has a variety of algorithms
associated with 1t, and for a given query, some or all of those algorithms may be possible implementations
of that logical operation, depending on the data involved, and the query details. There are many possible
ways to do a join, but typically only one way to do a particular sort. Fagin’s algorithm can be viewed as an
implementation of either the logical join operation, or of the ordering operation. Like a join, the algorithm
merges together two (or more) streams of data. Like an ordering operation, it produces a result stream
in a particular order. However, it also differs from both operations. The ordering operation reorders one
incoming stream of data. Fagin’s algorithm merges two or more incoming streams and reorders the result.
Join algorithms are typically binary and asymmetric; which stream is the “outer” and which the “inner”
affects performance and even sometimes the applicability of the algorithm. Fagin’s algorithm, on the other
hand, is n-ary and symmetric; there is no notion of outer or inner with it. While some join algorithms will
cause the output stream to be ordered, it is a side effect of the join, not the main focus.

Ultimately, though neither was a perfect fit, we decided to treat Fagin’s algorithm internally as a join,
since without Fagin’s algorithm in the system, these queries would be processed basically as joins, followed
by a sort. We implemented Fagin’s algorithm as a binary operator, as our code base thinks of joins as a
binary operation, and it would have taken considerable effort to create an n-ary join. Our code base also
assumes that joins are asymmetric operations, and thus considers each join method twice for a given pair of
tables. Since Fagin’s algorithm is symmetric, this would lead to two identical plans. Thus, we added code
that builds only one plan for a symmetric algorithm.

Not all join methods can be applied in all situations. For example, Merge Join only works when the

streams are ordered by the join column value, while Pointer Join* is only applicable when the join predicate

4Similar to an Indexed NestedLoop join, this join method does a direct lookup of the inner object, using in this case the
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involves an OID. Fagin’s algorithm, too, is only applicable under certain conditions. In particular, the
algorithm relies on two key conditions: it is possible, given an object from one input stream, to find the
matching attributes of the same object in the second stream (this is called the random access condition,
because without it, the random access phase does not work)), and that the combining function used is
monotonic (the monotonicity condition).

We will discuss when the random access condition holds in Section 6. To determine whether the mono-
tonicity condition holds, we must determine whether the combining function used in a given query is mono-
tonic. In Garlic, both built-in functions (such as basic arithmetic operators) and user-defined functions have
a set of properties associated with them. We added a new property for monotonicity, and initialized it for
our built-in functions; users can initialize it for the user-defined functions as well. Thus, when the user uses
any single function as a combining function, we know instantly whether the monotonicity condition is met.
However, when a complex expression using several functions (built-in or user-defined) is used as the combin-
ing function, our current implementation assumes that the resulting function is not monotonic. Ideally, the
system would include some rules that would allow it to prove that certain combinations of functions were

still monotonic; that would allow us to apply Fagin’s algorithm to a broader range of queries.

5.2 An Iterator for Fagin’s Algorithm

A Garlic execution plan is a tree of iterators, as in [Cat96]. Each iterator represents one algorithm of the
system. For example, there are iterators for sort, nested loop join, pointer join, and so on. Iterators present
a common interface; in particular, every iterator has an advance method, which returns the next element of
its result. To get the first result of a query, the Garlic engine invokes advance on the top iterator of the tree.
To compute the result, that iterator may have to call advance on its input iterators, and so on. For example,
a NestedLoopJoin iterator would get its first element by invoking advance on its outer input iterator, then
advance on its inner input iterator until it found a match.

We considered two alternative approaches for the advance operation for our iterator for Fagin’s algorithm.
In the first approach, the first time advance is called it runs through the entire algorithm, computing an
ordered list of the top k results, and then returns the first (best) one. The second time it is invoked, it can
Jjust return the second result, with no computation required. With this approach, the entire cost of the query
is paid when the user asks for the first result, and subsequent results are essentially free (up to the kth).

This approach is simple and efficient, assuming the user is going to look at all k results. In fact, it does as
little work to get those k results as possible. However, it takes it a while to get the first result, and, if the user
1s only going to look at a subset of those results, then it has wasted effort. Since users typically don’t know
how many results they really want, they tend to “guess” a bound, and then browse through the list until
they find what they were looking for (or something close enough). For these users, the “do-it-all-up-front”
approach is not optimal.

