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Abstract

We propose the concept of fractal dimension of a set of

points, in order to quantify the deviation from the uniformity

distribution. Using measurements on real data sets (road

intersections of U.S. counties, star coordinates from NASA’s

Infrared-Ultraviolet Explorer etc.) we provide evidence that

real data indeed are skewed, and, moreover, we show that

they behave as mathematical fractals, with a measurable,

non-integer fract al dimension.

Armed with this tool, we then show its practical use in

predicting the performance of spatial access methods, and

specifically of the R-trees. We provide the jirst analysis of

R-trees for skewed distributions of points: We develop a

formula that estimates the number of disk accesses for range

queries, given only the fractal dimension of the point set,

and its count. Experiments on real data sets show that the

formula is very accurate: the relative error is usually below

5%, and it rarely exceeds 10%.

We believe that the fractal dimension will help replace the

uniformity and independence assumptions, allowing more

accurate analysis for any spatial access method, as well as

better estimates for query optimization on multi-attribute

queries.

1 Introduction

In this work we study the distribution of real datasets

with D-dimensional points. Sets of multidimensional

points appear in several database applications: records

in relational DBMSS can be viewed as points in” attribute

space; geographic information systems (GIS) [Sam90]

contain point data, such as cities on a 2-dimensional

map; medical image databases with, eg., 3-dimensional

MRI brain scans, require the storage and retrieval of
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point-sets, such as digitized surfaces of brain struc-

tures [ACF+ 93], etc. For the balance of this work, the

term point-set and dataset will be used interchangeably.

An interesting problem is the estimation of the search

effort for range queries, when the points are stored

in a spatial access method (SAM), such as an R-

tree. A closely related problem is the estimation of

selectivity y (ie., number of qualifying points) for range

queries: this is useful in the query optimization in an

RDBMS with multidimensional queries [MD88] or in

a GIS [AS91]. The traditional assumptions are the

uniformity and independence assumption, which make

the analysis tractable.

However, these assumptions do not hold on real data;

moreover, they lead to pessimistic estimates [Chr84].

For a single attribute, the uniformity assumption has

been relaxed, eg., [IC9 1], typically using the Zipf distri-

bution [Zip49]. Distributions of real attributes indeed

follow the Zipf distribution or the generalized Zipf dis-

tribution: for example, word frequencies in the English

language (as well as other languages); salaries [Zip49];

first names and last names of people [FJ92], etc.

However, no attempt has been made to model multi-

dimensional distributions. Theoretical analyses in such

cases assume that points are uniformly distributed in

the address space [FSR87], [AS91], which also implies

that the attributes are uncorrelated. Even in simulation

studies, researchers on spatial access methods and

multi-attribute query optimization are forced to use ad-

hoc, non-uniform distributions, such as the gaussian

distribution [N S86], some sort of clustered distributions

(with points clustering around uniformly distributed

sites [Ore86], or points clustering around curves, like

the sinusoidal curve [BKSS90]), or even to obey the

independence assumption anyway [MD88]. Although

non-uniform, it is unclear whether these distributions

resemble real distributions.

Evidence that real distributions violate both assump-
tions is overwhelming. Figure 1 provides a counter-

example for both assumptions, using two real datasets.

Figure l(a) shows the population vs. area scatter-

plot for 181 nations, from the World Factbook (avail-
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Figure 1: (a) WORLD dataset (b) WORLD dataset - log-log scale (c) Cross-roads of Montgomery County of Maryland

able, eg., with anonymous ftp from ocf. berkeley. edu,

/f tp/pub/Library/Ref erence/WorldYactbook). No-
tice that the points follow a highly skewed distribution:

there are a few large and/or highly populated nations

(eg., China, India), while the vast majority of points is

close to the origin. Figure 1(b) shows the same scatter

plot in doubly logarithmic scales, to highlight the strong

correlation between area and population.

Figure 1 (c) shows the road intersections for the

Montgomery County of Maryland. Notice that the

distribution is clearly non-uniform. Also notice that it

does not resemble a gaussian distribution either : there

are several high-concentration areas (one for each city,

like Bethesda, Rockville, Gaithersburg etc).

In conclusion, we need a way to describe distributions

of real multi-dimensional points. The problem we want

to solve is the following:

GIVEN real distributions of multi-dimensional points

FIND a way to characterize their deviation from

uniformity

TO PREDICT the search performance of a spatial

access method (SAM).

The description should allow us to analyze several types

of queries, such as ‘range’ queries, ‘nearest neighbor’

queries, ‘spatial joins’ etc. In this paper we focus on

range queries.

