
31

Efficient Sort-Based Skyline Evaluation

ILARIA BARTOLINI, PAOLO CIACCIA, and MARCO PATELLA

Alma Mater Studiorum—Università di Bologna

Skyline queries compute the set of Pareto-optimal tuples in a relation, that is, those tuples that

are not dominated by any other tuple in the same relation. Although several algorithms have

been proposed for efficiently evaluating skyline queries, they either necessitate the relation to

have been indexed or have to perform the dominance tests on all the tuples in order to determine

the result. In this article we introduce SaLSa, a novel skyline algorithm that exploits the idea of

presorting the input data so as to effectively limit the number of tuples to be read and compared.

This makes SaLSa also attractive when skyline queries are executed on top of systems that do not

understand skyline semantics, or when the skyline logic runs on clients with limited power and/or

bandwidth. We prove that, if one considers symmetric sorting functions, the number of tuples to

be read is minimized by sorting data according to a “minimum coordinate,” minC, criterion, and

that performance can be further improved if data distribution is known and an asymmetric sorting

function is used. Experimental results obtained on synthetic and real datasets show that SaLSa
consistently outperforms state-of-the-art sequential skyline algorithms and that its performance

can be accurately predicted.

Categories and Subject Descriptors: H.2.4 [Database Management]: Systems—Query processing

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Skyline query, Monotone functions

ACM Reference Format:
Bartolini, I., Ciaccia, P., and Patella, M. 2008. Efficient sort-based skyline evaluation. ACM

Trans. Datab. Syst. 33, 4, Article 31 (November 2008), 49 pages. DOI = 10.1145/1412331.1412343.

http://doi.acm.org/10.1145/1412331.1412343

1. INTRODUCTION

Skyline queries are a popular and powerful paradigm for extracting interesting
objects from a multidimensional dataset. Given a set r of d-dimensional objects
(or points), the skyline of r is the set of Pareto-optimal, or undominated, points
in r. According to the Pareto principle, a point p dominates point pi if p is at
least as good as pi on all the attributes of interest, and strictly better than pi
on at least one attribute.

Authors’ address: Alma Mater Studiorum, Università di Bologna, DEIS, Viale Risorgimento, 2 -

40136, Bologna, Italy; email: {i.bartolini, paolo.ciaccia, marco.patella}@unibo.it.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2008 ACM 0362-5915/2008/11-ART31 $5.00 DOI 10.1145/1412331.1412343 http://doi.acm.org/

10.1145/1412331.1412343

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 31, Publication date: November 2008.

31:2 • I. Bartolini et al.

Fig. 1. (a) An instance of the UsedCars relation, and (b) its skyline over attributes Price and

Mileage.

Example 1. Consider the relation UsedCars(CarID, Price, Mileage, . . .)
and the instance shown in Figure 1(a). A skyline query over the attributes
Price and Mileage (both to be minimized) will return cars C1, C2, and C4, as
also shown in Figure 1(b). For instance, C1 dominates C3, since the two cars
have the same price but C1 has a lower mileage.

Skyline queries are a specific, yet relevant, example of preference
queries [Chomicki 2003; Kießling 2002], and have been recognized as a use-
ful and practical way to make database systems more flexible in support-
ing user requirements [Chaudhuri et al. 2006]. This has motivated the de-
velopment of many algorithms for the efficient skyline evaluation on large
datasets [Börzsönyi et al. 2001; Chomicki et al. 2003; Papadias et al. 2003;
Godfrey et al. 2005]. Skyline algorithms, which we review in Section 2, can be
broadly classified into two categories, depending on whether or not they con-
sider that data are preprocessed. The first category, which includes all index-
based methods, intuitively leads to superior performance, yet its applicability
is limited by the necessity to have an indexed dataset. Generic (or sequential)
skyline algorithms, on the other hand, do not require any preprocessing step
and therefore can be applied to any input relation. The obvious problem with
sequential algorithms is that they have to scan all the input data to compute
the skyline. Nonetheless, as argued by Godfrey et al. [2005], designing a good
sequential skyline algorithm is far from easy, since many factors, besides input
scan, can ultimately affect the performance. Among these, it is the observation
that computing a skyline is a CPU-intensive task, since many comparisons
among points might be needed to determine the result.

In this article we consider the problem of sequential skyline evaluation
and introduce a novel algorithm, called SaLSa (for Sort and Limit Skyline
algorithm), which differs from other generic algorithms in that it consistently
limits the number of points on which dominance tests need to be executed. The
design of SaLSa is based on two key concepts: first, a sorting step of the input
data and, second, the observation that, for suitably chosen sorting functions, it
is indeed possible to compute the skyline by looking only at a (hopefully small)

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 31, Publication date: November 2008.

Efficient Sort-Based Skyline Evaluation • 31:3

prefix of the sorted input stream. While the idea of presorting is not new, since it
is at the heart of the SFS algorithm by Chomicki et al. [2003], in that algorithm
it was mainly advocated as a way to bring in the first positions those points
that are likely to dominate many other points, thus leading to a reduction in
the number of dominance tests. On the other hand, sorting data in SaLSa is
mainly used as a means to stop fetching points from the input stream. In other
terms, SaLSa relies on sorting functions that can guarantee that all points be-
yond a certain level in the input stream are dominated by some already seen
point, which we conveniently call the stop point.

The limiting behavior of SaLSa makes it an ideal candidate when data
are managed by a system that does not support skyline queries (e.g., current
database servers and web data sources) and communication costs can therefore
become a dominant cost factor. In scenarios like these, a nonlimiting algorithm
running on the client side will be forced to fetch from the underlying data
source all the data in the target relation. For instance, evaluating the query in
Example 1 would require all the (presumably many) cars managed by the server
to be transmitted to the client. It is evident that this strategy, no matter how
smart the skyline algorithm is, will pay an excessive communication overhead,
which is particularly true for clients with a limited bandwidth connection. In
a situation like this, SaLSa would exploit the capability of the server to sort
tuples and then would correctly determine the skyline by fetching only part of
the whole dataset.

Example 2. Consider a wireless client (e.g., a PDA) connected to a server
through an 802.11b network, in which the effective data transfer rate is 1Mb/sec
(1 Megabit per second).1 The client issues a three-dimensional skyline query
over the NBA dataset, which consists of 17, 791 points, each of 100 bytes.2 Just
shipping all the points to the client would require about 13.6 seconds. For this
query SaLSa is able to determine the 10 points in the skyline by reading only
3, 783 tuples, thus saving 79% of the transfer cost, i.e., about 10.7 seconds. Note
that state-of-the-art algorithms can compute this skyline in less than 1 second,
that is one order of magnitude faster.

This article is a substantially extended and revised version of Bartolini et al.
[2006], in which the basic SaLSa concepts were introduced. Here we provide
a more rigorous analysis of sorting functions and formally demonstrate that
ordering points based on their minimum coordinate (minC) value is the optimal
choice if one considers symmetric functions. We also introduce a novel variant
of the minC function that aims to reduce the number of dominance tests. For
the case of symmetric sorting functions, we present an original analytical cost
model for predicting the number of points that the algorithm will have to fetch
to compute the result, and show how the model can be applied when data dis-
tribution is represented through a multidimensional histogram. We then move
on to consider the case in which an asymmetric function is used to sort points,

1The nominal 802.11b bandwidth is 11Mb/sec, but this assumes no traffic at all in the network. An

effective 1Mb/sec transfer rate is a realistic estimate for the case of moderate traffic.
2This and all other datasets used in our experiments are described in Section 7.

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 31, Publication date: November 2008.

31:4 • I. Bartolini et al.

and introduce a sorting function, called �minCopt, that is provably optimal over
all sorting functions and for all input relations. Since �minCopt has a purely
theoretical interest, being based on detailed information that cannot be avail-
able in realistic scenarios, we show how histograms can be exploited to choose,
on-the-fly, a good asymmetric function to use for a given dataset. An analyti-
cal model that provides a limit to SaLSa performance completes our investi-
gation on asymmetric functions. The experimental results we obtain on both
synthetic and real datasets confirm that SaLSa is indeed highly effective in lim-
iting the number of points to be read, and that the model’s estimates are highly
accurate.

The rest of the article is organized as follows. In Section 2, we review the
semantics of a skyline query and algorithms for its evaluation. Section 3 in-
troduces the SaLSa algorithm, and Section 4 analyzes in detail specific sorting
functions. Section 5 presents the analytical cost model for predicting SaLSa per-
formance. In Section 6, we consider the case of asymmetric sorting functions
and prove a basic fact about the optimal theoretical performance of SaLSa.
Section 7 presents experimental results. Before concluding, in Section 8 we de-
tail how the basic principles of SaLSa can be extended so as to use multiple
stop points, rather than a single one.

Some of the proofs in the article are included in the Electronic Appendix that
is accessible in the ACM Digital Library.

2. SKYLINE ALGORITHMS

This section reviews the definition of skyline and existing algorithms for its
evaluation.

Let R(A1, . . . , Ad) be a relation schema, and let dom(Aj) be the domain of
attribute Aj . Further, let D = dom(A1) × · · · × dom(Ad). In this article, we
assume that each domain dom(Aj) is linearly ordered. A relation r over R is
a set of n tuples, or d-dimensional points, from D, that is, r = {p1, . . . , pn},
where pi = (pi[1], . . . , pi[d]), and pi[j] denotes the value of attribute Aj in pi,
that is pi[j] ≡ pi.Aj . In the following, the terms tuple and point will be used
interchangeably.

Definition 1. Without loss of generality, assume that on each attribute
lower values are better. Then, point p dominates point pi, written p � pi,
if and only if the following holds:

p � pi ⇔
(

d∧
j=1

p[j] ≤ pi[j]

)
∧

(
d∨

j=1

p[j] < pi[j]

)
. (1)

The skyline S(r) of r is the subset of points in r that are undominated, or Pareto-
optimal:3

S(r) = {p ∈ r :	 ∃pi ∈ r : pi � p}. (2)

3For simplicity, we consider that all attributes are involved in the skyline. Generalization to the

case where R also includes nonskyline attributes is immediate.

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 31, Publication date: November 2008.

Efficient Sort-Based Skyline Evaluation • 31:5

Thus a point p belongs to the skyline of r if and only if there is no other point
pi ∈ r that is not worse than p on all attributes (or coordinates) and strictly
better than p on at least one attribute.

Computing the skyline is equivalent to determining the maxima of a set
of vectors, a well-known problem in computational geometry [Preparata and
Shamos 1985]. However, algorithms developed in that field, and based on a
divide and conquer approach, cannot be directly applied in a database sce-
nario, since they do not take into account main memory limitations that pre-
vent the whole dataset being loaded before the actual skyline computation
starts. This was observed in [Börzsönyi et al. 2001], where a divide and con-
quer algorithm, D&C, adapted to work with external memory was proposed.
However, a recent analysis by Godfrey et al. [2005] shows that the average per-
formance of D&C deteriorates with increasing dimensionality, d . As Godfrey
et al. [2005] argue, the problem with divide and conquer algorithms is that,
if the dataset gets partitioned into smaller parts and local skylines are com-
puted for each of them, the chance of early discarding nonskyline points re-
duces. This is because, if the size of the skyline is a sublinear function of
the dataset size (it is �((ln n)d−1/(d − 1)!) when attributes are independent
of each other [Buchta 1989; Godfrey 2004]), then the relative size of the skyline
grows in smaller datasets (and consequently the number of dominated points
diminishes).

Börzsönyi et al. [2001] introduced another algorithm, called Block Nested
Loops (BNL), for sequential skyline evaluation. BNL allocates in main memory
a window W and sequentially scans the input relation. When a point p is read,
it is compared to points in W . If p is dominated by a point in W , then p is
discarded, otherwise p is inserted in W . If p dominates some points in W ,
these are removed from W . In case the window saturates, a temporary file is
used to store points that cannot be placed in W . This file is used as the input
to the next pass. Eventually the algorithm terminates, since at the end of each
pass the size of the temporary file can only decrease.

The SFS (Sort Filter Skyline) algorithm by Chomicki et al. [2003] improves
over BNL by first sorting the input data using a monotone function M. This
guarantees that ifM(p) ≤ M(pi), then pi will not dominate p, written pi 	� p. In
other terms, using a monotone function corresponds to performing a topological
sort with respect to the Pareto dominance criterion. Similarly to BNL, SFS keeps
in W the undominated points seen so far. However, the monotonicity of M now
guarantees that in the filter phase a new point pi will never dominate an already
seen point p, thus a point will never be dropped from the window. This leads
to three major improvements with respect to BNL: 1) The management of W
largely simplifies, 2) points in the skyline can be progressively returned without
having to wait for all the input to be read, and 3) the number of passes of the
filter phase is optimal, that is, �|S|/|W |�. From the last observation it follows
that, even for moderately large skylines, SFS will likely complete in a single
pass. Experimental results in Chomicki et al. [2003] indeed show that SFS
runs (much) faster than BNL, and that it executes fewer dominance tests. In
particular, this is achieved by sorting data using their volume or, equivalently,
their entropy (see Section 4 for details).

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 31, Publication date: November 2008.

31:6 • I. Bartolini et al.

LESS [Godfrey et al. 2005] is an improvement of SFS that integrates, in
the first step of a standard external sort-merge algorithm, an elimination-filter
window, so as to earlier discard some dominated tuples. Further, LESS com-
bines the last merge pass of the sorting algorithm with the first skyline-filter
pass.