Thus we implemented an incremental version of the algorithm. In this version, the first time advance is

OID for the inner tuple.
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called it does the work needed for ¥ = 1. The second time advance is called, it continues where it left off,
until it has done the work needed for k£ = 2. This continues for each new call to advance. A side effect of
this approach is that it enables Fagin’s algorithm to be used cost effectively for queries in which no STOP
AFTER clause 1s specified.

We illustrate with an example, based on that of Section 2. On the first call to advance, the sorted access
phase produces Table 5. This table is a subset of the table produced by sorted access in the example of
Section 2 (Table 3), because in that example, k = 2, while for this first call to advance, k is effectively equal
to 1. We have marked with an asterisk those elements found in the sorted access phase in Stream 1, and
with a dollar sign, those found in sorted access in Stream 2. This will help us on our subsequent calls to

advance.

| OID | Stream 1 Score | Stream 2 Score | |

a .90 *
e .83 .96 *$
d .85 *
f .84 $

Table 5: Example: Table after Sorted Access on First Call to advance

The random access phase completes this table, filling in the values as shown in Table 6. Again, we show
the computed combined score as well. After the table is complete, it would be sorted, and the top scoring

object, e, would be returned.

| OID | Stream 1 Score | Stream 2 Score | Combined Score | |

a .90 13 .515 *
e .83 .96 .895 *$
d .85 .65 .70 *
f .40 .84 .62

Table 6: Example: Table after Random Access on 1st Call (with Combined Score)

On the second call to advance to get the object with the next highest score, the algorithm continues with
sorted access where 1t left off. In this example, it would start by getting the next element of stream 2, which
in this case is b. It continues with sorted access, bringing in elements whether or not they were already
fetched by random access, until a second match is found. Note that now a second match requires a second
row in which both elements have been retrieved by sorted access (in our notation, the element would have
an asterisk and a dollar sign). Sorted access on this second call to advance terminates with the table looking
like Table 7.

The second match in this case is on d. While that element of stream 2 was retrieved during the random
access phase on the first call to advance, note that it does not count as a match until it is retrieved again
during sorted access on this call. At this point, random access i1s again used to complete the table, which
ends up looking like Table 4 of Section 2. Now the element with the second highest score, b, is returned.

Processing continues in this manner until all £ elements have been returned. Notice that this approach

does do some extra work, as some elements are retrieved in the random access phase on one call to advance
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| OID | Stream 1 Score | Stream 2 Score | Combined Score | |

a .90 .13 .515 *
e .83 .96 .895 *$
d .85 .65 .70 *$
f .40 .84 .62 $
b .83 $
h .75 *

Table 7: Example: Table after Sorted Access on 2nd Call to advance

that will be found again during sorted access on a subsequent call. However, this may be more than

compensated for by the savings if the user chooses not to view all & results.

6 Random Access and the Applicability of Fagin’s Algorithm

As noted in Section 5.1, two conditions must hold for Fagin’s algorithm to be applicable: the combining
function must be monotonic, and random access must be possible. In this section we focus on the challenges
posed by this latter condition. In Fagin’s world, the scoring expressions were viewed as predicates on a single
object. Hence random access was simple: find the same OID in the other stream. But in the middleware
universe, parts of objects stored in different subsystems have different identities, and queries or complex
objects provide the linkage among them. For example, in Query Qb of Section 4 above, it is the join
predicate, “P.article = N.article”, that tells us which element of the P stream is related to which element
of the N stream. In Query Q6, the path expressions, which are later turned into join predicates during the
query rewrite process, hold the key. So, given a schema, a query, and a pair of input streams, how can we
determine whether, for each element of one stream there is a unique corresponding element of the other

stream, and further, how can we find and retrieve that element?

6.1 Determining the Correspondence

Clearly, when we have an OID=O0ID predicate and each stream derives from a single collection (in other
words, neither stream is the result of a join), as happens with self-joins such as Query Q1, the random access
condition holds. Each incoming stream must contain the OID; thus, given any element of one stream, we can
use 1ts OID to find its mate in the other stream. However, if this were the only case in which the condition
held, this would be a severe limitation on the applicability of Fagin’s algorithm.