For the above problem, we propose the concept of

jractal dimension as the solution. We show that several

real distributions indeed exhibit fract al behavior, that

is, they are self-similar: portions of the point-set are

statistically similar to the whole set (see Figure 3

for an example). We describe how to compute the

fractal dimension of a set of points, and then we show
how to use it to predict the performance of spatial

access methods that store this point-set. Specifically,

we examine the R-trees and provide the first known

analysis for them, for real distributions.

The paper is organized as follows: Section 2 provides

the background information about R-trees. Section

3 gives the definition of the fractal dimension, along

with examples from real data. Section 4 presents the

analysis. Section 5 gives the experimental results and

Section 6 lists the conclusions.

2 Background

In this section, we provide a brief description of R-

trees [Gut84], which will be the SAM that we use to

illustrate our analysis. Additional SAMS include the

quad-tree based methods [Gar82, 0re86] and grid file

and its variants [NHS84]; see [Sam89] for a survey. We

focus on the R-tree because it seems to be one of the

most successful methods.

The original R-tree [Gut84] was suggested by Guttman;

it is the extension of the B-tree for multidimensional ob-

jects. A geometric object is represented by its minimum

bounding rectangle (MBR). Non-leaf nodes contain en-

tries of the form (ptr,R) where ptr is a pointer to a child

node in the R-tree; R is the MBR that covers all rectan-

gles in the child node. Leaf nodes contain entries of the

form (obj-id, R) where obj-id is a pointer to the object

description, and R is the MBR of the object. The main

innovation in the R-tree is that father nodes are allowed

to overlap. This way, the R-tree can guarantee at least

50% space utilization and at the same time remain bal-
anced. Figure 2 illustrates data rectangles (in black),

organized in an R-tree with fanout 3.

Subsequent work on R-trees includes the packed-

[RL85] and Hilbert-packed R-trees [KF93], the R+-

tree [SRF8’i’l, R-trees using Minimum Bounding Poly-

gons [Jag90] and the R*-tree [BKSS90]. The latter

seems to give the best search times, mainly thanks to the
idea of deferring the splits by ‘force-reinserting’ some of

the entries of the overflowing nodes.

The last part in this section is a summary of previous

attempts tc) analyze the R-trees. In [F SR87j we assumed
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Figure 2: Data (dark rectangles) organized in an R-tree

with fanout=3

that the points are uniformly distributed in the address

space. Recently, we provided formulas [KF93] that

assume that the R-tree has been built and that we can

measure the MBR of each node of the R-tree. The

results are as follows. Consider the n-th node of the

tree, and let its MBR be Zl,n x . . . x xD,~. We denote

it compactly as:

Z;=(q,n, ..., xD,n) (1)

Similarly, let

F=(!h, . ..j!m) (2)

denote a range query with side qi on the i-th dimension.

Then, we have the following theorem:

Theorem 1 The average number P(@ o-f nodes (Z

pages) accessed by a query of sides ~ is given by

D

(3)
n i=l

where the summation extends over all the nodes of the

tree.

Proofi See [KF93].

A similar analysis, mainly focusing on square queries,

was published independently in [PSTW93]. Notice that

Theorem 1 allows us to calculate the node accesses

for any level of the tree: we only need to restrict the

summation over the nodes of the level(s) of interest.

In the next sections we shall see how to predict the

size of the MBRs of the nodes of the tree, before even

the tree is built. To do that, we show that we only need

the fract al dimension d of the point-set, and, of course,

the number of points N and the fanout of the tree.

3 Fractal Dimension

Intuitively, a set of points is a fractal if it exhibits self-
similarity over all scales. This is illustrated by an exam-

ple: Figure 3(a) shows the first few steps in constructing

the so-called Sierpinski triangle. Figure 3(b) gives 5,000

points that belong to this triangle. Theoretically, the

Sierpinski triangle is derived from an equilateral trian-

gle ABC, by excluding its middle (triangle A’B’C’) and

recursively repeating this procedure for each of the re-

sulting smaller triangles. The resulting set of points

exhibits ‘holes’ in any scale; moreover, each smaller tri-

angle is a miniature replica of the whole triangle. In gen-

eral, the characteristic of fract als is this selj-similarity

property: parts of the fractal are similar (exactly or sta-

tistically) to the whole fractal. For our experiments we

use 50,000 sample points from the Sierpinski triangle

(’SIERPINSKI’ dataset).