These algorithms are generic, in the sense that they do not require any
specialized access structure to compute the skyline and can therefore be ap-
plied even when r is the result of some other operation (e.g., a selection on a
nonskyline attribute or a join). On the other hand, algorithms like NN [Koss-
mann et al. 2002], BBS [Papadias et al. 2003], and Index [Tan et al. 2001],
which rely on the existence of an index over the dataset, or Bitmap [Tan et al.
2001], which encodes all points’ coordinates using a bitmap structure, can only
be applied to stored relations.

Finally, it is worth mentioning skyline algorithms based on a distributed ac-
cess model [Balke et al. 2004; Bartolini et al. 2004; Bartolini et al. 2007]. Such
algorithms work by querying d independent subsystems. Each subsystem is
in charge of a specific skyline attribute and is able to return objects ordered
according to the preference on that attribute (e.g., minimize the price). By iter-
ating on the streams of incoming results, objects that are returned by at least
one subsystem are candidates to be part of the skyline. Missing attribute val-
ues for candidate objects, needed to perform the dominance tests, are obtained
through random accesses to the subsystems using object identifiers. Finally,
each algorithm exploits a specific stopping condition to terminate the search,
so as to avoid a full scan of the d streams.

3. THE SALSA ALGORITHM

The algorithm we introduce, called SaLSa, is a generic skyline algorithm that
builds on the basic idea that, if the input relation r is sorted according to a
suitably chosen monotone function, then it is possible to determine the skyline
of r without applying the skyline filter to all the points. In general, this might
drastically reduce the number of points to be read and, depending on the spe-
cific instance and sorting function, it might reduce the number of dominance
tests as well. Since SaLSa shares with SFS the idea of presorting the input
relation, it also keeps all the SFS strengths: simplified management of the win-
dow, incremental delivery of results, and optimal number of passes of the filter
phase.

In the following, we describe how SaLSa works when a single pass is sufficient
to complete the evaluation, that is, the skyline of r fits into main memory.
Extension to the case where the skyline size exceeds the available main memory
is managed as in BNL and SFS, and not reported here.

SaLSa, whose general logic is described in Algorithm 1, takes as input a
stream of points r that has been sorted using a monotone function M, that is,
a function such that M(p) ≤ M(pi) implies pi 	� p. The specific choice of M
does not influence the correctness of SaLSa but only its performance, as will be
extensively discussed in the following. Denote with u the suffix of r that, at any
given step, has not been processed yet by SaLSa. Each time a new point p is

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 31, Publication date: November 2008.

Efficient Sort-Based Skyline Evaluation • 31:7

Algorithm 1. SaLSa[M]

Input: input stream r sorted using a monotone function M
Output: the skyline S(r) of r

1: S ← ∅, stop ← false, pstop ← undefined, u ← r
2: while not stop ∧ u 	= ∅ do
3: p ← get next point from u, u ← u \ {p}
4: if S 	� p then S ← S ∪ {p}, update pstop
5: if pstop � u then stop ← true
6: return S

read from u, p is compared against the current skyline S. If none of the points
in S dominates p (i.e., S 	� p), p is inserted into S. This might possibly trigger
the update of the so-called stop point, pstop (step 4). At step 5 SaLSa checks if
it has gained sufficient evidence to conclude that no further point in u can be
part of the skyline, that is, all points in u are dominated by pstop (pstop � u). If
this is so, the algorithm can correctly terminate, returning S as result.

Two factors ultimately determine the actual performance of SaLSa: the
choice of the sorting function, and the strategy for choosing the stop point.
Before analyzing both issues, we introduce some basic terminology.

Assume that during the execution of SaLSa the last point p read so far has
value M(p) = l . We say that M is at level l after having read p, and denote
with u(M, l) the set of unread points at this stage of the execution. Note that
M(pi) ≥ l holds for each pi ∈ u(M, l). To safely stop the execution, one should
guarantee that pstop � pi holds for all such points. This is actually done in
SaLSa by considering the unread domain at level l , defined as:

D(M, l) = {pi ∈ D : M(pi) ≥ l }. (3)

Clearly, it is u(M, l) ⊆ D(M, l). Note that D(M, l), unlike u(M, l), does not
depend on the specific input relation r. Then, SaLSa can safely stop if and only
if the following is true:

∀pi ∈ D(M, l) : pstop � pi. (4)

We denote with lstop(M) the level at which SaLSa eventually halts, also called
the stop level of M. Similarly, ustop(M) and Dstop(M) are the values of u(M, l)
and D(M, l), respectively, when the algorithm terminates.

Example 3. Consider the UsedCars relation introduced in Example 1, and
assume that points are ordered by using the sum of their Price and Mileage
values, M(p) = p.Price + p.Mileage. The first point to be read is car C1, which
is at level l = 25 + 10 = 35. At this stage of execution the unread domain
corresponds to the shaded region in Figure 2(a). Figure 2(b) shows the unread
domain after the last skyline point, C2, has been read, whose level is l = 20 +
30 = 50.

Clearly, although SaLSa can be applied with any monotone function, only
limiting sorting functions are worth considering. We say that function M limits

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 31, Publication date: November 2008.

31:8 • I. Bartolini et al.

Fig. 2. Points are sorted using the function M(p) = p.Price+p.Mileage. The shaded region is the

unread domain after points C1 (a) and C2 (b) have been read, respectively.

a relation r when ustop(M) 	= ∅, and that M is limiting if there exists at least a
relation r for which ustop(M) is not empty. Note that this is the same as saying
that Dstop(M) is not always empty.

We start by focusing on a well-defined class of functions that exhibit the key
property of symmetry. Section 6 extends the analysis to also include asymmetric
functions.

Definition 2. A function M on d variables is symmetric if and only if
M(x1, . . . , xd) = M(xπ (1), . . . , xπ (d)) for any permutation π of {1, . . . , d }, that
is, the value of M is invariant under any rearrangement of its variables.

Intuitively, a symmetric function M does not privilege any attribute over the
others. This seems to be a very natural requirement if one usesM for computing
the skyline, since by definition all skyline attributes are equally important.

3.1 Stopping SaLSa Execution

A key factor affecting the performance of SaLSa is the choice of the stop point,
pstop. In turn, this is tightly related to how the stop condition, as expressed by
Equation 4, can be effectively checked. In order to avoid unnecessary compli-
cations, in the sequel we will consider that attributes’ values are normalized,
namely for all j it is dom(Aj) = [0, 1]. We will deviate from this assumption
only to illustrate how our results apply to the UsedCars relation, that will be
used as a driving example throughout the article.

We start with a basic fact about symmetric monotone functions.

LEMMA 1. Let M be a symmetric monotone function and l be any value of
M. Define Low to be the minimum value such that M(Low, 1, 1, . . . , 1) ≥ l holds.
If no such finite Low exists, then set Low = 0. Then, there is no point p for
which both the following are true: 1) M(p) ≥ l , and 2) there exists j such that
p[j] < Low.

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 31, Publication date: November 2008.

Efficient Sort-Based Skyline Evaluation • 31:9

Fig. 3. Illustrations of Lemma 1 (a) and Theorem 1 (b). See Examples 4 and 5 for details, respec-

tively.

PROOF. Clearly, the result applies when Low = 0, since for all j it is
dom(Aj) = [0, 1]. When Low > 0, assume that 2) holds. Since M is symmetric,
it is possible to arbitrarily choose the attribute Aj for which it is p[j] < Low.
Then, let j = 1, and consider the point p′ = (p[1], 1, 1, . . . , 1), that is,
p′[1] = p[1] < Low and, for all j 	= 1, it is p′[j] ≥ p[j]. By monotonicity of
M, it is M(p′) ≥ M(p), where equality can only occur if p′ = p. If M(p) ≥ l
also holds, it is therefore M(p′) ≥ l . This contradicts the hypothesis that Low
is the minimum value such that M(Low, 1, 1, . . . , 1) ≥ l holds.

Intuitively, this lemma says that for all symmetric monotone functions,
D(M, l) is included in the hypercube whose opposite vertices are the points
(Low, . . . , Low) and 1 = (1, . . . , 1), where Low is as in the lemma definition.

Example 4. Assume that both Price and Mileage attributes have values in
the range [0, 50] and that the symmetric function used to sort the UsedCars
relation is M(p) = p.Price+p.Mileage. After point C5 has been read, the level
of this function is l = 25 + 45 = 70. The minimum value of Low such that
M(Low, 50) ≥ 70 is Low = 20. Thus, according to Lemma 1, all points that
SaLSa will read after C5 will lie in the hypercube (drawn with a dashed line in
Figure 3(a)) whose opposite vertices are the points (20, 20) and (50, 50).

Lemma 1 provides an effective way to determine when SaLSa can be stopped.
In the following, we denote with p+ = max j {p[j]} the maximum coordinate
value of a point p.

THEOREM 1. Let M be any symmetric monotone function, and assume M
reaches level l at a certain stage of the execution. Let Low be defined as in
Lemma 1. Then, SaLSa can be stopped if and only if the maximum coordinate
value of the stop point pstop satisfies p+

stop ≤ Low. Only if pstop[j] = p+
stop holds

for all j , then SaLSa should also read all (if any) pstop’s duplicates.

PROOF. (If) From Lemma 1 we know that no point p, such that M(p) ≥ l ,
has an attribute value lower than Low. This is sufficient to conclude that either
p is dominated by pstop or p = pstop.

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 31, Publication date: November 2008.

31:10 • I. Bartolini et al.

Fig. 4. Illustration of the proof of Theorem 2. The sorting function is M(pi) = pi .A1 + pi .A2.

(Only if) Assume that SaLSa is halted when p+
stop > Low. Let Aj be any attribute

such that pstop[j] = p+
stop. Lemma 1 says that the unread domain at level l

includes a point p such that p[j] = Low, thus p is not dominated by pstop.

This theorem shows how SaLSa can be stopped just by looking at the level of
the function M and at the current stop point. Further, it immediately leads to
a simple rule for optimally choosing the stop point, which is independent of the
specific function used to sort the points. We first define in which sense a rule
for choosing the stop point is optimal.

Definition 3. Given a monotone function M, a rule for choosing the stop
point is optimal for M if and only if, for any relation r, there is no other rule
that allows SaLSa to stop earlier when points are ordered using M.

THEOREM 2. The following MiniMax rule for choosing the stop point is opti-
mal for any symmetric monotone function M:

pstop = arg min
pi∈S

{p+
i }. (5)

PROOF. Consider another rule that eventually chooses as stop point pbad ∈
S, such that p+

bad > p+
stop, where pstop is as in Equation 5. From Theorem 1

we have that if SaLSa stops at level l with pbad , then so it does with pstop.
Further, for any limiting function M, we can show that there exists a relation
r on which SaLSa, using pstop, reads strictly fewer points than when using
pbad . The relation includes four points: pstop, pbad , p, and pu (refer to Figure 4
for an example). The skyline consists of points pstop and pbad , each of which
dominates both p and pu. Further, it is M(p) < M(pu), that is, p would be
read before pu. Since pstop � p and pbad � p, the first two points that SaLSa
reads are pstop and pbad (the actual order is immaterial). Point p is chosen

so that M(p+
bad , 1, 1, . . . , 1) > M(p) > M(p+

stop, 1, 1, . . . , 1). Note that this is

always possible if p+
bad > p+

stop and does not contradict the hypothesis that pbad

dominates p. Setting M(p) = M(Low, 1, 1, . . . , 1), we have that p+
stop < Low <

p+
bad . This is sufficient to conclude that SaLSa using pstop, can halt just after

reading p, whereas this would not be possible if pbad were used.

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 31, Publication date: November 2008.

Efficient Sort-Based Skyline Evaluation • 31:11

Example 5. For the UsedCars relation, the MiniMax rule leads to choosing
C1 as stop point, for which it is C1+ = 25. If UsedCars is sorted using the
function M(p) = p.Price + p.Mileage, then SaLSa can be halted as soon as it
reads point C7, whose level is l = 75 (see Figure 3(b)). Indeed, the minimum
value of Low that satisfies the equation M(Low, 50) ≥ 75 is 25 ≥ C1+, which is
the stop condition established by Theorem 1.

Theorem 2 provides an efficient, O(1), method for incrementally updating
the stop point. Let pstop be the current stop point. When a new point p is added
to the skyline, the stop point either remains unchanged or it is set to p. This
only depends on which among p+ and p+

stop is minimum.

4. PROPERTIES OF SOME SYMMETRIC SORTING FUNCTIONS

Although Theorem 2 shows that the stop point can be chosen independently of
the sorting function, this does not mean that all functions will behave equally
well. In the following we consider some relevant cases and arguments about
their limiting capabilities. To avoid making the problem trivial to solve, we
consider only skylines over at least two dimensions, that is, d ≥ 2, and exclude
from the analysis those (unrealistic) instances that include the target (ideal)
point 0 = (0, . . . , 0). The latter implies that it will always be p+

stop > 0.

4.1 Sorting by Volume

The first symmetric function we consider is the one based on the volume of the
points, as originally proposed by the authors of SFS in Chomicki et al. [2002]:4

vol[0](p) = 1 −
d∏

j=1

(1 − p[j]).

We will shortly explain why we denote the function as vol[0] rather than simply
as vol. The rationale of using vol[0], which also justifies its name, is that

∏d
j=1(1−

p[j]) is the volume of the dominance region of p, that is, the set of points in
[0, 1]d dominated by p. If points are uniformly distributed over D, then this
also corresponds to the expected fraction of points in r that p dominates. Then,
fetching first points with higher volume (thus, lower values of vol[0]) increases
the chance of early discarding many other points, thus reducing the overall
number of comparisons. Unfortunately, the following result shows that vol[0] is
not a good choice for limiting the number of points to be read.