In theory, we can do somewhat better than this. To meet the random access condition for Fagin'’s
algorithm, it is sufficient that (1) each stream have a unique attribute which, for each object in the stream,
functionally determines the value of all other (selected) attributes of that object, including the score, and
(2) there must be a one-to-one mapping between the unique attributes in the two streams. In other words,
each stream must contain a key element, and there must be a predicate or predicates that map uniquely
back and forth between the key elements of the two streams.

For example, take Query Q7 of Section 4. The query compiler will consider all possible join methods for

all possible groupings of collections to find the best plan for the query. Let us look at just one possibility it
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would consider. Assume we already have a plan for joining Advertisements A with AdCopy C. Now we
want to determine whether we can apply Fagin’s algorithm to join (A x C) with AdPhotos P. Stream 1,

the result of the earlier join of A with C, has elements of the form:
A.OID, A.copy, A.photo, C.OID, C.is_about(‘perfume’)
while Stream 2, the result of scanning collection P, has elements of the form:
P.OID, P.matches_histogram_ color(‘red-orange-yellow.gif")

A.OID is a key to Stream 1. Given A.OID, it is possible to determine A.copy and A.photo, as these are just
attributes of the object represented by A.OID. Because of the join predicate “A.copy=C.OID”, A.OID also
determines C.OID, which in turn determines the score. Further, P.OID is a key to Stream 2, because the
score of the photo is functionally dependent on it. Now we need the mapping between A.OID and P.OID.
The join predicate “A.photo=P.OID” gets us from the OID of Advertisements, which is the key of Stream
1, to the OID of AdPhotos, which is the key of Stream 2. However, we have no predicate that, given P.OID,
will return A.OID. That is, there is no way to get from the OID of AdPhotos back to Advertisements.
Thus, Fagin’s algorithm cannot be applied to the join of Stream 1 with Stream 2, because in the random
access phase we would have no way of completing the table where elements of Stream 1 were missing.

In general, determining whether the random access condition holds is difficult, as (1) we need to find a key
for each stream, (2) we need to find a mapping between the keys, and (3) we must ensure that the mapping
is one-to-one. Each of these tasks can be time-consuming for complex queries; in particular, sometimes (3)
1s impossible without fully materializing the streams. To get a sense of the difficulties, consider that in the
example above, while we quickly recognized that A.OID was the key for Stream 1, the code would have to
look at each attribute of the stream, and test if it were the key by trying to establish a mapping to the
other attributes. Likewise, finding the mapping between keys can be quite complex, because there does not
have to be a single predicate that accomplishes the mapping. In the above example, if there were an inverse
relationship (i.e, a backwards reference) between an Image and its Ad, say, an attribute of Image called
ad, and the query included the predicate “P.ad = A.OID”, then a mapping could be found, and Fagin’s
algorithm could be used to do this join.

More information would make it easier to find mappings by providing more options. To see this, note
that we could, in principle, apply Fagin’s algorithm to Query Qb, if we knew that article was a primary
key for collections of NewsTezt and NewsImage objects (and that every article had both a NewsText and a
NewsImage). Garlic does not currently ask for and track information on primary keys, but this would be a
valuable addition to our metadata for a number of reasons, and might allow us to make greater use of Fagin’s
algorithm, assuming there were some way to get from the article name to the object (see Section 6.2). This
1s an important special case, as legacy systems often do have common keys that make it easier to interrelate
data from different sources.

Finally, to be sure that the mapping is one-to-one can be the most difficult of all. So far, we have been

considering unfiltered input streams, that is, streams to which no predicate has been applied. Even here,
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with the exception of self-joins or cases where we have information about inverse relationships, it is difficult
to prove this is true. Unfortunately, predicates make the situation worse. Consider Query Q4. This simple
modification of Query Q1 adds a local predicate, “N1.article like "% Haze%’ ”. Depending on when the
predicate is evaluated, Fagin’s algorithm may or may not be applicable. If the predicate is evaluated after
the join, everything is fine. Likewise, if the predicate is applied to both streams before the join (which is legal,
because N1.OID=N2.0ID), Fagin’s algorithm can still be used. The problem arises when the predicate is
pushed down on one stream only (this is also legal, as elements of the other stream not meeting the predicate
will be eliminated via the join predicate during the join, and in fact, such predicates are typically only applied
on one stream to save evaluation cost). In this case, there will not be a one-to-one mapping between the
streams, because some elements of the stream with the predicate will not pass the filter, and hence those
elements when encountered in the other stream will not be matched in the filtered stream.

