n-Dimensional Index Structures

Tecnologie delle Basi di Dati M
Multi-dimensional queries

- As we saw, B⁺-tree is able to solve queries involving multiple attributes
- Which queries are solvable by exploiting a multi-attribute index?
- The query evaluation is efficient enough?
Types of n-dimensional queries

- \(A_1 = v_1, A_2 = v_2, ... , A_n = v_n \) (point query)
- \(l_1 \leq A_1 \leq h_1, l_2 \leq A_2 \leq h_2, ... , l_n \leq A_n \leq h_n \) (window query)
- \(A_1 \approx v_1, A_2 \approx v_2, ... , A_n \approx v_n \) (nearest neighbor query)
- What if the data “value” is not a point?
Examples of use

- Geographic/Spatial Information Systems
 - Coordinates of points
 - Places, cities
 - Objects with extension
 - Regions, streets, rivers

- Multimedia Databases
 - Content-Based Retrieval
 - Representing content by way of numerical characteristics (features)
 - Similarity of content is assessed by evaluating similarity of features

- ...
Using B^+-tree

- Suppose we have a window query on 2 attributes (A,B)
 - Every interval represents 10% of the total
 - We expect to retrieve 1% of data
- Possible solutions:
 - 1 bi-dimensional B^+-tree (A,B)
 - 2 mono-dimensional B^+-trees (A),(B)
1 bi-dimensional B^+-tree (A,B)

- Leaf capacity = 3 records
2 mono-dimensional B\(^+\)-trees

- In this case we access **20%** of data
B⁺-tree efficiency

- In both cases, too much wasted work
- The reason is that points which are close in space are stored in distant leaves
 - In the first case, by the “linearization” of attributes
 - In the other case, by ignoring the other attribute
- Multi-dimensional (spatial) indices try to maintain the spatial proximity of records
Spatial indexing

- Issue emerged in the ‘70s due to the insurgence of 2/3-D problems
 - Cartography
 - Geographic Information Systems
 - VLSI
 - CAD

- Recovered in the ‘90s to solve problems posed by new applications
 - Multimedia DBs
 - Data mining
Spatial indices: different approaches

- Derived by 1-D structures
 - k-d-B-tree, EXCELL, Grid file
- Mapping from n-D to 1-D
 - Z-order, Gray-order
- Ad-hoc structures
 - R-tree, R*-tree, X-tree, ...
- In total: hundreds of data structures
Spatial indices: classification

- **Type of objects**
 - For points (records cannot have a spatial extension)
 - For regions

- **Type of subdivision**
 - On the space (splits are performed according to global considerations, à la linear hashing)
 - Good for uniform distributions, simple to implement
 - On the objects (splits are performed according to local considerations, à la B-tree)
 - Good for arbitrary distributions, hard to implement

- **Type of organization**
 - Tree-/hash-based
Spatial indices: general considerations

- **Fundamental requirement** (*Local Order Preservation*)
 - Group objects (points) in pages, guaranteeing that each page contains objects which are “close” in the n-D space
 - This prevents the use of hash functions, which are not order-preserving
 - The problem is not trivial, since in n-D a global order is not defined (does this sound familiar?)
 - In any case, some solutions define an order in n-D (à-la B+-tree)

- **General approach**
 - The space is organized in regions (or cells)
 - Each cell is mapped (not always 1-1) to a page
k-d-tree (Bentley, 1975)

- It is a main-memory structure
 - Non paged
 - Non balanced (any problem?)

- Binary search tree
 - Each level is (cyclic) tagged with one of the n coordinates
 - Every node contains a separator, given by the median value of the interval that is being splitted
k-d-tree: example

- Suppose that each leaf can accommodate up to 3 objects.
We visit all branches overlapped with the query
k-d-tree: considerations

- During insertion, we search for the leaf where the new object should be inserted
 - If this is full: split (downward)
- The tree is not balanced
 - It should be periodically re-organized
- Deletions are extremely complicated
- Several variants which manage separators in different ways, e.g.:
 - BSP-tree uses arbitrary hyperplanes (non-parallel to axes)
 - VAMsplit kd-tree chooses the “best” split coordinate at each node, as the one with maximum variance
k-d-B-tree (Robinson, 1981)

- Paged version of k-d-tree
- The resulting structures resembles a B^+-tree
- Each node (page) corresponds to a (hyper-)rectangular region (box, brick) of the space, obtained as the union of children regions
- Internally, nodes are managed as k-d-trees
 - The “size” of the tree depends on the capacity of a page
k-d-B-tree: example
k-d-B-tree: node overflow

- If an index node (region) overflows, the situation is much complex than in B-tree
- E.g.: split of data block E
 - We partition E, then A, and finally the root
k-d-B-tree: split