LEMMA 2. The vol[0] sorting function is not limiting.

PROOF. The range of vol[0] is the [0, 1] interval. For any value of l , it is
Low = 0, thus D(vol[0], l) always includes points that are minimal on one or
more attributes, and could therefore be in the skyline.

4Since we assume that attributes have to be minimized, rather than maximized as Chomicki et al.

[2002] do, the original definition,
∏d

j=1 p[j], has been accordingly modified.

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 31, Publication date: November 2008.

31:12 • I. Bartolini et al.

Note that vol[0], besides being nonlimiting, is truly monotone only if one
considers points whose level is strictly less than 1, since vol[0](p) = vol[0](p′) =
1 does not rule out the possibility that p � p′.

It is possible to modify the volume function, so as to make it limiting, by
avoiding that factors of the product vanish when p[j] = 1. To this end, consider
the function vol[1](p) = 2d − ∏d

j=1(2 − p[j]), whose range is [0, 2d − 1]. If we
have, say, a two-dimensional skyline, now there is a chance of halting SaLSa
execution as soon as the level of vol[1] reaches a value l > 22 − 2 = 2. This is
because l > 2 guarantees that no point with minimal values either on A1 or on
A2 is still unread. Such arguments are generalized as follows.

LEMMA 3. Consider the function:

vol[m](p) = (m + 1)d −
d∏

j=1

(m + 1 − p[j]) (m > 0),

whose range is [0, (m + 1)d − md]. Then, lstop(vol[m]) > (m + 1)d − (m + 1)md−1

for any relation r.

PROOF. For any value of l ≤ (m + 1)d − (m + 1)md−1, it is Low = 0. On the
other hand, if l > (m + 1)d − (m + 1)md−1, then Low > 0.

From a geometric point of view, each vertex v of the hypercube [0, 1]d with
coordinates (1, . . . , 1, 0, 1, . . . , 1), for which it is vol[m](v) = (m + 1)d − (m +
1)md−1, needs to be excluded from D(vol[m], l).

From Lemma 3 the following is derived.

COROLLARY 1. For any dimensionality d, the maximum of Dstop(vol[m])
monotonically increases with m.

PROOF. Lemma 3 shows that Dstop(vol[m]) can at most equal the open set
defined as {p ∈ D : vol[m](p) > (m + 1)d − (m + 1)md−1}, that is, {p ∈ D :∏d

j=1(m+1− p[j]) < (m+1)md−1}. Consider now the midpoint p of the closure
of the above set, that is, p lies on the main diagonal of the hypercube and
vol[m](p) = (m + 1)d − (m + 1)md−1. For each attribute Aj , it is derived that

p[j] = 1 − m(d
√

(m + 1)/m − 1). This monotonically decreases with m, which
is also to say that p moves away from the worst possible point, that is, 1 =
(1, . . . , 1).

We conclude by observing that the entropy function, E(p) = ∑d
j=1 log(p[j] +

1), also used by the SFS method, indeed corresponds to vol[1]. Since SFS
assumes that higher attribute values are better, and fetches points by de-
creasing values of E, to prove the equivalence we need to complement at-
tribute values, that is, p[j] = 1 − p[j], and change the sign of E. This yields
− ∑d

j=1 log(2 − p[j]). Clearly, this leads to order points as − exp(
∑d

j=1 log(2 −
p[j])) = − ∏d

j=1(2 − p[j]), which equals vol[1] modulo a constant term.5

5Chomicki et al. [2002] erroneously assert that E yields the same order as vol[0], which is not true,

since vol[1] and vol[0] do not order points in the same way.

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 31, Publication date: November 2008.

Efficient Sort-Based Skyline Evaluation • 31:13

4.2 Sorting by Sum of Coordinates

An obvious alternative to vol is to sum (rather than to multiply) attribute values,
that is:

sum(p) =
d∑

j=1

p[j].

There is a simple connection between sum and the vol[m] family.

LEMMA 4. The sum sorting function is strictly more limiting than vol[m], for
any finite m, with lstop(sum) > d − 1.

PROOF. Since vol[m](p) is a polynomial in (m + 1) of degree d − 1, where
the coefficient of (m + 1)d−1 is

∑d
j=1 p[j], we have that limm→∞ vol[m](p)/(m +

1)d−1 = sum(p). Due to Corollary 1, this proves the first part of the lemma.
That lstop(sum) > d − 1, can be proved with similar arguments. Alternatively,
from Theorem 1 we have that SaLSa using sum can be halted as soon as it is
p+

stop ≤ Low, where now Low is the solution of Low + (d − 1) = l . Since p+
stop > 0,

it follows that lstop(sum) > d − 1, as required.

4.3 Minimum Coordinate Sort

It is clear that many (infinite) limiting functions exist. It is therefore natural
to ask if there is an optimal function that can limit any input relation r more
than other functions do. The answer is affirmative, and such optimal function,
which we call minC (for minimum coordinate), is defined as:

minC(p) = (min
j

{p[j]}, sum(p)).

Therefore, minC first sorts points considering for each of them their minimum
coordinate value. Then, a sum of the skyline attributes is used in order to
guarantee monotonicity in case of ties. To this end other tie-breaking rules
could in principle be used (e.g., any vol[m] function).

Clearly, minC is limiting, since SaLSa can stop as soon as it fetches a point p
for which it is min j {p[j]} ≥ p+

stop.

THEOREM 3. For any relation r and symmetric sorting function M different
from minC, it is Dstop(M) ⊂ Dstop(minC), thus ustop(M) ⊆ ustop(minC).

PROOF. According to Theorem 1, when SaLSa halts, minimal attribute val-
ues in the unread domain Dstop(M) are equal to a value, Low ≥ p+

stop, inde-
pendent of M, and Theorem 2 guarantees that p+

stop is also independent of M.
Further, Lemma 1 shows that Dstop(M) ⊆ [Low, 1]d , where equality is attained
only by minC. The second part of the theorem immediately follows. Here the
equality case has also to be considered, since it is possible that r has no point
in Dstop(minC) \ Dstop(M).

Intuitively, the optimality of minC stems from the observation that, if one
considers the point pdiag that lies on the main diagonal of the data space and

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 31, Publication date: November 2008.

31:14 • I. Bartolini et al.

Fig. 5. Points are sorted using the optimal minC function, which leads to prune points C7, C8, and

C9. The stop point is C1.

whose coordinates equal p+
stop, that is, pdiag = (p+

stop, . . . , p+
stop), then it is true

that pdiag � p whenever minC(p) > minC(pdiag), whereas this does not hold for
any other symmetric monotone function.

The reader may have noticed that minC is not a scalar function, since it yields
a pair of reals. However, unless otherwise specified, we slightly abuse notation
and terminology by treating minC(p) as a real value, given by the primary sorting
criterion of minC, that is, min j {p[j]}, and refer to this real value as the level of
point p. This has no practical consequences and has the advantage of keeping
the presentation simple and of avoiding unnecessary formal complications.

Example 6. When the minC function is applied to the UsedCars relation,
for which the stop point is C1, SaLSa can be halted after reading point C5,
whose level is l = 25 ≥ C1+. The unread domain is shown as a shaded region
in Figure 5.

Algorithm 2 describes SaLSa when the minC sorting function is used. With
respect to the generic SaLSa template (Algorithm 1), here we immediately check
if the stop condition has been reached before comparing the new read point p
with those in the current skyline S. Note that the stop condition at step 4
correctly takes into account the particular case in which pstop lies on the main
diagonal of the data space and duplicates are possible (that is p = pstop).

Algorithm 2. SaLSa[minC]

Input: input stream r sorted using the minC function

Output: the skyline S(r) of r
1: S ← ∅, stop ← false, pstop ← undefined, u ← r
2: while not stop ∧ u 	= ∅ do
3: p ← get next point from u, u ← u \ {p}
4: if p+

stop ≤ minC(p) and pstop 	= p then stop ← true
5: else if S 	� p then
6: S ← S ∪ {p},
7: if p+ < p+

stop then pstop ← p
8: return S

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 31, Publication date: November 2008.

Efficient Sort-Based Skyline Evaluation • 31:15

5. ANALYSIS OF SALSA

In this section, we derive a cost model able to estimate the expected number of
points that SaLSa needs to fetch before halting. For the sake of definiteness, we
consider only the optimal minC function, but our results can be extended to other
sorting functions as well. We start by deriving a formula that is valid for any
given data distribution. Then we show how the formula simplifies under the
assumption of independent and identically distributed (IID) attributes, which
include the uniform distribution as a particular case. Although the IID assump-
tion is untenable for real datasets, it provides us with the basic clue to derive
a cost model for the case in which the data distribution is described through a
multidimensional histogram. As a corollary of our analysis, we also provide a
novel result on the asymptotic size of skylines for nonindependent attributes.
Finally, in Section 5.3, we consider the problem of reducing the number of dom-
inance tests when the minC function is used.

5.1 A Cost Model for Predicting the Number of Fetched Points

Given a relation r of n d-dimensional points, let Fp denote the underlying data
distribution, that is, Fp(x) = Pr{p[1] ≤ x[1], . . . , p[d] ≤ x[d]}, and let fp(x) be
the corresponding density function. For any point p let DR(p) be the dominance
region of p, that is, the subset of [0, 1]d dominated by p. We call dominance
number of p, denoted DN (p), the mass of probability in DR(p), that is, DN (p) =∫

DR(p)
fp(x)d x. In other terms, DN (p) represents, for any value of n, the fraction

of points that p dominates.
Let l = (l , . . . , l) and consider the probability that SaLSa halts at level ≤ l .

This is easily derived to equal:

FSL(l ; n, d) = 1 − (1 − Fp(l))n, (6)

since at least one of the n points should be present in the hypercube [0, l]d

having as opposite corners the origin of the space and the point l. The density
function of the stop level is the derivative of FSL with respect to l , that is:

f SL(l ; n, d) = n
d Fp(l)

dl
(1 − Fp(l))n−1.

From this we obtain the following basic result:

THEOREM 4. Given a relation r with n d-dimensional points distributed ac-
cording to Fp, the expected fraction of points, FP, to be fetched when using minC
is:

F P (n, d) = 1 −
∫ 1

0

DN(l) f SL(l ; n, d) dl (7)

PROOF. Immediate, since when the stop level is l , a fraction of DN(l) points
is pruned by the minC function,6 therefore the integral is the expected fraction
of points that can be pruned.

6Note that this is the only part of the model that depends on the specific sorting function.

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 31, Publication date: November 2008.

31:16 • I. Bartolini et al.

Fig. 6. Estimated and actual values of FP(n, d) when the minC function is used to sort data (uniform

datasets).

Equation 4 simplifies under the assumption of independent and identically
distributed (IID) attributes. In this case it is Fp(x) = ∏d

j=1 FA(x[j]), where FA
denotes the common distribution of the attributes. The stop level distribution
and its density can then be written as:

FSL(l ; n, d) = 1 − (1 − FA(l)d)n (8)

f SL(l ; n, d) = n · d · FA(l)d−1 f A(l)(1 − FA(l)d)n−1 (9)

As to the dominance number of point l, this is DN(l) = (1 − FA(l))d. Substi-
tuting everything into Equation 7 one obtains:

FP(n, d) = 1 −
∫ 1

0

(1 − FA(l))d · n · d · FA(l)d−1 f A(l)(1 − FA(l)d)n−1dl .

Operating the change of variable y = FA(l), dy = f A(l)dl , above reduces to:

F P (n, d) = 1 −
∫ 1

0

(1 − y)d · n · d · yd−1(1 − yd)n−1dy. (10)

Figure 6 shows model predictions together with actual results obtained on uni-
form datasets. It can be observed that the model accuracy is extremely good
and that, although the percentage of points that can be pruned reduces when d
grows, SaLSa performs better with larger datasets. For instance, when d = 6,
one needs to read about 70% of the points if n = 104, only 58% if n = 105, and
Equation 10 predicts a value less than 44% when n = 106. This behavior holds
for arbitrary data distributions.

LEMMA 5. For any data distribution Fp, the fraction of fetched points,
FP(n, d), monotonically decreases with n.

This result, whose proof is given in the Electronic Appendix, formalizes the
intuition that the more points in the dataset, the higher the probability that
at least one of them has a low maximum coordinate value p+, so that the stop
level decreases. However, the lemma says nothing about the limiting behavior of
SaLSa when the number of points grows arbitrarily large. This is made precise
by the following theorem, for which it must be remembered that the support of

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 31, Publication date: November 2008.

Efficient Sort-Based Skyline Evaluation • 31:17

a probability distribution is the smallest closed set whose complement has zero
probability.

THEOREM 5. If the stop level distribution has support [l0, 1], 0 ≤ l0 ≤ 1, it is

lim
n→∞ FP(n, d) = 1 − DN(l0). (11)

where l0 = (l0, . . . , l0).

Theorem 5, whose proof appears in the Electronic Appendix, demonstrates that
all the mass of probability of the stop level concentrates on the lowest possi-
ble value, l0, as n grows arbitrarily large. This is a direct consequence of the
form of the stop level distribution given by Equation 6, and as such applies
to any data distribution. Since 1 − DN(l0) = 0 implies that the number of
fetched points is a sublinear function of n, FP(n, d) · n = o(n), we have the
following corollary, which provides a novel insight on the asymptotic size of
skylines.