So we see that a key challenge for any query compiler hoping to incorporate Fagin’s algorithm is deter-
mining when the random access condition holds. In Garlic today, while we have tried to write general code
for finding keys and mappings, Fagin’s algorithm is only found to be applicable for a fairly restrictive set of
queries, typically involving self-joins. One way to make more queries amenable to using Fagin’s algorithm
1s to introduce self-joins into them. For example, Fagin’s algorithm does not apply to Query Q2, because
there is no explicit join in this query. However, we noted earlier that this query returns the same results
as Query Q1, which can be executed using Fagin’s algorithm. As another example, consider Query Q7,
which we showed above cannot use Fagin’s algorithm. That query can be re-written as Query Q8. In this
formulation, Fagin’s algorithm can be used, to join the stream (Al x C) with the stream resulting from
(A2 x P). A1.0ID and A2.0ID are the keys of their respective streams, and the join predicate “A1.0ID =
A2.0ID” provides the mapping.

SELECT A1.0ID,
binary min(C.is_about( perfume”),
P.matches histogram color( red-orange-yellow.gif "))

FROM Advertisements A1, Advertisements A2, AdCopy C, AdPhotos P (Q8)
WHERE Al.copy = C.0ID and A2.photo = P.0OID and A1.0ID = A2.0ID
ORDER BY 2

STOP AFTER 5

Clearly, though, we do not want to rewrite every query as a self-join. In general, adding an extra
quantifier to a query adds costs, both at compilation and execution. It is not clear under what conditions
1t will be beneficial to rewrite a query and use Fagin’s algorithm instead of just performing the smaller join
with some other algorithm. This is the sort of decision that should only be made under the control of a
cost-based optimizer. Unfortunately, in Garlic rewriting is a heuristic process which occurs before cost-based

optimization, and it would be difficult for Garlic to take advantage of this “trick”.
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6.2 Doing a Random Access

As we saw above, the need for random access makes 1t difficult to assess when Fagin’s algorithm is applicable.
It creates further difficulties at execution time, when we need to actually do the random access. We discuss
these difficulties, and how Garlic does random access, in this section.

Garlic provides two means of talking to a data source (via its wrapper) during execution: method calls
and queries. As mentioned in Section 3, wrappers provide methods for getting all attribute values. They
also must provide methods for computing the score for any object for each kind of approximate search they
support. Thus, given an object id, one way to do the random access needed by Fagin’s algorithm is to invoke
methods for each of the attributes needed.

This is not as easy as it sounds. Consider Query Q8 in Section 6, and suppose we want to use Fagin's
algorithm to join the two streams (Advertisements A1 x AdCopy C) and (Advertisements A2 x
AdPhotos P). The first stream, with the result of joining Al with C, has elements of the form:

A1.0ID, Al.copy, C.OID, C.is_about(’perfume’)
while Stream 2, the result of joining A2 with P, has elements of the form:
A2.0ID, A2.photo, P.OID, P.matches_histogram color(’red-orange-yellow.gif’)

Suppose during the random access phase we have to fill in a row of the table where we have the element from
Stream 2, but not from Stream 1. To do this random access, we actually need to do two separate method
calls, each on a different OID. Assume that the element in stream 2 has OID g. We would first invoke the
method to get the copy attribute for Advertisements on object g (we know to use that OID because of
the join predicate “A1.0ID = A2.0ID”). The result of that method call is an OID for an AdTexzt object
(call it c. Then we would invoke the zs_about method on ¢. We know we can do that because the earlier join
predicate “Al.copy = C.OID” told us how to get the third value of this element, and once we have C.OID,
we can apply the method. This is a relatively simple example; if more fields of these objects are selected,
keeping track of how to get the value of each attribute of the result element quickly becomes complicated.
Garlic uses the method approach for random access; we build a table during query compilation that tells us
what method invocations and what copying to do to fully materialize each element.