The Sierpinski triangle gives an example of points

which follow a highly non-uniform distribution; yet, the

distribution is deterministic, and easy to describe, at

least in English. There should be an equally easy, way

to describe it mathematically.

3.1 Formal definitions and Measurements

Consider a geometrical object (eg., like the Sierpinski

triangle) with the ‘self-similarit y‘ property, consisting

of a set of points in D-dimensional space. The

dimensionality D of the address space is defined as the

embedding dimension.

The fractal dimension d, (or, more accurately, the

box-counting fractai dimension) is defined as follows [Sch91]:

Divide the D-dimensional space into (hyper-)cubic grid

cells of side r. Let N(r) denote the number of cells that

are penetrated by the fractal (i.e., contain 1 or more

points of it). Then the (box-counting) fractal dimen-

sion d of a fractal is defined as

d ~ ~im log N(r)

,+0 log(l/r)
(4)

This definition is useful for mathematical fractals,

that consist of infinite number of points. For a finite

sample of points that belong to a fractal, we use the

boxcount-side plot to estimate the fract al dimension.

By boxcount-side plot we mean the plot of log(N(r))

vs log(r). Its usefulness lies in the fact that, if the

point-set is self-similar, the plot is almost a straight
line. Moreover, the slope of the line is the (negated)

fractal dimension of the point-set. This is the standard

way to measure the fractal dimension for real point-

sets [Sch91]:

Definition 1 For a point-set that has the self-similarity

property, its fractal dimension d is measured as

d=- 8 log(N(r))

8 log(r)
= constant (5)

Corollary 1 For a point-set with the self-similarity

property, we have

6
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Figure 3: (a) Three steps in generating sierpinski triangle (b) 5000 points forming Sierpinski triangle (c)

of the solid line gives the fractaJ dimension of Sierpinski triangle % 1.59

N(r) = K/rd (6)

where K is an integration constant.

Proofi Since d remains constant with r, we obtain Eq. 6

by integrating Eq. 5.

Next we give some examples to illustrate how the

method works.

Example 1: Figure 4 illustrates the method when the

object is the diagonal line segment (O,0)-(1,1). Figure

4(a) shows that the line segment penetrates 4 boxes of

side r = 1/4, and Figure 4(b) shows it penetrating 8

boxes of side r = 1/8. Thus, we have

N(r) = (l/r) = (1/r)l r <1 (7)

and, therefore,

d= _f310g((l/r)’) = ~

13log(r)
(8)

which is intuitively expected, since a line segment is a

l-dimensional object.

The fact that the fractal dimension of a line segment

reduces to its Euclidean dimension is not a coincidence:

Notice that Euclidean objects, like lines, circles, planes

etc. trivially fulfill the self-similarity requirement:

for example, a part of a line segment is a miniature

replica of the whole segment. Based on the above, we

have [Man7~:

Observation 1 For

dimension reduces to

Euclidean objects, their fractal

their Euclidean dimension.

The slope

Thus, lines, line segments, circles, and all the standard

curves have d= 1; planes, disks and standard surfaces

have d=2; euclidian volumes in D-dimensional space

have d = D.

Example 2. This is an example of a fractal with a

non-integer d. Figure 3-(c) shows the boxcount-side plot

for the SIERPINSKI set of points of Figure 3-(b) The

line haa slope (-)1.59, while the theoretical number is

log 3/ log 2 = 1.5849 [Man77]. The plot also contains

two lines. The former corresponds to a 2-dimensional

object (like unit square) and the latter corresponds,

to a l-dimensional object, such as the line segment of

example 1, with slopes -2 and -1 respectively.

3.2 Fractal dimensions of real datasets

In the above examples, all the involved point-sets are

known to have the self-similarity property, and therefore

it is expected that their boxcount-side plots will be

straight lines. The question is whether real datasets

exhibit self-similarity. Table 1 shows the characteristics

of the datasets we used:

The ‘MGCounty’ and ‘LBCounty’ datasets are part

of the TIGER database of the US Bureau of Census and

they contain the road intersections of the Montgomery

county, MD and Long Beach county, CA, respectively.

The ‘IUE’ contains observation points (latitude and

longitude of dar~) from the International Ultraviolet

Explorer (IUE) satellite of NASA. The WORLD dataset

haa been discussed in the introduction (see Figure 1).