COROLLARY 2. If DN(l0) = 1, where l0 is as in Theorem 5, then |S| = o(n).

PROOF. Immediate, since the skyline is always included in the set of points
fetched by SaLSa.

It is well known that the size of the skyline is �((ln n)d−1/(d−1)!) = o(n) when
attributes are independent [Buchta 1989; Godfrey 2004], however, Corollary 2
provides a much weaker condition for having “small” skylines. In particular,
Corollary 2 is of interest when attribute independence does not hold, an example
of which is given as follows.

Example 7. Let d = 2 and consider the (non-independent) data distribu-
tion:

Fp(x) = x[1] · x[2] · (x[1] + x[2])

2
fp(x) = x[1] + x[2].

It is plain to see that the support of the stop level distribution is [0, 1], and that
DN(0) = 1. From this we can immediately conclude that any relation with n
tuples drawn from this distribution will have a skyline of size o(n).

Going the other way in Corollary 2 is not possible. This is to say that there
exist data distributions whose skyline has size o(n), yet SaLSa might well fetch
a number of points that grows as n. In particular, this holds when l0 > 0 and
there is a non-null probability, equal to 1 − DN(l0), to have points for which it
is minC(p) < l0.

Example 8. Figure 7 shows a dataset with a skyline of only two points,
S = {p1, p2}. Assume that no point can lie in the square [0, .4) × [0, .4), yet
there are (1 − α) · n points for which it is minC(p) < .4, for some α < 1. Thus
it is l0 = .4, DN(.4, .4) = α, and SaLSa will necessarily read at least (1 − α) · n
points.

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 31, Publication date: November 2008.

31:18 • I. Bartolini et al.

Fig. 7. A 2-d dataset for which the skyline has size o(n), yet SaLSa needs to read at least (1−α) ·n
points.

Fig. 8. A 2-d histogram. The number within each bucket represents the fraction of points in the

bucket.

5.2 Estimates using Multi-Dimensional Histograms

When attributes are not IID, which is the rule in real datasets, it is still possible
to predict SaLSa performance if the data distribution is described through a
multidimensional histogram. Without loss of generality, we consider histograms
made up of a set of buckets, where bucket Bk represents a hyper-rectangular
region of the data space and stores the number of points, nk , falling in that
region. This is illustrated in Figure 8, where the selectivity of each bucket,
nk/n, is also shown (empty buckets have no points at all).

To evaluate the integral in Equation 7, one needs to set an integration step,
�l , and, for each resulting value of l , compute the probability of stopping at
that level. The latter can be split into two parts:

(1) Evaluate DN(l): This is directly obtained from the histogram by estimating
the selectivity of the range query [l , 1]d .

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 31, Publication date: November 2008.

Efficient Sort-Based Skyline Evaluation • 31:19

(2) Evaluate f SL(l): By definition, this equals FSL(l ; n, d) − FSL(l − �l ; n, d).
We can estimate FSL(l ; n, d) as follows:
(a) For each bucket Bk intersecting [0, l]d , we compute the probability, de-

noted Outk(l), that all its nk points fall outside the [0, l]d hypercube.
This is done by assuming that within each bucket, data are uniformly
distributed, so that Outk(l) only depends on the number of points in
the bucket, on the bucket extension, and on the size of the intersection,
that is:

Outk(l) =
(

1 − size of the intersection of Bk and [0, l]d

size of Bk

)nk

.

(b) We multiply all the Outk(l) probabilities and then complement to 1,
thus:

FSL(l ; n, d) = 1 −
∏

k

Outk(l).

This follows, since one can stop at a level ≤ l if at least one intersecting
bucket has a point in the [0, l]d hypercube.

As an example, using the values in Figure 8 with n = 105 and �l = 0.1, the
model predicts FP ≈ 0.28, and almost certainly the stop level will be ≤ 0.2.

5.3 Dominance Tests

Having demonstrated that minC is the symmetric function that minimizes the
number of points to be fetched, it would be interesting to also characterize the
filtering power of this function, that is, the impact it can have on the effective-
ness of the filter phase in which dominance tests are executed.

Unlike the problem of estimating the number of fetched points, that of pre-
dicting the number of dominance tests is much more complex. To gain some
insight on the difficulty of the problem, observe that the number of dominance
tests depends on the (distribution of the) skyline size after i points have been
read, and this distribution should be evaluated for any value of i up to the
number of fetched points. However, even for the simplest case of independent
attributes, there is no known analytical result for the skyline distribution when
d > 2 [Godfrey 2004]. Further, in our scenario, we should consider how this dis-
tribution varies not only with i but also with the specific order in which points
are read, which represents a formidable challenge to deal with.7

From a more pragmatic viewpoint, it would at least be useful to understand
if minC is better than other functions in reducing the complexity of the filter
phase. Unfortunately, this does not seem to be the case. The intuition is that
functions like vol[m] and sum (which, recall, behaves like vol[∞]) are likely to
still enjoy the desirable property of vol[0], that is, that of fetching first points
that have a high chance of filtering out many other points. However, this is
not necessarily the case with minC, since this function might well retrieve first

7Chaudhuri et al. [2006] show that sorting data on the values of a single attribute, say A1, is

approximately equivalent, in terms of dominance tests, to compute the skyline over the remaining

d − 1 attributes. However, this result holds only if A1 is independent of the other attributes and

does not extend to multiattribute sorting functions.

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 31, Publication date: November 2008.

31:20 • I. Bartolini et al.

Fig. 9. Distribution of the first 200 skyline points out of 810, as obtained by sorting data with

different symmetric functions (n = 500K , mixed dataset).

points that are bad on all coordinates but one, thus likely to dominate only a few
points, if any. This is also suggested by the graphs in Figure 9, which show the
distribution of the first 200 skyline points returned by vol[1], sum, and minC,
respectively, for a three-dimensional mixed dataset, a detailed description of
which is given in Section 7, and whose full skyline consists of 810 points. It is
apparent that minC first retrieves points that are close to the boundary of the
space, and as such less likely to be effective in pruning other points.

A key observation to improve the performance of minC is that the number of
dominance tests also depends on the order in which points in the (partial) sky-
line S are compared against a new read point. This issue was first investigated
by Börzsönyi et al. [2001], who proposed heuristic methods, such as manag-
ing S as a self-organizing list, besides considering the basic forward strategy
in which S is scanned by respecting the order in which skyline points have
been fetched. However, these methods introduce additional overhead, which
might well lead to nullifying the possible reduction of dominance tests so
obtained.

An alternative that is trivial to implement and does not incur any additional
cost is to consider points in S in the reversed (or backward) order in which they
have been retrieved, that is, the last point added to S will be the first one against
which a new read point will be compared, and so on. The rationale for adopting
this backward strategy is given by the following result, whose proof is presented
in the Electronic Appendix.

THEOREM 6. Assume points are sorted using the minC function. If attributes
are independent and identically distributed (IID), then the expected number of
dominance tests executed by scanning the current skyline in backward order is
less than that needed by the forward version.

For arbitrary data distributions, the relative performance of the backward
strategy with respect to the forward one is hard to predict, and it will be exper-
imentally evaluated in Section 7.1.

6. ASYMMETRIC SORTING FUNCTIONS

In this section, we extend our analysis to the case where an asymmetric func-
tion is used to sort points. In particular, we still consider that data have been
normalized in the [0, 1]d domain and that asymmetry is defined with respect
to this domain. It is not difficult to see that this also covers the case where,

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 31, Publication date: November 2008.

Efficient Sort-Based Skyline Evaluation • 31:21

say, data are not normalized and one uses a symmetric function on the original
attributes’ domains (e.g., Price + Mileage − Year).

Why should one even consider using an asymmetric function? We foresee
three basic reasons for this choice:

Interface limitations. The skyline algorithm runs on the client side, and the
server has some limitations that preclude the possibility of using a symmetric
function. For instance, data cannot be normalized and one has to work by, say,
linearly combining original attributes’ values.

User preferences. The user might want to obtain the skyline points according
to a specific order, for example, A1 + 2A2. In this case, especially for large
skylines, it might not be convenient, for performance reasons, to first sort points
using a symmetric function and then resort the result according to the user
preferences. Rather, the user sorting function should be directly used, which
would also preserve the incremental behavior of the algorithm.

Performance. As demonstrated in Theorem 3, no symmetric function can
do better than minC in limiting the input. However, as will be shown in Sec-
tion 6.2, if one has some knowledge of the actual data distribution, then
using an asymmetric sorting function can lead to considerable performance
improvements.

Our analysis is organized as follows. We first show how SaLSa can be ex-
tended so as to also work with asymmetric functions by generalizing results
derived in Section 3.1. Then, in Section 6.2 we introduce an asymmetric func-
tion, called �minCopt, that is provably optimal over all monotone functions and
for all input relations. Our theoretical analysis on the performance of �minCopt,
summarized in Theorem 11, leads to a rather unexpected conclusion: even if
no intrinsic asymmetry is present in the dataset, using �minCopt in place of
minC can improve SaLSa performance by more than 40% in terms of number
of points to be read. However, �minCopt assumes a detailed knowledge of the
data distribution that cannot be available in realistic scenarios. For this rea-
son in Section 6.3 we investigate how multidimensional histograms can help
in approximating the optimal sorting criterion established by �minCopt. This
results in a practical algorithm for choosing the function to use for any given
dataset.

6.1 Extending SaLSa to Asymmetric Sorting Functions

When M is asymmetric, it is no longer true that minimal values of points in
the unread domain at level l , D(M, l), are the same for all attributes, thus
Lemma 1 no longer holds and all subsequent results in Section 3.1 are there-
fore invalidated. We start by showing how Lemma 1 can be easily extended to
arbitrary (that is not necessarily symmetric) functions.

LEMMA 6. Let M be any monotone function and assume M is at level l . Fur-
ther, let Low[j] be the minimum value such that M(1, . . . , 1, Low[j], 1, . . . , 1) ≥ l
holds (j = 1, . . . , d). If no such finite Low[j] exists, then set Low[j] = 0. Then,
there is no point p for which both the following are true: 1) M(p) ≥ l , and 2)
there exists j such that p[j] < Low[j].

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 31, Publication date: November 2008.

31:22 • I. Bartolini et al.

PROOF. The result immediately follows from the definition of Low[j] and the
monotonicity of M.

Above lemma says that, for any monotone function, D(M, l) is included in
the hyper-rectangle whose opposite vertices are (Low[1], . . . , Low[d]) and 1 =
(1, . . . , 1).

Given a skyline point p, now it is no longer true that its maximum coordi-
nate value, p+, is the only relevant information that has to be used for stopping
SaLSa execution. Rather, one should look at the specific function M and deter-
mine which is the largest (hyper-rectangle enclosing) D(M, l) that p dominates.
To this end, define the j -th stop level of point p as:8

l j = M(1, . . . , 1, p[j], 1, . . . , 1). (12)

and let l+ = max j {l j } be the maximum stop level of p. Theorem 1 can be
generalized by considering the maximum stop level of the stop point rather
than just its maximum coordinate value.

THEOREM 7. Let M be any monotone function, and assume M reaches level l
at a certain stage of the execution. Then, SaLSa can be stopped if the maximum
stop level l+

stop of the stop point pstop satisfies l+
stop ≤ l . Only in the particular

case that l j
stop = l+

stop holds for all j , SaLSa should also read all (if any) pstop’s
duplicates.

PROOF. From Lemma 6 we know that if M(p) ≥ l , then for all j it is
p[j] ≥ Low[j]. Since l ≥ l+

stop it is l ≥ l j
stop, thus M(1, . . . , 1, Low[j], 1, . . . , 1) ≥

M(1, . . . , 1, pstop[j], 1, . . . , 1) holds for all j . If l = l j
stop, then it is necessarily

Low[j] = pstop[j], whereas when l > l j
stop, the monotonicity of M guarantees

that Low[j] > pstop[j], thus p[j] > pstop[j]. If at least one strict inequality
occurs, the result clearly holds. If equality occurs on all coordinates, then pstop
dominates all points in D(M, l) but its duplicates.

Intuitively, the theorem gives a condition that, if satisfied, guarantees that on
each coordinate the stop point is no worse than the point (Low[1], . . . , Low[d]),
thus pstop dominates all the points that have not been read yet.

The MiniMax rule for choosing the stop point (Theorem 2) can be generalized
in a similar way.

THEOREM 8. The following generalized MiniMax rule for choosing the stop
point is optimal for any monotone function M:

pstop = arg min
pi∈S

{l+
i }. (13)

PROOF. Immediate from Theorem 7.

Example 9. Let points in the UsedCars relation be sorted using the func-
tion M(p) = 2 · p.Price + p.Mileage and refer to Figure 10(a). For the 3 skyline
points it is derived, respectively: l+

1 = 110, l+
2 = 130, and l+

4 = 140, which leads

8Denoting the j th stop level of p as l [j] would be inconsistent when M is a vectorial function, in

which case the j th stop level is a vector.

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 31, Publication date: November 2008.