In addition to the complexity of figuring out what method calls to do to get the missing elements, the
method approach has some inherent limitations due to the need to have an OID with which to start. Because
of this, this approach will not work except when the predicate joining the two streams is an OID = OID
predicate (in the case of a pair of predicates, as occurs with inverse relationships, one side of each of the
join predicates must be an OID). This means that this approach could not extend to the situation where the
predicate is an equality predicate on a primary key (see Section 6.1 above). This is because we get from one
stream to another by means of a non-OID value, and given the value, even though it is unique, we cannot
get the OID without asking a query. For Query Q5, for example, if we had the article name (say “TeaTime”)
for a NewsPhoto, we would have to issue the query “SELECT N.OID FROM News N WHERE N.article
= ‘TeaTime’” to get the OID of the matching text.
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Another, more general approach to the random access phase, therefore, is to use a query to gather the
needed values for a missing element. Again, wrappers provide a query interface that allows a query to be

1ssued against their data source. In our example above, the query:

SELECT A1.0ID, Al.copy, Al.copy, Al.copy->is_about( perfume”)
FROM Advertisements Al (Q9)
WHERE A1.0ID = g

could be used to get all the values of the missing element. A separate query (but all of the same form)
would be needed for each missing element. Of course, computing the query to be used is not necessarily any
easier than computing what method calls are needed. However, this approach is certainly more general. The
primary key idea could be accommodated in this approach just by changing the “WHERE” clause.

However, there are several challenges to this approach which kept us from using it in Garlic. First, it is
difficult to invoke a totally new query from within the execution of another query. This new query would
have to be compiled, generating a new tree of iterators, which we’d have to run, and then copy the result into
the buffers for the existing tree, and continue from there. The more complex the stream, the more complex
the query will be, making this a fairly inefficient path! Note that the query is a query to Garlic, not to an
individual wrapper. We can’t typically come up with a query that can be issued directly to the wrapper;
different wrappers have different query capabilities, some of them extremely limited, so Garlic needs to be
involved to make sure the query is executed correctly. For example, most wrappers cannot handle path
expressions, as would be required for the query above. Also, note that the query above actually requires
data from two different data sources, thus, we need Garlic involved to do the join.

Since all the queries for missing objects from a particular stream look alike, we could save some time by
compiling a parameterized query (like the query above, but with a ‘?’ where the g is). At execution time,
the necessary OID value could be passed to Garlic when that query is invoked. We would still have the
problem of recursively running the Garlic execution engine, but not the overhead of compilation. However,
this leads to another difficulty: to get good performance on queries, Garlic needs to push as much work as
possible to the data source [HKWW97]. For many data sources, simple predicates (for example, those on
OIDs or primary keys) can be executed. But if the query is parameterized, the wrapper must be willing to
handle the binding in of the parameter value [RS97]. Since this is an optional interface, many wrappers may
not support it. However, if they don’t, the only choice may be to retrieve a lot of extra data from the data
source, and evaluate the predicate in Garlic. This could also be extremely inefficient.

Due to these assorted difficulties, we chose to use the method approach for random access in Garlic. For
the simple queries to which we can apply Fagin’s algorithm, methods work quite well. In general, there does
not seem to be a really good solution to the random access problem (at least for complex queries) in the
middleware environment. Since the sources are autonomous, the middleware cannot force them to provide a
“fast path” for random access. Since every source is different, the middleware cannot count on more than a
few basic interfaces (otherwise, the task of writing a wrapper becomes too complex). One concern we had in

implementing Fagin’s algorithm was whether the inefficiency of random access would have a negative effect
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on performance, as well as applicability. In the next section, we describe some of our experiments with the

algorithm, and the results of this and other investigations.

7 Some Experiments
7.1 Experimental Environment

For our experiments, we ran queries against a Garlic system with three data sources, including QBIC [N*+93],
an image server that ranks images according to user-specified color, texture and shape features. The other
sources were a relational database, and an object-oriented database that stores Garlic complex objects. Given
the limited applicability of Fagin’s algorithm, we focused on queries that applied multiple QBIC predicates
to the same collection of images, in other words, self-joins such as Query Q1. However, QBIC provides
several different ways of ranking images, with very different performance characteristics. Hence, we believe
that our results would extend easily to an environment with multiple collections in different sources, were
the problems with applicability solved.