- A balanced re-distribution is not always possible
- No lower bound on memory usage (~50-70%)
 - In the example, was partitioned into A and A' according to the first separator
- Robinson algorithm
 - We consider an hyperplane splitting nodes in a balanced way
 - Splits are propagated downward (to descendant nodes)
k-d-B-tree: Robinson algorithm

- The A region is split into A’ and A’’
 - D is split into D and D’
hB-tree (Lomet & Salzberg, 1990)

- Variant of k-d-B-tree
- Regions can contain “holes” (hB = “holey brick”)
- Positive effects:
 - Split of a data block: we can guarantee that, in the worst case, data are partitioned according to a 2:1 ratio (2/3 in one block and 1/3 in the other one)
 - Split of an index node: we obtain a balanced split (and thus a lower bound to the memory usage) without propagating splits to the descendant nodes
hB-tree: split of a data page

- As in k-d-B-tree, each node is internally organized as a k-d-tree
- The difference here is that a node can be “referenced” by multiple separations
Suppose that each page can contain up to 7 nodes

The root overflows
hB-tree: split example (ii)

Root node

Node N'

Node N''

“external”

Node N'
EXCELL (Tamminen, 1982)

- Uses a hash-based directory, regular grid in n dimensions
 - Each directory cell corresponds to a data page, but the converse is not necessarily true
 - The address of a cell is formed by interleaving coordinates bits
- Extends extendible hashing to multiple dimensions
EXCELL: example

- When a data page overflows, it is split and, for the directory, we can have one of two cases
 - If the block was referenced by two (or more) cells, we only update pointers
 - Otherwise, the directory is doubled, by using an additional bit
EXCELL: split (i)

- First case: A overflows and is split into A and F
- It is sufficient to update the pointer in cell 001
Second case: C overflows and is split into C and G
We have to double the directory using an additional bit for coordinate B
EXCELL: considerations

- The same arguments used for extendible hashing apply here
- Doubling the directory is sometimes not enough to solve the overflow of a bucket (why?)
- It works well for uniform distribution of data
Grid file (Nievergelt et al., 1984)

- Generalizes EXCELL, allowing to define arbitrarily sized intervals
 - To this aim, d scales are required, containing values used as separators for each dimension
- In case of intervals defined by way of a binary partitioning, scales are analogous to the directory of dynamic hashing
When a data page overflows, it is split and, for the directory, we can have one of two cases:

- If the block was referenced by two (or more) cells, we only update pointers.
- Otherwise, we add a separator to the directory.
Grid file: split (i)

- First case: C overflows and is split into C and F
- It is sufficient to update the pointer of the cell

Directory

Data blocks
Second case: D overflows and is split into D and G

We have to augment the directory using an additional separation, for example for coordinate A

Grid file: split (ii)
Grid file: considerations

- In case of non-uniform distributions, storing N points could require a number of cells which grows like $O(N^d)$
- On the other hand, the regular structure of space partitioning greatly simplifies the resolution of window queries
- Main problem: directory management
 - Usually, scales are stored in main memory
 - In (quasi-)static cases, the directory can be stored on disk as a multi-dimensional array
 - In dynamic cases, it is necessary to paginate the directory, leading to multi-level grid files
Mono-dimensional sorting

- We try to “linearize” the n-dimensional space so as to be able to exploit a mono-dimensional index, like the B^+-tree
- We obtain so-called “space-filling curves”
- Local Order Preservation requirement
 - Points which are “close” in the n-D space should also be close in the linearization
Examples of curves (i)

- Z-order

- Peano-Hilbert
Examples of curves (ii)

- Gray-order
- Lexicographic order
Space-filling curves: considerations

- As it is clear, no curve satisfies the local order preservation requirement
- Solving window queries is therefore plagued by the same problems seen for multi-attribute B⁺-tree
 - Can we see analogies/equivalencies?
- Nearest neighbor search is further complicated...
R-tree (Guttman, 1984)

- **Balanced and paginated** tree-shaped structure, based on the hierarchical nesting of overlapping regions.
- Each node corresponds to a **rectangular region**, defined as the MBB containing all children regions.
- Storage utilization for each node varies from 100% to a minimum value (≤ 50%) which is a design parameter of R-tree.
- Management mechanisms similar to those of B\(^+\)-tree, with the main difference that insertion of an object and possible splits can be managed according to different policies.
R-tree: concept of MBB

- MBB = Minimum Bounding Box
 - The smallest rectangle, with sides parallel to coordinate axes, containing all children regions
 - It is defined as the product of n intervals
R-tree: definition of MBB (i)

- How many vertices has a n-dimensional (hyper-)rectangle? 2^n
- In order to define a (hyper-)rectangle we should specify the coordinates of all its vertices.
- Moreover, the algorithm for computing the smallest (hyper-)rectangle containing a set of N points has a complexity:
 - $O(N^2)$ in 2-dim
 - $O(N^3)$ in 3-dim
 - No algorithm is known for dim > 3
R-tree: definition of MBB (ii)