Efficient Sort-Based Skyline Evaluation • 31:23

Fig. 10. In (a) points are sorted using the function 2 · p.Price + p.Mileage, which leads to prune

points C8 and C9 (or C8 and C7). The nonmaximal stop level of C1, lPrice
1

= 100, is shown as a

dashed line. In (b) the sorting function is p.Price + 4 · p.Mileage, and no point can be pruned.

to choose C1 as the stop point. As an example of how the maximum stop levels
are derived, consider point C1 = (25, 10) and remember that both attributes

have domain [0, 50]. It is lPrice
1 = 100, since M(25, 50) = 100, and lMileage

1 = 110,
since M(50, 10) = 110. Both points C7 and C9 are at level 110. If, say, point C7
is read first, point C9 can be pruned, as well as point C8. On the other hand,
if the sorting function is M(p) = p. Price + 4 · p. Mileage, the stop point is C4,
with l+

4 = 210 = max{M(5, 50), M(50, 40)}. In this case, as Figure 10(b) shows,
no point can be pruned, since C5 is at level 205 < l+

stop = 210, thus SaLSa
cannot halt before reading even C8.

Theorem 7 proves that l ≥ l+
stop is a sufficient condition for SaLSa to

halt. Unlike the corresponding stop condition in Theorem 1 (Low ≥ p+
stop),

l ≥ l+
stop is not necessary for all monotone functions. This is to say that

there are functions for which SaLSa can be halted earlier. To see why this
is the case, it should be remembered that Theorem 7 also applies to nonscalar,
thus vectorial, functions, such as minC and the asymmetric versions of this
function we are going to introduce. When M is vectorial, level l is a vector,
l = (l [1], l [2], . . .), and sorting is based first on l [1], then on l [2], and so on.
The key to strengthen the stop condition is based on the observation that
for many functions, which we call 1-monotone, it is enough to consider just
the primary sorting criterion to halt (thus all scalar sorting functions are also
1-monotone).

Definition 4. Let pi and pk be any two points such that pi =
(1, . . . , 1, pi[j], 1, . . . , 1) and pk = (1, . . . , 1, pk[j], 1, . . . , 1), with pi[j] < pk[j].
Let li = M(pi) and lk = M(pk). If the primary sorting criterion is always suffi-
cient to order pi and pk , regardless of which is the only coordinate j on which
they are not maximal, that is, li[1] < lk[1] holds for each j , then M is called a
1-monotone function.

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 31, Publication date: November 2008.

31:24 • I. Bartolini et al.

THEOREM 9. For any monotone function M it is necessary that l [1] ≥ l+
stop[1]

holds before SaLSa can be stopped. The condition is also sufficient if M is 1-
monotone.9

PROOF. The condition is necessary, since l [1] < l+
stop[1], thus l < l+

stop implies
that the unread domain at level l includes a point p that is not dominated by
pstop.

To prove the second part of the theorem, observe that the only difference
with the proof of Theorem 7 concerns the hypothesis needed to derive that
Low[j] ≥ pstop[j] holds for all j . Since l [1] > l+

stop[1] implies l > l+
stop, it remains

to show that l [1] = l+
stop[1] cannot lead to having Low[j] < pstop[j]. But this is

now ruled out by the assumption of 1-monotonicity of M.

Example 10. The minC function is 1-monotone, thus SaLSa can be stopped
as soon as it fetches a point p such that min j {p[j]} ≥ p+

stop, that is, only the
primary sorting criterion is needed. On the other hand, consider the “bucketed”
version of minC defined as:

b minC(p) = (min
j

{�p[j] · b�}, sum(p)),

in which the range [0, 1] is partitioned into b+1 intervals (the last one including
only the value p[j] = 1). Let d = 2, b = 4, and consider point p = (.5, 1), for
which it is l = b minC(p) = (2, 1.5). Assume the stop point is pstop = (.6, .2).

From the definition of j -th stop level it is derived l1
stop = b minC(.6, 1) = (2, 1.6)

and l2
stop = b minC(1, .2) = (0, 1.2), thus l+

stop = (2, 1.6) since (2, 1.6) > (0, 1.2).

Although l [1] ≥ l+
stop[1] (2 ≥ 2) SaLSa cannot be halted after reading p, since

pstop 	� p. Indeed b minC is not 1-monotone, since the primary sorting criterion
assigns a same value (i.e., 2) to points p = (.5, 1) and (.6, 1). This implies that
the secondary sorting criterion, sum(p), is also relevant to determine when
execution can be stopped.

For non 1-monotone functions, the necessary and sufficient conditions to
halt do not necessarily coincide. It is therefore legitimate to ask if there exists a
function M such that SaLSa using M can halt when l [1] = l+

stop[1], yet l < l+
stop.

The well-known lexicographic sort, which first orders data using A1, then breaks
ties using A2, and so on, is a such function. Lexicographic sort can be compactly
defined as lex(p) = p, that is, the level of point p coincides with p itself. Clearly,
lexicographic sort is not 1-monotone, since it is li[1] = lk[1] whenever it is
pi.A1 = pk .A1.

For lex, the j th stop level of point p is l j = (1, . . . , 1, p[j], 1, . . . , 1), and the
maximum stop level of p is therefore l+ = (1, . . . , 1, p[d]). Thus Theorem 7
asserts that SaLSa using lex can be halted after reading a point p whose first
(d − 1) coordinates are 1 and the dth one is p[d] ≥ pstop[d]. Although correct,
this stop condition is not necessary.

Consider the point pstop = (pstop[1], . . . , pstop[k], 0, . . . , 0), that is, pstop is min-
imal (thus, optimal) on attributes k + 1, . . . , d . Then, the execution can be

9As usual, the particular case when pstop[j] = p+
stop for all j should be considered, so that possible

duplicates of pstop are fetched before halting.

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 31, Publication date: November 2008.

Efficient Sort-Based Skyline Evaluation • 31:25

halted as soon as SaLSa reads a point p such that p[j] = 1, 1 ≤ j < k, and
p[k] ≥ pstop[k].10 This follows since, for any other point pi such that p < pi,
it is true that pi[j] = 1, 1 ≤ j < k. The minimality of pstop on the remaining
coordinates is then sufficient to conclude that pstop � pi. The rule for choosing
the stop point when using lex can be found in the Electronic Appendix.

In spite of its popularity, lexicographic sort is not a good choice for sort-based
skyline algorithms. Indeed, experimental results in Chomicki et al. [2002] have
already shown that it performs much worse than sorting by volume when all
points are read. This is because of the nested sort it requires and of the higher
number of dominance tests it leads to executing.

6.2 An Optimal Asymmetric Sorting Function

In order to derive an optimal asymmetric function, the following observation is
fundamental: Since SaLSa prunes the input stream by means of a single stop
point, the best one can hope to obtain by using an asymmetric function is to
avoid reading a fraction of points equal to the maximum value of DN (p) in
the dataset (remember that DN (p) is the dominance number of p, that is, the
fraction of points in r that p dominates). To this end, let popt be the point that
dominates the highest number of points in r, that is:

popt = arg max
pi∈S

{DN(pi)}. (14)

For instance, in the UsedCars relation, it is popt ≡ C1, since C1 dominates 6
points (C3, C5, C6, C7, C8, and C9) whereas both C2 and C4 dominate only 4
points.

An asymmetric function such that:

(1) popt is the stop point when such function is used, and

(2) SaLSa will stop without reading all the points dominated by popt

would be necessarily optimal by definition. In order to gain some intuition
on how a function with such features can be derived, consider Figure 11(a),
in which the shaded area is the dominance region of popt ≡ C1. Since this
dominance region is a hyper-rectangle, it is reasonable to guess that the optimal
asymmetric function should be a generalization of minC, which is only able to
prune hypercubic regions. This generalization can be obtained by moving popt
to the main diagonal of a transformed data space in which all the dominance
relationships are preserved. The simplest way of achieving this is to introduce
an (optimal) shift vector, �opt, defined as:

�opt[j] = p+
opt − popt[j] j = 1, . . . , d

and to add to each coordinate value of a point the corresponding shift compo-
nent.

Figure 11 (b) shows this transformation for the UsedCars relation. Since
C1 = (25, 10), the optimal shift vector is �opt = (0, 15), that is, the 2nd coor-
dinate (Mileage) of each point is increased by 15. It follows that sorting points

10The last should be a strict inequality only if pstop[j] = 1, 1 ≤ j < k.

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 31, Publication date: November 2008.

31:26 • I. Bartolini et al.

Fig. 11. The shaded area is the dominance region of point C1 in the original (a) and the transformed

(b) space, respectively. The transformation is obtained by applying to points the (optimal) shift

vector �opt = (0, 15).

by the minimum of their so-transformed coordinate values makes it possible to
prune all the points dominated by popt.

11

THEOREM 10. Let popt be the point in relation r with the highest dominance
number, and let �opt[j] = p+

opt − popt[j], j = 1, . . . , d. Define the �minCopt func-
tion as:

�minCopt(p) = (min
j

{p[j] + �opt[j]}, sum(p)). (15)

Then, for any sorting function M it is Dstop(M) ⊆ Dstop(�minCopt), thus �minCopt
is optimal over all monotone functions.

PROOF. We first prove that sorting points using �minCopt leads to having
pstop ≡ popt. Then we show that all points dominated by popt can be safely
pruned, from which the result follows, since popt has the highest dominance
number among the points in r.

According to Equation 13, pstop is the point that minimizes the maximum of

its stop levels. In the case of �minCopt, for any point p it is:12

l j = min{1 + �opt[1], . . . , p[j] + �opt[j], . . . , 1 + �opt[d]}
= min{1, p[j] + �opt[j]},

where the second equality follows, since p[j] ≤ 1 holds for all j and there exists
at least one coordinate j such that �opt[j] = 0. Then, l+ equals:

l+ = max
j

{min{1, p[j] + �opt j [}]} = min{1, max
j

{p[j] + p+
opt − popt j [}]}. (16)

11Actually, all but one if duplicates are possible.
12As done for the minC function, even here we simplify the presentation by considering only the

primary sorting criterion of �minCopt. This has no harmful consequences, mainly because �minCopt
is 1-monotone.

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 31, Publication date: November 2008.

Efficient Sort-Based Skyline Evaluation • 31:27

For point popt the above yields l+
opt = p+

opt. For any other skyline point p, let j be
any coordinate such that p[j] > popt[j]. Note that such j must exist, otherwise
popt would not be in the skyline. Then, l+ > p+

opt is immediately derived, thus

l+
opt = l+

stop as claimed.
For the second part of the proof it is sufficient to show that if p is any point

dominated by popt, then the level of p is l ≥ l+
opt ≡ l+

stop. But this is obvious, since

popt � p guarantees that, for each j , p[j] + �opt[j] = p[j] + p+
opt − popt[j] ≥

p+
opt = l+

opt, thus l ≥ l+
opt.

The behavior of SaLSa with �minCopt is characterized by a sudden stop after
popt has been read. In fact, popt will always be the last skyline point to be read.
After reading popt, further points are to be read only if popt’s duplicates are
present, thus SaLSa can safely halt as soon as it discovers that this is not
the case (anymore). For instance, in Figure 11(b) SaLSa would halt just after
reading point C3, thus pruning C5, C6, C7, C8, and C9.

It has to be remarked that any dominance-preserving transformation that
moves popt to the main diagonal of the data space would generate an opti-
mal sorting function. For instance, one could consider the scale (rather than
shift) vector, �scale

opt , whose j th component is �scale
opt [j] = p+

opt/popt[j], and then

transform the j th coordinate of point p into the scaled value p[j] · �scale
opt [j].13

However, �minCopt is apparently the simplest way to achieve optimality without
introducing any unnecessary computational overhead.

When points are sorted using the �minCopt function, the performance of
SaLSa can be accurately predicted on the assumption that attributes are inde-
pendent.

THEOREM 11. Given a relation r with n d-dimensional points and indepen-
dent attributes, the expected fraction of points to be fetched when SaLSa uses the
optimal �minCopt sorting function is:

F Popt(n, d) =
∫ 1

0

zn

(
d−1∑
j=0

(− ln z) j

j !

)n

dz. (17)

Note that the theorem, whose proof is given in the Electronic Appendix, holds
regardless of the specific attributes’ distributions, which might also be different
for each attribute. This is perfectly reasonable, since the skyline dominance
relationship does not depend on attributes’ scales.

Figure 12(a) plots estimates of FPopt(n, d) provided by Equation 17 and con-
trasts them with actual results, as obtained by executing SaLSa with the opti-
mal �minCopt function. Figure 12(b) compares FPopt(n, d) with FP(n, d), that
is, the basic SaLSa version using minC and modelled by Equation 10. The
key observations are that: 1) The model given by Equation 17 is highly ac-
curate, 2) the gain in performance of �minCopt with respect to minC is apprecia-
ble regardless of the specific dimensionality, and 3) such gain increases with

13However, this works only if for all j it is popt[j] > 0.

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 31, Publication date: November 2008.

31:28 • I. Bartolini et al.

Fig. 12. (a) Estimated and actual values of FPopt(n, d); (b) Percentage gain of �minCopt wrt minC,

that is, (1 − FPopt(n, d)/FP(n, d)) · 100 (uniform datasets).

larger datasets, exceeding 40% for a four-dimensional uniform dataset with 105

points.

6.3 An Algorithm for Choosing a Good Asymmetric Function

In this section, we investigate how multidimensional histograms can be ex-
ploited so as to make the sorting criterion adaptive to the given dataset. More
precisely, we aim to determine a “good” shift vector � with which to per-
turb point coordinates so as to minimize the number of points to be read.
Ideally, one would like to have � = �opt, but the granularity with which
data are modelled in a histogram is likely to yield only a suboptimal shift
vector.