For example, QBIC provides two functions for ranking images by color: average color and color histogram.
Both functions analyze an input image, compare it with images stored in the image database, and return
those images ranked according to how well they match the input image. For average color queries, the initial
computation depends on the x- and y- dimensions of the image predicate. For color histogram queries, the
initial computation depends on the number of colors specified in the image predicate. A simple algorithm
that is linear in the number of colors is used when only a few colors are specified, and a more complex
algorithm is employed that is quadratic in the number of colors if a large number of colors are specified. By
varying the number of colors in color histogram queries, it was possible to ask queries where the costs of the
various scans and random accesses varied quite dramatically.

One characteristic of our experimental environment that is unrealistic is the size of the database. All
of our experiments were run on a collection consisting of 547 images. Fagin’s algorithm was designed for
situations in which the size of the data was several orders of magnitude larger than this. In general, a
larger database size will give Fagin’s algorithm a much bigger advantage. However, we feel that the results
described below give a good sense of the algorithm’s potential, and we expect the effects described would
only be exaggerated in a larger database.

In this section we will mean by random access cost the cost to do one random access to retrieve data
from a source. By sorted access cost we will mean the cost to retrieve the next element in a sorted stream.
We will be comparing the performance of Fagin’s algorithm (FA) to pointer join followed by a sort (PJ), and
occasionally nested loop join followed by a sort (NLJ). Pointer join, as mentioned earlier, behaves similarly
to an indexed nested loop join. Each object in the outer collection must provide the OID of an object from
the inner. Then for each object in the outer, the matching inner object is retrieved using that OID. Garlic’s
nested loop join applies any local predicates to the inner, then stores the result temporarily in Garlic, where

it does the NLJ in the usual way, scanning the entire inner for each object from the outer.
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7.2 Verifying the Predicted Behavior of Fagin’s Algorithm

We began our study by looking at the performance of Fagin’s algorithm for a range of queries, to see if it
would exhibit the predicted /N # k behavior. Figures 3 and 4 are typical of the results. Both figures show
the time to find the top k results for k ranging from 1 to the size of the image collection (547 images). For
comparison, we have also plotted the performance of a pointer join followed by a sort (the best competitive
algorithm in Garlic for these queries). Note that the pointer join is an almost flat line, because the sort
forces all work to be done up front, before any results are returned. In Figure 3 the two searches were both
on average color. One search ranked images by how close to black they were, the other by how close to white;
hence there was no correlation between the scores in the two streams. Figure 4 shows a different query, again
involving two average color searches, but here the two colors were much closer to each other, so the scores
from the two streams exhibit some correlation. We see that the overall curve has the same shape as that
in Figure 3, but it has a smaller slope, inclining further out to the right, so that it crosses the competing
pointer join curve at k = 283 instead of at £ = 190 as in the no correlation case. (Before the crossover point,
FA is the winner, taking less time to retrieve the best k objects than PJ; if the user is asking for that many
objects or less, the system should use FA. After that point, PJ is the better choice). In both of these figures,
we have also plotted the total amount of time spent on random and sorted accesses. We can see that the
amount of time spent doing random accesses is much less for the case where there is some correlation in the
scores. [WHRB98] shows this even more dramatically for an almost perfectly correlated search.

Note that, even for uncorrelated streams, FA handily beats out the competing pointer join up until
k = 190 — a full 35% of the data! This is impressive for an algorithm that has as its goal to allow the user
to inexpensively browse the top few percent of their results, especially given the high random access costs

in our environment. We next look at this issue in more depth.

7.3 The Effect of Access Costs on the Performance of Fagin’s Algorithm

Our next series of experiments focus on how Fagin’s algorithm behaves as the performance characteristics
of the middleware environment (especially the various costs of accessing data) vary. To avoid confusing
effects, the query is identical in all of these experiments; it has two easy histogram searches with relatively
uncorrelated arguments.

In the first of these experiments, we looked at what happens as the random access costs increase. This
models the situation in which data sources have a very high overhead for random access, or the middleware
is forced to use a high overhead strategy (Section 6.2). In this experiment, we recorded the performance
of three execution strategies (Fagin’s algorithm (FA), pointer join followed by a sort (PJ), and a version of
nested loop join that caches the inner at the middleware, also followed by a sort (NLJ)) as we increased the
average random access cost by adding an artificial delay which ranged from 50 to 200 ms. Figure 5 plots time
to execute the query in seconds versus the random access delay for NLJ, PJ, and FA at three different values
of k. Since NLJ does no random access, it is unaffected by the delay, hence shows constant performance.