- How many values are required for defining a box? 2n
 - It is sufficient to provide the coordinates of two any opposite vertices

- What is the complexity of the algorithm for computing the MBB for a set of N points? O(N)
 - It is sufficient to find the minimum and maximum value for each coordinate
R-tree: comparison with B⁺-tree

B⁺-tree
- Balanced and paginated tree
- Data are stored in leaves
- Leaves are kept sorted
- Data are organized into 1-D intervals
 - Intervals do not overlap
- This principle is recursively applied towards the root
- Point search follows a single path from root to a single leaf

R-tree
- Balanced and paginated tree
- Data are stored in leaves
- No data order exist
- Data are organized into n-D intervals (MBB)
 - Intervals do overlap (characteristic of n-D space)
- This principle is recursively applied towards the root
- Point search could follow multiple paths from root to multiple leaves
R-tree: organization
R-tree: characteristics (i)

- **Leaf nodes**
 - Contain entries with the form \((\text{key}, \text{RID})\), where \text{key} stores the record coordinates
 - Actually, R-tree could also store n-dim objects with a spatial extension, with \text{key}=\text{MBB}

- **Internal nodes**
 - Contain entries with the form \((\text{MBB}, \text{PID})\), where \text{MBB} stores the coordinates of the MBB containing children entries

- **Overall, each node contains entries with the form \((\text{key}, \text{ptr})\), where \text{key} is a “spatial” value**
R-tree: characteristics (ii)

- Each node contains a number m of entries which can vary between c and C
 - $c \leq C/2$ is a storage utilization parameter
 - C depends on n and the page size
- As usual, the root can violate the minimum utilization constraint and contain only two entries
R-tree: search (window query)

- We have to retrieve all points included into a product of n intervals (that is, a box)
- Such points could only be found in nodes whose MBB overlaps with the query region
- E.g.: node N' cannot contain records satisfying the query
R-tree: search example
R-tree: search algorithm

- **Consistent(E,q)**
 - **Input:** Entry \(E=(p,\text{ptr}) \) and search predicate \(q \)
 - **Output:** if \(p \) & \(q \) == false then false else true

- Both \(p \) and \(q \) are (hyper-)rectangles

- **Consistent** returns true if and only if \(p \) and \(q \) have non-null overlap
 - **Consistent** is oblivious to the “shape” of \(q \)
 - Could also be used for different queries (range, NN)

- It follows that the search can follow multiple paths within the tree
R-tree: construction algorithms

- We need to specify **key methods** Union, (Compress, Decompress,) Penalty, and PickSplit
- Different “variants” of R-tree exist, each differing from the others on how such choices are implemented
- We will see the implementation of the original R-tree and will discuss some variants
 - One of the most common is R*-tree (Beckmann et al., 1990)
R-tree: Union

- **Union(P)**
 - **Input:** Set of entries \(P = \{(p_1, ptr_1), ..., (p_n, ptr_n)\} \)
 - **Output:** A predicate \(r \) holding for all tuples reachable through one of the entries’ pointers

- Both \(r \) and \(p_j \)s are (hyper-)rectangles
- We return the MBB containing all \(p_j \)s
- It is sufficient to compute the minimum and maximum value on each coordinate
R-tree: Penalty (i)

- **Penalty**(E_1, E_2)
 - **Input:** Entries $E_1 = (p_1, ptr_1)$ and $E_2 = (p_2, ptr_2)$
 - **Output:** A “penalty” value resulting from inserting E_2 into the sub-tree rooted at E_1

- What is the best way to insert a point?
R-tree: Penalty (ii)

- If \(p \) is contained in \(E_1 \), the penalty is 0
- Otherwise, the penalty is given by the increment of volume (area) of the MBB
 - However, if we are in a leaf, R*-tree considers the increment of intersection with other entries
- Both criteria aim to obtain a tree with better performance:
 - Large volume: the chance of visiting the node during a query increases
 - Large overlap: the number of nodes visited during a query increases
R-tree: Picksplit (i)

- **PickSplit(P)**
 - **Input:** Set of \(d \times (C+1) \) entries
 - **Output:** two sets of entries, \(P_1 \) and \(P_2 \), with cardinality \(\geq c \)

C = 16

\(c = 6 \)
R-tree: Picksplit (ii)

- Search for a split **minimizing the sum of volumes** of the two nodes
 - Unfortunately, it is a NP-hard problem, thus we use heuristics
- Things get worse in upper nodes
 - In particular, an overlap-free split is not guaranteed

![Diagram of R-tree nodes and splits](image)
R-tree: Picksplit (iii)

- The criterion adopted by R*-tree is more complicated and considers both nodes volume and perimeter and their overlap
- Moreover, R*-tree supports re-distribution in both overflow and underflow
 - All such choices are implemented through heuristics, since their efficiency is validated only experimentally
 - We obtain (slight) performance improvements for insertion, search, and storage utilization