There are two issues to address for solving the problem: how to cope
with the infinite number of possible shift vectors, and how, given two shift
vectors �1 and �2, to determine which one is likely to lead to a better
performance.

As in Section 5.2, we consider that points within each bucket are uniformly
distributed, that is, each bucket Bk only provides information on its hyper-
rectangle, [Lk[1], Hk[1]] × · · · × [Lk[d], Hk[d]] = [Lk , Hk], and on the number
of points, nk , in [Lk , Hk]. First, it is plain to see that only undominated buckets
need to be considered, where bucket Bs dominates Bk if Hs � Lk . This guaran-
tees that Bk cannot contain any skyline point.

For any undominated bucket Bk , in principle, one should guess the number
and the actual positions of skyline points within Bk , and for each of them,
evaluate the advantage of using it as a stop point (that is using its coordinates
to compute the shift vector). Given the bucket’s information, this is not feasible
at all, which is why we pursue an approximate approach based on the concept of
hypothetical skyline point [Papadias et al. 2005]. This assumes that the skyline
restricted to the points in Bk consists of a single point, pk , whose coordinates

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 31, Publication date: November 2008.

Efficient Sort-Based Skyline Evaluation • 31:29

Algorithm 3. SaLSa[�minC]

Input: relation r and a multidimensional histogram describing r distribution

Output: the skyline S(r) of r
1: estimate p̂opt using the histogram

2: compute �[j] = p̂opt
+ − p̂opt[j] (j = 1, . . . , d)

3: sort r with the function �minC
4: S ← ∅, stop ← false, pstop ← undefined, l+

stop ← 1, u ← r
5: while not stop ∧ u 	= ∅ do
6: p ← get next point from u, u ← u \ {p}
7: if l+

stop ≤ �minC(p) and pstop 	= p stop ← true
8: else if S 	� p then
9: S ← S ∪ {p},

10: l+ = max j {p[j] + �[j]},
11: if l+ < l+

stop then l+
stop ← l+, pstop ← p

12: return S

are:

pk[j] = Lk[j] + Hk[j] − Lk[j]

nk + 1
, (18)

which is just the expected value of the minimum of nk points uniformly dis-
tributed over [Lk[j], Hk[j]].14

Equation 18 provides us with m hypothetical skyline points, one for each
undominated bucket. However, even if Bs does not dominate Bk , it might well
be the case that ps � pk . After dropping dominated points, this leaves us with a
number of undominated hypothetical skyline points. To estimate the advantage
of using one of them for setting up the sorting function, we just perform a range
query on the histogram, that is, for point ps we compute DN(ps). The point for
which this is maximum, denoted p̂opt, is then chosen as an approximation of the
optimal stop point and its coordinates used for computing the � shift vector,
that is:

�[j] = p̂opt
+ − p̂opt[j] j = 1, . . . , d .

Then, points are sorted using the function:

�minC(p) = (min
j

{p[j] + �[j]}, sum(p)). (19)

Algorithm 3 details the steps needed to execute SaLSa with the �minC function.
Step 10, in which the maximum stop level of point p is computed, exploits the
observation that, since l+ = min{1, max j {p[j] + �[j]}} (see Equation 16), the
only relevant case to consider for updating the stop point is when l+ < 1.

7. EXPERIMENTAL ANALYSIS

In this section, we analyze the performance of SaLSa and compare it against
SFS. In particular, for SaLSa we consider the sorting functions described in

14Papadias et al. [2005] use 1/(d · nk + 1) rather than 1/(nk + 1) in the denominator.

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 31, Publication date: November 2008.

31:30 • I. Bartolini et al.

Section 4, namely minC, sum, and vol[1], hereafter referred to simply as vol.
Since, as demonstrated in Section 4.2, sum behaves like vol[∞], the performance
of vol[m], for 1 < m < ∞, will always be between that of sum and vol. For the
SFS algorithm, we consider that it sorts points based on their entropy, that is,
using vol (see Section 4.1). In Section 7.4, we analyze the effects of accessing
points according to the �minC asymmetric sorting function.

In our study, we are mainly interested in measuring the following cost
metrics:

Fraction of fetched points (FP). This represents the fraction of points in the
dataset (that is FP ≤ 1) that must be read for correctly computing the skyline.
This metric is shown only for SaLSa variants, since FP = 1 always holds for
SFS.

Dominance tests (DT). This measures the total number of dominance tests
that an algorithm executes, normalized to n, the cardinality of the dataset.
Since SFS fetches all points, for this algorithm, it is always DT ≥ 1, whereas
DT < 1 is possible for SaLSa.15

Besides above machine-independent metrics, in Section 7.3 we also report
results on actual execution times.

For our experiments, we used both synthetic and real datasets. Syn-
thetic datasets with dimensionality d in the range [2, 6] were generated as
in Börzsönyi et al. [2001], each following a particular data distribution, namely
uniform, correlated, or anti-correlated. In an anti-correlated dataset, a point
with a low value on a dimension is likely to have a high value on at least
one other dimension, which leads to having large skylines [Börzsönyi et al.
2001]. We also generated so-called mixed datasets, in which 50% of the points
are anti-correlated and the remaining 50% are uniformly distributed in the
[0.5, 1]d domain. Thus a mixed dataset simulates the case where the “front”
of the dataset is anti-correlated, after which several other points follow. Their
actual distribution is indeed almost immaterial, the relevant thing being that
such points are all likely to be dominated by some other point in the front. We
found this kind of mixed distribution more similar than any of the other three
synthetic ones to what some real data actually look like, an example of which
is given in Figure 13.

The real datasets we used are:

NBA. This dataset (available at www.basketballreference.com) consists of
19, 112 tuples containing statistics of basketball players during regular seasons
in the period [1946–2005]. Multiple tuples are present for players that switched
teams during the season (one for each team + one total), thus we deleted the
“total” tuples from the set, obtaining 17, 791 tuples. For each player, we only
retained six of his statistics, namely number of games played during the season
(gp), points scored (pts), total rebounds (reb), assists (ast), field goals made
(fgm), and free throws made (ftm). Other statistics were not used, since they
were not available for all players, for example, steals were not considered before
1973.

15Actually, for SFS it is DT ≥ (n − 1)/n, but this makes no practical difference.

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 31, Publication date: November 2008.

Efficient Sort-Based Skyline Evaluation • 31:31

Fig. 13. Normalized distribution of points in the reb-ast subspace of the NBA dataset. The ellipse

encloses the anti-correlated skyline front. Also shown is the stop point used by symmetric sorting

functions.

Color. The nine-dimensional Color dataset, which we downloaded from the
UCI KDD site at kdd.ics.uci.edu, include 68, 040 objects, where each tuple
represents the first three moments of the RGB color distribution of a color
image.

Household. This dataset (available at www.ipums.org) consists of 127, 931
six-dimensional tuples. Each tuple represents the money spent in one year by
an American family for six different types of expenditures (e.g., electricity, gas,
phone). Apparently, this is a positively correlated dataset, since attribute values
are all likely to assume higher values for families with a higher income.

EEG. Our largest dataset, available at the UCI KDD site, contains 2, 824, 483
64-dimensional vectors, where each component represents a measurement ob-
tained from an EEG electrode placed on a subject’s scalp. For our experiments,
we only retained the first six components of the vectors.

All real datasets were normalized on-the-fly in the [0, 1] range: for each at-
tribute Aj normalization was achieved by using in any sorting function the
expression (Aj − Aj ,min)/(Aj ,max − Aj ,min) in place of Aj (or complementing
the expression to 1 if Aj had to be maximized), where Aj ,max and Aj ,min are the
maximum and the minimum value, respectively, of attribute Aj in the dataset.

Unless otherwise stated, all experiments on real datasets were performed by
averaging results on all subspaces at a given dimensionality d . For instance, re-
sults at d = 4 for the NBA dataset are the average of executing the experiments
on all the (6

4
) = 15 four-dimensional subspaces of this dataset.

All datasets were bulk-loaded into the DB2 Universal DataBase V8.1, run-
ning on a Pentium IV 3.4 GHz PC equipped with 512 MB of main memory and
an 80GB Samsung SP0812C hard drive, under the Windows XP Professional
operating system. SaLSa and SFS were implemented in Java on a client ma-
chine. Since in all the experiments the skyline was sufficiently small to fit in
main memory, no temporary file was ever needed (i.e., both SaLSa and SFS
always completed in a single pass).

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 31, Publication date: November 2008.

31:32 • I. Bartolini et al.

Fig. 14. Fraction of fetched points (FP) versus dimensionality d (n = 500K , synthetic datasets).

7.1 The Effect of Sorting Functions

In this first experiment, we aim to establish the performance of the vol, sum,
and minC functions in limiting the input relation. Figures 14 (synthetic datasets)
and 15 (real datasets) show the fraction of fetched points, FP, as a function of
the number of skyline attributes, d .

From the figures, it is evident that the minC function largely outperforms
its competitors in all scenarios, and that even at six dimensions it is able to
prune a large part of the input stream. For instance, on the Color dataset, only
42.9% of the points (i.e., 29, 217 out of 68, 040) have to be read to determine a
complete six-dimensional skyline. At lower dimensionalities, results are more
impressive: a two-dimensional skyline on the NBA dataset requires only 3.8%
of the input to be fetched, that is, 678 points out of 17, 791. Results on House-
hold show that this dataset is indeed positively correlated, as can be argued
from the comparison of graphs in Figure 15(c) and Figure 14(b). On datasets
of this kind, for which finding the skyline can be considered a relatively easy
task, the performance of minC is indeed excellent and almost independent of
the number of attributes. Even at d = 6, SaLSa with minC reads only 0.93%
(=1,197/127,931) and 0.62% (=3,116/500,000) of the Household and the corre-
lated synthetic data, respectively. On EEG, which is the largest dataset we use,

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 31, Publication date: November 2008.

Efficient Sort-Based Skyline Evaluation • 31:33

Fig. 15. Fraction of fetched points (FP) versus dimensionality d (real datasets).

the pruning capability of minC reaches its maximum: for instance, when d = 6
only 1, 418 points out of more than 2.8 millions are fetched to compute a skyline
that contains 56 points!

The only dataset on which minC is not effective in limiting the input stream
is the anti-correlated one, starting from d = 4 (see Figure 14(c)). However, it is
known that skyline queries on anti-correlated datasets are almost meaningless
for medium-large values of d , since they are likely to return far too many points.
For instance, when d = 6, the skyline contains about 70, 000 points. Nonethe-
less, if the dataset consists of an anti-correlated “front” and of other worse data,
SaLSa is still applicable with success. This is derived from the results on the
mixed dataset (Figure 14(d)), where the minC function is able to get rid of all
the data behind the anti-correlated front, which in our setting accounts for 50%
of the input.

Concerning the behavior of the sum and vol functions, from all graphs it is
evident that the former always limits more than the latter, even if differences
are not so impressive as if compared with minC. This confirms the analysis in
Section 4.1 and suggests that any vol[m] function, with 1 < m < ∞, will yield
similar results.

Figure 16 shows how FP depends on the cardinality of the dataset, n, when
d = 4 (similar results are observed for other dimensionalities). On all datasets it

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 31, Publication date: November 2008.

31:34 • I. Bartolini et al.

Fig. 16. Fraction of fetched points (FP) versus dataset cardinality n (d = 4, synthetic datasets).

is confirmed that having more points makes SaLSa more effective, as explained
in Section 5.1.

We now turn to studying how a different sorting criterion can influence the
number of dominance tests, DT . Our first experiment aims to investigate if
the variant of minC, in which current skyline points are scanned in backward
order, as described in Section 5.3, is indeed effective in reducing the number
of dominance tests with respect to the basic (forward) case. Results for all the
eight datasets at d = 4 are shown in Table I.

In all cases but one, the backward version is highly beneficial, being able
to save up to 89% of the overall number of comparisons. The only dataset for
which reversing the scan order of skyline points leads to increase the number
of dominance tests is EEG. Although the relative increase is high (about 200%),
in absolute terms, differences are almost irrelevant, even considering that the
EEG dataset consists of more than 2.8 millions points.

It is interesting to observe that the relative performance of the backward
variant improves with the “difficulty” of the filter phase, as can be argued by
looking at the results for synthetic datasets. Similar trends are observed at
all dimensionalities. For this reason, in the following, we only consider minC in
which current skyline points are scanned using the backward variant.

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 31, Publication date: November 2008.

Efficient Sort-Based Skyline Evaluation • 31:35

Table I. Number of Dominance Tests: minC Variants for Scanning the Current Skyline Set (d = 4)

Datasets

uniform corr. anti-corr. mixed NBA Color House. EEG

forward 1,317,935 45,723 431,529,348 212,458,072 11,604 631,785 2,998 2,918

backward 368,434 22,127 47,199,335 28,594,851 10,164 135,369 2,310 8,760

saving 72.0% 51.6% 89.1% 86.5% 12.4% 78.6% 22.9% −200.2%

Fig. 17. Number of dominance tests (DT) versus dimensionality d (n = 500K , synthetic datasets).

Figure 17 shows that on synthetic datasets the minC sorting function, which
is the clear winner when limiting the input is concerned, is also the best al-
ternative for minimizing the number of comparisons. This is evident for the
correlated datasets. For other datasets this holds as long as d ≤ 4, whereas
at higher dimensionalities differences are hardly appreciable and all methods
perform similarly. Considering the sum and vol functions, the former is always
slightly better than the latter.