Clearly, as the delay gets enormous, NLJ will eventually beat all competitors. However, for delays less than
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120 ms, PJ is a better choice, and for reasonable values of k (e.g., k < 100), FA will typically be faster, even
for much larger delays.

In our second experiment, we varied the delay imposed on a random access for one of the two searches,
to see what effect an asymmetry in the costs would have. This could happen easily if searches at one source
were more expensive than at another. PJ can minimize the effects of such asymmetric delays; FA must suffer
them. We compared FA to PJ for several values of k, as the delay for one search varied from 50 to 200 ms.
The results are shown in Figure 6. Since NLJ does no random access, we do not include it here. For this
experiment, we exploited the asymmety of PJ, letting it use sorted access (the cost of which was, somewhat
artificially, kept constant) for the expensive search, and random access for the cheap search. Thus, since it
does no expensive random accesses, the PJ line is essentially constant. FA, on the other hand, is slowed down
dramatically by the increasing random access delay (regardless of which stream is the expensive stream).

We also examined how FA would behave in two other environments. In the first, all access costs are high.
This simulates an environment in which a fast middleware processor communicates over slow lines to remote
data sources. In this case, both PJ and FA slow down (of course), but FA is less affected for small values
of k, and more affected at higher values. In the second environment, random access and sorted access had
the same cost, to simulate how FA might perform within an individual multimedia search engine (in which
random access would be much faster than in our middleware environment). Once again FA was the best

choice for a wide range of k values.

7.4 Discussion

We have seen that Fagin’s algorithm behaves well for a broad range of queries, and a broad range of access
costs. For small k it is almost always the algorithm of choice, even in quite adverse circumstances. In our
standard middleware environment, it is surprisingly effective, winning handily even for k values up to 35%
of the database size, despite the slowness of random access costs. With a larger database, we would expect
the savings to be even more dramatic. The algorithm is likely to be extremely useful for multimedia search
engines that specialize in the sort of query for which it is intended, and if the algorithm were more broadly
applicable in the middleware context, it would clearly be an important addition to a middleware engine.
Unfortunately, the algorithm as it stands has limited applicability, and this, combined with the difficulty
of testing whether it is applicable, make the cost of the algorithm to query compilation more than it is
worth for a general-purpose middleware. In [WHRB98], we examine several variants of the algorithm that
might increase its applicability. One variant is fully general, allowing the algorithm to be used for any query;
however, the applicability comes at the expense of losing all guarantees about performance. A potentially
more interesting variation allows more efficiency for key-based joins, when certain hashing functions can be
found. Overall, however, a widely applicable and efficient algorithm for merging ranked results in the general

middleware environment remains to be found.
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8 Conclusions

We have described the implementation of Fagin’s algorithm for merging ordered streams of ranked results
in Garlic, a typical multimedia middleware system. We presented an incremental implementation of the
algorithm which can be used even when there is no STOP AFTER clause in situations where the user is
likely to stop before viewing all the data she has requested. We also showed that the algorithm can be
applied to only a limited set of queries in the middleware environment, due to the lack of common object
identifiers and the need for random access. However, for those queries to which the algorithm can be applied,
1t 1s often the best performing algorithm for a wide range of values of k.

Though Fagin’s algorithm may not be ideally suited to the middleware environment that we consider,
we believe the performance results presented in Section 7 prove that it should be seriously considered for
implementation in any multimedia data source that needs to be able to apply multiple ranking predicates
on a single collection of data. This would apply to many content-based search engines available today. Such
systems will typically meet the conditions on which Fagin’s algorithm depends.

Merging ordered streams of ranked results from different sources in multimedia middleware remains an
important problem. In the future, we plan to explore some of the generalizations presented in this paper, as
well as other algorithms for this problem. It is particularly important to find a good algorithm for handling
the case in which the two streams share a common (non-OID) key (e.g., Query Q5), as this is a common

case for the sorts of legacy systems that Garlic integrates.
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