Results on real datasets, shown in Figure 18, provide a similar picture. On
NBA, minC is always far better than other sorting criteria, even if relative dif-
ferences reduce when d grows. For instance, at d = 2, minC performs 823 tests
and SFS 18, 643, a relative 2, 163% overhead, whereas at d = 6, the overhead
of SFS reduces to 38.7% (53, 105 versus 38, 293 tests). Similar, but with much

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 31, Publication date: November 2008.

31:36 • I. Bartolini et al.

Fig. 18. Number of dominance tests (DT) versus dimensionality d (real datasets).

more marked differences, is the behavior on Household, for which minC at six
dimensions, say, performs only 7, 657 dominance tests against the 129, 999 ex-
ecuted by SFS and the other sorting functions. Analogous considerations can
be done for the EEG dataset. Finally, on the Color dataset, we observe that
minC behaves as with uniform datasets, being the best method up to d ≤ 4 and
comparable to the others for higher d values.

Finally, Figure 19 analyzes how DT varies with the cardinality of the dataset
(d = 4 is used in this experiment). Remind that DT is the average number of
dominance tests per object in the dataset. For all methods the general trend is
that DT decreases with n, which is also to say that the overall number of tests,
that is, DT · n, grows less than linearly with n.

7.2 Accuracy of the Model

Now we turn to analyzing the accuracy of the model, introduced in Section 5.2,
in predicting the fraction of fetched points when using the minC function. To
this end, we compare actual results with estimates obtained from a minskew
histogram [Acharya et al. 1999] in which each coordinate is initially split into
10 intervals. All experiments are run using an integration step �l = 0.01.

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 31, Publication date: November 2008.

Efficient Sort-Based Skyline Evaluation • 31:37

Fig. 19. Number of dominance tests (DT) versus dataset cardinality n (d = 4, synthetic datasets).

Figure 20 shows that the model is extremely accurate, errors never exceeding
10%. This holds regardless of the dimensionality and of the cardinality of the
dataset. Results refer to mixed-distributed data, accuracy on other synthetic
datasets being similar (for the uniform datasets refer to Section 5.1).

Figure 21 validates the model on the real datasets. For these experiments,
rather than averaging results over all possible subspaces as done in other ex-
periments, we selected one specific subspace for each value of d in the range
[2, 6]. This is also to say that the graphs show the actual model’s predictions
(on the selected subspaces), rather than average ones. From these premises,
we can indeed conclude that the model’s estimates are excellent. The only case
in which the model yields poor relative estimates is for the Household dataset.
The basic reason lies in the assumption of uniform distribution of points within
each bucket (refer to Section 5.2), which for correlated datasets (as Household
appears to be) leads to pessimistic estimates. Nonetheless, absolute, as con-
trasted to relative, errors of the model are low even for the Household dataset,
at d = 6 being only 0.06.

The applicability of our model in a real scenario depends on the dimensional-
ity of the dataset and on the actual data distribution. This is because memory
requirements of minskew, as well as of any other state-of-the-art histogram,

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 31, Publication date: November 2008.

31:38 • I. Bartolini et al.

Fig. 20. Estimated and actual fraction of fetched points (mixed dataset, minC sorting function); (a)

versus d (n = 500K); (b) versus n (d = 4).

Fig. 21. Estimated and actual fraction of fetched points versus d (real datasets, minC sorting

function).

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 31, Publication date: November 2008.

Efficient Sort-Based Skyline Evaluation • 31:39

Table II. Elapsed Time on Synthetic Datasets (n = 500K , d = 4. Times are

in Seconds)

Uniform Mixed

sum minC vol sum minC vol
Sorting 1.57 1.79 1.64 2.15 2.40 2.44

Fetching 3.85 0.42 3.94 3.82 1.91 3.90

Filtering 2.11 0.10 2.21 5.02 2.57 6.26

Total 7.53 2.31 7.79 10.99 6.88 12.60

Table III. Elapsed Time on Real Datasets (d = 4)

NBA Color Household EEG

sum minC vol sum minC vol sum minC vol sum minC vol
Sorting 0.02 0.03 0.02 0.07 0.11 0.07 0.34 0.40 0.36 39.97 48.65 40.33

Fetching 0.08 0.03 0.09 0.54 0.08 0.55 1.02 0.01 1.02 22.59 0.01 22.59

Filtering 0.03 0.01 0.04 0.35 0.06 0.34 0.52 0.01 0.52 23.39 0.01 24.46

Total 0.13 0.07 0.15 0.96 0.25 0.96 1.88 0.42 1.90 85.95 48.67 87.38

in the worst case, grow exponentially with d . Our experiments, whose results
confirm those by Papadias et al. [2005], who used minskew histograms to com-
pute an approximate skyline, show that good accuracy and moderate memory
consumption can be obtained for all datasets as long as d ≤ 3 ∼ 4, whereas,
for higher d values, the number of buckets can become impractical for some
datasets (e.g., anti-correlated). We remark that this is not a limit of our model,
yet it depends on the intrinsic complexity of accurately modelling multidimen-
sional datasets.

7.3 Elapsed Times

Now we present results on total elapsed times for the different symmetric sort-
ing functions, which also allows a comparison between the different cost com-
ponents to be made. For these experiments, the size of each point becomes
relevant, since it can influence both sorting and communication costs. For all
datasets, as done in Börzsönyi et al. [2001], we added a dummy attribute so as
to have a point size of 100 bytes.

Table II shows how the total elapsed time spent for the four-dimensional
uniform and mixed datasets breaks down into sorting, fetching, and filtering
components. Similar results are shown in Table III for the real datasets. For
these experiments, we used a client with the same processing capabilities as
the server and the average throughput between the two machines was about
100Mb/sec.

Looking at results, one can draw the conclusion that the fetching time can
have a major impact on the overall performance, in our setting even superior,
for all datasets but mixed and EEG, to that of the filtering phase. On the other
hand, sorting, unless the other two phases are cheap to execute, only accounts
for a minor percentage of the overall time. It has to be observed that sorting
times of minC are usually slightly higher than those of both sum and vol. This
is due to the overhead of invoking a DB2 User Defined Function (UDF) for
computing the minimum of d values and also to the secondary sorting criterion
of minC.

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 31, Publication date: November 2008.

31:40 • I. Bartolini et al.

Table IV. Fetching+Filtering Times of minC with Respect to vol (d = 4)

Uniform Mixed NBA Color Household EEG

8.46% 44.13% 30.78% 16.00% 0.30% 0.02%

Table V. Simulation of Different Network and Client Scenarios (Color dataset, d = 4)

Slower (10%) Slower (10%)

client connection client CPU speed

sum minC vol sum minC vol
Sorting 0.07 0.11 0.07 0.07 0.11 0.07

Fetching 5.44 0.84 5.48 0.54 0.08 0.55

Filtering 0.35 0.06 0.34 3.46 0.58 3.43

Total 5.86 1.01 5.89 4.07 0.77 4.05

Table IV summarizes these results by showing the sum of fetching and fil-
tering times for the minC function, normalized to that obtained when using vol.
The table ignores sorting times so as to emphasize the speedup obtainable from
a sorting criterion that allows most of the input data to be pruned.

In the next experiment, we simulate two different scenarios in order to better
appreciate how the different cost components vary with them. Table V shows
results for the Color dataset at d = 4. In the first case, we simulate a network
connection with an effective transfer rate of 10Mb/sec, that is, 10 times slower
than that in Table III, whereas in the second scenario we have a fast 100Mb/sec
connection, yet the client processing power is one-tenth of the reference case. In
both cases it is evident how minC can substantially limit the total time, which
is only the 17.3% and the 19%, respectively, of that required by the other two
functions.

7.4 Asymmetric Sorting Functions

We now turn to analyzing the effects of using the �minC asymmetric function
for sorting points. For histogram construction, we consider the same setting as
in Section 7.2.

In Figure 22, we report values of fetched points on the real datasets for the
�minC (denoted Delta-minC in the figure) and the minC functions. With the only
exception of Household, for which values of FP are extremely low even when
using minC, and no difference can be appreciated, it can be seen that adapting
the sorting criterion to the actual data distribution is indeed highly effective,
in particular as d grows. For instance, at six dimensions, �minC fetches only
21.4% of the NBA dataset, whereas minC needs to read 69.1% of the points.
Values change to 31.5% and 42.9%, respectively, for the Color dataset, and to
0.02% and 0.05%, respectively, for the EEG dataset.

The hypothesis that asymmetric sorting is more effective with “harder”
datasets is also supported by results in Figure 23 on the number of dominance
tests. In particular, while for Color and Household datasets no significative im-
provements with respect to minC can be observed, for the NBA dataset, �minC
is indeed able to save a large percentage of comparisons among points (92.9%
at 2 and 56.7% at six dimensions, respectively).

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 31, Publication date: November 2008.

Efficient Sort-Based Skyline Evaluation • 31:41

Fig. 22. Fraction of fetched points (FP) versus dimensionality d for the symmetric minC and the

asymmetric �minC functions (real datasets).

Figure 24 analyzes how good the estimates provided by histograms are in
guessing the optimal shift vector. As in Figure 21, for each value of d in the
range [2, 6], results refer to a single subspace of that dimensionality. Graphs
labelled Delta-minC-opt (�minCopt) refer to the ideal case in which the exact
location of popt is known, and provide a lower bound to the number of points to
be fetched by �minC. For all datasets but Household, �minC is quite close to the
intrinsic SaLSa performance limit, which is about one order of magnitude less
than can be obtained from the (symmetric) minC function.

The relatively poor behavior of �minC with Household has the same expla-
nation as the one given to comment on the results in Figure 21, that is, the
high positive correlation exhibited by this dataset invalidates the assumption
of uniform distribution within histogram buckets.

8. EXTENDING SALSA WITH MULTIPLE STOP POINTS

Before concluding this article, in this section, we provide some clues on how
the basic principle exploited by SaLSa to prune points from a data stream can
be generalized so as to work with multiple stop points (MSP’s). In particular,
we describe which changes are needed to the logic of SaLSa when MSP’s are

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 31, Publication date: November 2008.

31:42 • I. Bartolini et al.

Fig. 23. Number of dominance tests (DT) versus dimensionality d for the symmetric minC and the

asymmetric �minC functions (real datasets).

used, discuss what this extension, which we call SaLSa-MSP, requires from a
computational point of view, and present some experimental results. To keep
the discussion simple, we will consider only symmetric functions, the general-
ization to the asymmetric case presenting no particular difficulty, and we will
continue to use pstop to denote the point chosen according to the MiniMax rule
in Theorem 2.

To start with, let Sstop ⊆ S be a nonempty subset of the complete skyline
of relation r that is used to stop SaLSa-MSP execution. We call Sstop the stop
set. Clearly, the case Sstop = {pstop} yields the basic SaLSa version we have
considered until now. Then, SaLSa-MSP can be halted when the sorting function
M has reached a level l such that the stop set dominates the unread domain at
level l , that is, Sstop � D(M, l). This is to say that, for each point p ∈ D(M, l),
there exists a point pi ∈ Sstop such that pi � p.

Let DR(Sstop) be the region dominated by points in Sstop, that is:

DR(Sstop) =
⋃

pi∈Sstop

DR(pi). (20)

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 31, Publication date: November 2008.

Efficient Sort-Based Skyline Evaluation • 31:43

Fig. 24. Fraction of fetched points (FP) versus dimensionality d (real datasets). Graphs of �minC

are derived from histogram estimates, those of �minCopt are obtained by using the optimal shift

vector defined in Theorem 10.

and denote with lstop(M;Sstop) the stop level corresponding to Sstop, that is, the
minimum value of l such that D(M, l) ⊆ DR(Sstop) holds.

Our first result on SaLSa-MSP concerns the optimal minC function.

LEMMA 7. When the input relation r is sorted using minC, it is:

lstop(minC;Sstop) ≥ lstop(minC; {pstop}) = p+
stop,

with equality attained if and only if Sstop includes pstop or another point pi such
that p+

i = p+
stop.

PROOF. Without loss of generality, assume that pstop does not lie on the main

diagonal of the data space, that is, there exists j such that pstop[j] < p+
stop.16

Consider the point pdiag = (p+
stop, . . . , p+

stop) and observe that pstop � pdiag. Fur-
ther, SaLSa can halt just after reading pdiag. For SaLSa-MSP to stop at level

p+
stop there must be a point pi ∈ Sstop such that pi � pdiag. This implies that

16If pstop[j] = p+
stop holds for all j , arguments in the proof still apply with minimal changes.

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 31, Publication date: November 2008.

31:44 • I. Bartolini et al.

Fig. 25. SaLSa-MSP uses a set Sstop with multiple stop points: In (a) it is Sstop = {C1, C2},
whereas the complete skyline is used in (b). Solution points of the StopLevel problem are drawn as

small squares.

p+
i ≤ p+

stop. The case p+
i = p+

stop is covered in the Theorem formulation. The case

p+
i < p+

stop is ruled out by the very definition of pstop.

The lemma asserts that having MSP’s with the minC function is useless. This
is because minC always prunes a hypercubic region of the data space, and the
maximal hypercube contained in DR(Sstop) coincides with the one dominated by
pstop (if pstop ∈ Sstop).

On the other hand, for sorting functions other than minC, using more than
one stop point can indeed be beneficial. For instance, Figure 25 shows the effects
of using MSP’s on the UsedCars relation, when the sum function is used (more
details on this are given in Example 11). Intuitively, the effectiveness of SaLSa-
MSP in limiting the input stream increases by adding more points to the stop
set. However, this comes at the price of additional resources needed to determine
the value of the stop level lstop(M;Sstop). Note that this evaluation needs to be
repeated several times, since the stop level might change (decrease) whenever
new skyline points are discovered and added to the stop set.

If one decides to have a stop set with only a few points, how to effectively
choose such points becomes an issue. The solution that guarantees that the stop
level gets minimized would rebuild Sstop from scratch whenever a new skyline
point is discovered. However, the complexity of this approach is prohibitive,
even for moderately large skylines. At the other extreme, one could build Sstop
in an incremental way and, whenever a new skyline point p is added to S, check
if the stop level can be decreased by inserting p also in Sstop in place of another
point. However, this heuristic approach provides no guarantee that the stop
level gets minimized.

Considering the observations, we conclude that choosing a “good” stop set
seems to be a difficult problem, which we plan to deeply investigate in a future
work. For this reason, in the following, we omit considering such issues and
concentrate on the problem that any strategy for choosing a stop set has to deal
with, that is, how to determine the value of the stop level. The basic scenario to
analyze is when points are sorted using the linear sum function, in which case

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 31, Publication date: November 2008.

Efficient Sort-Based Skyline Evaluation • 31:45

computing the stop level amounts to solve a linear optimization problem. The
proof of the following result appears in the Electronic Appendix.

THEOREM 12. When the input relation r is sorted using the sum function and
the stop set is Sstop, the stop level lstop(sum;Sstop) is the result of the following
StopLevel disjunctive linear optimization problem:

Maximize : l =
d∑

j=1

p[j], (21)

subject to :
d∨

j=1

p[j] ≤ pi[j] ∀pi ∈ Sstop (22)

0 ≤ p[j] ≤ 1 ∀ j = 1, . . . , d . (23)

Example 11. Figure 25 shows the effects of using MSP’s on the Used-
Cars relation. In Figure 25(a) it is Sstop = {C1, C2}, and the stop level is
lstop(sum;Sstop) = 70. The (unique) solution point of the StopLevel problem is
point p∗ = (20, 50). When all skyline points are used, that is, Sstop = S =
{C1, C2, C4}, the stop level drops down to 60, as shown in Figure 25(b). In this
case, there are two solution points, p∗

1 = (20, 40) and p∗
2 = (50, 10), respectively.

How complex is it to determine the stop level? As the following theorem
proves, in the general case the problem is a difficult one.

THEOREM 13. The StopLevel problem is NP-hard.

Although the StopLevel problem is intrinsically difficult, from the proof of
Theorem 13 presented in the Electronic Appendix, one sees that NP-hardness
is due to the number of dimensions d , rather than to the cardinality of the stop
set. Thus, for moderately low values of d , one could still expect that the stop
level can be efficiently computed.

We implemented SaLSa-MSP by using the CPLEX optimization package17 for
solving the StopLevel problem and decided to always have the stop set coincident
with the complete skyline, that is, Sstop = S. The latter aims to measure the
maximum benefit, in terms of pruned points, obtainable from SaLSa-MSP. In
this way, we are able to restrict the range in which to search for optimal trade-
offs, the other extreme being the basic SaLSa version with 1 stop point.

Figures 26 and 27 show, respectively, the fraction of fetched points and the
number of dominance tests for SaLSa-MSP using sum (denoted MSP-sum in
the figures), SaLSa using sum (1SP-sum), and SaLSa using minC (1SP-minC).
Results are rather unexpected, in that they lead to the overall conclusion that
using minC with a single stop point is definitely the best choice on the Color
dataset, and it leads to performance comparable to that of SaLSa-MSP on NBA
data. Note that at six dimensions, the skyline of NBA includes 102 points, that
of Color 1160, and all of them are also in the stop set Sstop. Even disregarding
the unavoidable overhead due to solving StopLevel with so many points, it is
apparent that, on these datasets, using MSP’s is not effective at all. We conjec-
ture that this is mainly due to the poor limiting power (with respect to minC) the

17CPLEX is a commercial product distributed by ILOG, see www.ilog.com.

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 31, Publication date: November 2008.

31:46 • I. Bartolini et al.

Fig. 26. Fraction of fetched points (FP) versus dimensionality d for SaLSa and SaLSa-MSP.

Fig. 27. Number of dominance tests (DT) versus dimensionality d for SaLSa and SaLSa-MSP.

function sum has on such datasets. Further, how skyline points are distributed
on the data space could be another relevant factor to explain the bad behavior
of SaLSa-MSP. Although we do not rule out the possibility that using MSP’s
can outperform SaLSa using minC on some datasets (possibly using a sorting
function other than sum), understanding when this can be the case remains an
open problem.

9. CONCLUSIONS

Skyline queries have recently emerged as a major tool for extracting interest-
ing objects from multidimensional datasets, and many algorithms have been
proposed so far for their efficient evaluation. Among them, generic (sequential)
algorithms play a major role because of their general applicability, both in the
context of a database system, as well as when the skyline logic runs in a stand-
alone application. With the aim of providing efficient support to the evaluation
of skylines, in this article, we have introduced the SaLSa algorithm, whose
innovative feature is the ability of computing the result without having to ap-
ply dominance tests to all the objects (points) in the input relation. This is

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 31, Publication date: November 2008.

Efficient Sort-Based Skyline Evaluation • 31:47

achieved by presorting the data using a monotone limiting function, and then
checking that unread data are all dominated by a so-called stop point.18

Experimental results show that SaLSa is indeed effective in reducing the
number of points to be read, thus also particularly attractive when the skyline
logic runs on a client with a limited bandwidth connection. We have experimen-
tally and analytically shown that sorting on the minimum coordinate value
of points (the minC function) is optimal, as long as one considers symmetric
sorting functions, and that performance can be accurately predicted. We have
also provided clear evidence that reversing the order in which current skyline
points are considered for filtering new read data, is a highly effective strategy
for reducing the number of comparisons performed by minC, which makes this
function perform strictly better than the entropy method used by the SFS al-
gorithm [Chomicki et al. 2003]. In the course of investigating the performance
limits of SaLSa, we have also analyzed the general case in which an asymmet-
ric function is used to sort points, and shown how performance can be further
improved given information on the actual data distribution.

An interesting extension of our work would be to combine SaLSa’s principles
with those of the LESS algorithm [Godfrey et al. 2005], which integrates part
of the skyline computation within the initial sort phase. Since LESS shares
with SFS the entropy-based sorting criterion, it is expected that using minC (as
well as its asymmetric version) would lead to substantial performance gains,
even in this integrated scenario. Along this direction, trying to also incorporate
principles of incremental sorting [Paredes and Navarro 2006] appears to be
promising. Another interesting research direction would be to investigate an
ad hoc method for histogram construction, so as to make our analytical model
applicable even to higher-dimensional datasets. Finally, a deeper investigation
of the multiple stop points variant we have introduced in Section 8 is needed
to properly understand its full potentialities.

ELECTRONIC APPENDIX

The Electronic Appendix for this article can be accessed in the ACM Digital
Library.

ACKNOWLEDGMENTS

We would like to thank the anonymous referees for their insightful suggestions.

REFERENCES

ACHARYA, S., POOSALA, V., AND RAMASWAMY, S. 1999. Selectivity estimation in spatial databases.

In Proceedings of the 1999 ACM SIGMOD International Conference on Management of Data
(SIGMOD). Philadelphia, PA, ACM, New York, NY, 13–24.

18Incidentally, the idea of limiting the amount of data to be read by exploiting the value of a

monotone function is also used by the SUBSKY algorithm [Tao et al. 2006] for computing skylines

in subspaces. However, SUBSKY is based on a apriori, thus fixed, ordering for each attribute, thus

it cannot be used for arbitrary preference specifications (e.g., distance to a target point), nor can it

be used when the input is the result of some other relational operation.

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 31, Publication date: November 2008.

31:48 • I. Bartolini et al.

BALKE, W.-T., GÜNTZER, U., AND ZHENG, J. X. 2004. Efficient distributed skylining for web informa-

tion systems. In Proceedings of the 6th International Conference on Extending Database Technol-
ogy (EDBT). Lecture Notes in Computer Science, vol. 2992, Springer, Berlin, Heidelberg, New

York, 256–273.

BARTOLINI, I., CIACCIA, P., ORIA, V., AND ÖZSU, T. 2004. Integrating the results of multimedia sub-

queries using qualitative preferences. In Proceedings of the 10th International Workshop on
Multimedia Information Systems (MIS). College Park, MD. Lecture Notes in Computer Science,

vol. 2992, Springer, Berlin, Heidelberg, New York, 66–75.

BARTOLINI, I., CIACCIA, P., ORIA, V., AND ÖZSU, T. 2007. Flexible integration of multimedia sub-

queries with qualitative preferences. Multimed. Tools Appl. 33, 3, 275–300.

BARTOLINI, I., CIACCIA, P., AND PATELLA, M. 2006. SaLSa: computing the skyline without scanning

the whole sky. In Proceedings of the 2006 ACM CIKM International Conference on Information
and Knowledge Management. Arlington, VA, ACM, New York, NY, 405–414.

BÖRZSÖNYI, S., KOSSMANN, D., AND STOCKER, K. 2001. The skyline operator. In Proceedings of the
17th International Conference on Data Engineering (ICDE). Heidelberg, Germany, IEEE Com-

puter Society, Washington, DC, 421–430.

BUCHTA, C. 1989. On the average number of maxima in a set of vectors. Inform. Process. Lett. 33, 2,

63–65.

CHAUDHURI, S., DALVI, N., AND KAUSHIK, R. 2006. Robust cardinality and cost estimation for sky-

line operator. In Proceedings of the 22nd International Conference on Data Engineering (ICDE).
Atlanta, GA. IEEE Computer Society, Washington, DC, 64.

CHOMICKI, J. 2003. Preference Formulas in Relational Queries. ACM Trans. Database Syst. 28, 4,

427–466.

CHOMICKI, J., GODFREY, P., GRYZ, J., AND LIANG, D. 2002. Skyline with presorting. Tech. Rep. CS-

2002-04, York University, Toronto, ON.

CHOMICKI, J., GODFREY, P., GRYZ, J., AND LIANG, D. 2003. Skyline with presorting. In Proceedings of
the 19th International Conference on Data Engineering (ICDE). Bangalore, India. IEEE Computer

Society, Washington, DC, 717–816.

GAREY, M. R. AND JOHNSON, D. S. 1979. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman.

GODFREY, P. 2004. Skyline cardinality for relational processing. In Proceedings of the 3rd Inter-
national Symposium on Foundations of Information and Knowledge Systems (FoIKS). Lecture

Notes in Computer Science, vol. 2942, Springer, Berlin, Heidelberg, New York, 78–97.

GODFREY, P., SHIPLEY, R., AND GRYZ, J. 2005. Maximal vector computation in large data sets. In

Proceedings of the 31st International Conference on Very Large Data Bases (VLDB). Trondheim,

Norway. Morgan Kaufmann, San Francisco, CA, 229–240.

KIESSLING, W. 2002. Foundations of preferences in database systems. In Proceedings of the
28th International Conference on Very Large Data Bases (VLDB). Hong Kong, China. Morgan

Kaufmann, San Francisco, CA, 311–322.

KOSSMANN, D., RAMSAK, F., AND ROST, S. 2002. Shooting stars in the sky: an online algorithm for

skyline queries. In Proceedings of the 28th International Conference on Very Large Data Bases
(VLDB). Hong Kong, China. Morgan Kaufmann, San Francisco, CA, 275–286.

PAPADIAS, D., TAO, Y., FU, G., AND SEEGER, B. 2003. An optimal and progressive algorithm for skyline

queries. In Proceedings of the 2003 ACM SIGMOD International Conference on Management of
Data (SIGMOD). San Diego, CA. ACM, New York, NY, 467–478.

PAPADIAS, D., TAO, Y., FU, G., AND SEEGER, B. 2005. Progressive skyline computation in database

systems. ACM Trans. Database Syst. 30, 1, 41–82.

PAREDES, R. AND NAVARRO, G. 2006. Optimal incremental sorting. In Proceedings of the 8th Work-
shop on Algorithm Engineering and Experiments (ALENEX) and the 3rd Workshop on Analytic
Algorithmics and Combinatorics (ANALCO). Miami, FL. SIAM Press, Philadelphia, PA, 171–

182.

PREPARATA, F. P. AND SHAMOS, M. I. 1985. Computational Geometry—An Introduction. Springer.

SAKAMOTO, H. 1943. On the distributions of the product and the quotient of the in-

dependent and uniformly distributed random variables. Tohoku Math. J. 49, 243–

260.

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 31, Publication date: November 2008.

Efficient Sort-Based Skyline Evaluation • 31:49

TAN, K.-L., ENG, P.-K., AND OOI, B. C. 2001. Efficient progressive skyline computation. In Proceed-
ings of the 27th International Conference on Very Large Data Bases (VLDB). Rome, Italy, Morgan

Kaufmann, San Francisco, CA, 301–310.

TAO, Y., XIAO, X., AND PEI, J. 2006. SUBSKY: efficient computation of skylines in subspaces. In

Proceedings of the 22nd International Conference on Data Engineering (ICDE). Atlanta, GA.

IEEE, Computer Society, Washington, DC, 65.

Received June 2007; revised March 2008; accepted July 2008

ACM Transactions on Database Systems, Vol. 33, No. 4, Article 31, Publication date: November 2008.