In the upcoming plots we also used synthetic datasets:

7
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Figure 4: Computing the fractal

In addition to the SIERPINSKI one that we have

discussed we also used the 2D-UNIFORM, lD-Uniform

point sets. As their names reveal, they consisted of

points uniformly distributed in the unit square and on

a line, respectively

Figure 5 (a)-(d) shows the boxcount-side plots for
all these datasets. Notice that the plots are indeed

straight lines, confirming that real point-sets exhibit

fractal behavior. This implies that we can use Eq. 6

to do useful predictions, as we show next. In all of

figures 5 (a)-(d) we also give the boxcount-side plot for

the two uniform synthetic datasets, 2D-UNIFORM and

ID-UNIFORM. The reason is that we want to highlight

the fact that the slopes for the real sets are non-integers.

This means that the real datasets are self similar, but

clearly non-uniform.

The conclusion is that we have confirmed once more

that real data sets are far from uniformly distributed -

the only difference is that, this time, we have a usable

measure of their skewness!

Before we continue with the analysis, we list a few

more observations:

Observation 2 The fr-actal dimension can model point-

sets with highly correlated attn”butes, even if the corre-

lation is non-linear.

The reason is that, if two attributes are strongly

correlated (even in a quadratic, logarithmic or some

other non-linear fashion), the resulting set of points in

attribute space will be a curve, with d= 1, as we just

discussed in Observation 1. The input point-set will be

correctly characterized as a linear object, as opposed to

a 2-dimensional object.

Observation 3 A set of D-dimensional points with

attributes that obey the ‘uniformity’ and ‘independence’

assumptions has fractal dimension equal to the number

of attm”butes:

d=D (9)

dimension of a line segment

This is justified, because the points cover the whole

space, forming practically a D-dimensional solid. Thus,

a data set with ‘uniform’ and ‘independent’ attributes

can be trivially modeled as a fractal, with fractal

dimension d = D.

4 Analysis of R-trees

In the previous section, we claimed that real dataaets

will obey Eq. 6:

N(r’) = ~

where K is a constant. Assuming that the address space

is normalized to the unit (hyper)-cube, we have that

K = 1, or equivalently

N(r) = -j (lo)

where d is the (box counting) fractal dimension of the

dataset. In this section we want to derive a formula to

predict the number of disk accesses for range queries,

when these points are stored in an R-tree. First we

estimate the number of leaf nodes only; then we extend

the analysis for all levels of the R-tree. We define the

effective capacdy Ceff of the nodes of the R-tree as the

average number of entries per node:

Ceff=cxu (11)

where u is the average node utilization (typically, 70~o

for the R*-trees).

Thus the problem is as follows:

Given: N: the number of points in D-dimensional

space

d: their fractal dimension

Ceff: the effective capacity of the nodes

Find: the expected size F = (sl, sz, . . . . SD) of the

MBRs for the leaf nodes. That is, the average MBR

will be a hyper-rectangle of size S1 x S2 x . . . x sD

8
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Figure 5: ‘boxcount-side’ plots for real datasets

Once we have estimated F, we can immediately use

Eq. 3 to calculate the expected number of leaf accesses

for any given query {. The number of leaf nodes is

N1 = N/Ceff (12)

We make the following (optimistic) assumption:

Assumption Al: The algorithms of the R-tree are

‘good’, in the sense that they will result in tight, square-

like MBRs, roughly of the same size. That is

s~=.9z=...=sD~0 (13)

From this assumption we expect that the MBRs of

the leaf nodes will be roughly similar, square-like hyper-

rectangles of side a. Notice that this setting resembles

very much the setting of the definition of the fractal

dimension: We have Nl boxes of side a, that cover all

the points of the dataset. Assuming that the address

space is normalized to the unit D-dimensional cube, we

can use Eq. 10 as follows:

N( = I/vd (14)

N/C,ff = l/crd (15)

Ceff I/d

N)
a=(— (16)

lW lam lolm lalm 18+OE 1e+l17 7em
w)

(d) WORLD - slope = -0.54

(solid lines); slopes -1 and -2 (dotted lines)

Combining Eq. 3 with the above equation, we can

estimate the number of leaf accesses ~(q~ for a query @

D

P(O = ~ ~(u+9J (17)

all leaf nodes i=l

or

(18)

We have just shown how to estimate the node accesses

at the leaf level. The analysis can be similarly extended

to any level of the R-tree. Assuming that the average

fanout is C.f f at every level, we can estimate the

number of nodes Nj at each level ~, as well as the side Uj

of the (D-dimensional cubic) MBRs. The final formula

for the total number of nodes accessed Pall (~ is given

by adding the node accesses at each level. Thus

where h is the height of the tree (the root is assumed

at level j = O and the leaves at level j = h – 1); and uj
given by:

9



Name Description number of points d

MGCounty road intersections, Montgomery Ct y, MD 79,438 1.67

LBCounty road intersections, Long Beach Cty, CA 68,849 1.70

IUE star coordinates (NASA’s Infrared-Ultraviolet Explorer)

WORLD

11,281 1.69

population vs. area of all countries - World Almanac 181 0.54

2D-UNIFORM uniformly dist. points on a plane - synthetic 50,000

SIERPINSKI

1.98

points on Sierpinski triangle - synthetic 50,000 1.59

ID-UNIFORM uniformly dist. points on a line - synthetic 50,000 0.99

Table 1: Dataaets used

Symbols Definitions

c max. number of rectangles per page(= node)

Ceff effective page capacity = C x u

d fractal dimension

D embedding dimension (= # of attributes/axes)

h height of the R-tree

N number of data rectangles

N1 number of leaf nodes

t query hyper-rectangle ql x qz x . . . x q~

% length of the query in the i-th dimension

P(@ avg. leaf pages retrieved by a query {

Pa//(~ avg. pages (at all levels) retrieved by a query @

Cj side of the (~)square MBR of a node at level j

u avg. node ut ilizat ion

Table 2: Summary of Symbols and Definitions

more em~hasis on the leaf accesses for two reasons:

Uj=(

Gj;h-jp j=(),..,, h-l
(20)

5 Experimental results

We carried out several experiments, to compare our an-

alytical results with the results of an R*-tree [BKSS90].

The R*-tree was written in C under UNIX and the ex-

periments ran on DEC 5000 workstation.

Except for the ‘WORLD’ dataset, which was too

small, we used all the real and synthetic datasets that we

used in section 3. Their characteristics are summarized

in Table 1.

In all cases, the address space was normalized to the

unit square. The queries were squares with side varying

from O to 0.8. For each query side we report the average

response time over 1000 uniformly distributed queries.

Queries that were not completely inside the address

space were ‘wrapped around’.

We ran two sets of experiments: in the first, we

measured only the leaf accesses and in the second we

measured node accesses at all levels.

The results of the first set are plotted in Figures 6(a)-

(e). For the predictions we used Eq. 18. We put

10

(a) the majority of the node accesses will be on leaf

nodes and (b) most of the non-leaf nodes are likely to

fit in main memory. Figures 6 (a), (b) and (c) show the

number of leaf accesses vs. the query side q, for the real

datasets (IUE, LBCounty and MGCounty respectively).

They plot the actual results with a solid line and the

predicted ones with a dotted line. Figures 6 (d) and (e)

show the same measurements for the synthetic dat asets

(2 D-UNIFORM and SIERPIIWKI respectively). The

common observation in all the graphs is that the

analytical estimate is very close the actual result: the

relative error is usually below 5910and rarely above 10%.

The second set of experiments test the accuracy of

Eq. 19, which computes the number of node accesses at

all levels. This will translate to the actual number of

disk accesses, in case that all the levels of the tree reside

on disk. The results were similar for all the dat asets.

For brevity, we present only the experiments with the

MGCounty dataset, in Figure 6(f). Again, our analysis

gives accurate predictions, with relative error usually

below 7% and rarely above 12%.



(a) IUE - Leaf accesses vs. query side

(c) MGCounty - Leaf accesses vs. query side
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6 Discussion - Conclusions

There am two contributions in this work. The major

one is the proposal to use the fractal dimension to

quantify the skewness of real point sets. Up to now,

the ‘uniformity’ and ‘independence’ assumptions have

been (rightly) challenged; however no satisfactory multi-

dimensional distribution models have been proposed to

replace them. We showed that the fractal dimension

provides an excellent measure of the deviation from the

above assumptions.

The fractal dimension has several desirable character-

ist its:

● it constitutes a simple way to describe the non-

uniformity y of the data set, using just a single

number.

● it is applicable to real point-sets, aa our experiments

showed.

● it includes the uniform distribution as a special case

(d= D).

● it is based on a well developed theory [Man77, Sch91]

In addition to the above theoretically pleasing proper-

ties, we showed that the fract al dimension has practical

applications in the performance analysis of spatial ac-

cess methods on real dat asets. Using it, we provided the

first analysis of R-trees on real data; the resulting for-

mula is simple, and, as showed experimentally, it is very

accurate, usually within 5% of the experimental results.

This is the second contribution of this work: Despite the

fact that R-trees are known for almost a decade, there

has been only one attempt for their analysis [FSR87];

even that one used the uniformity assumption, pres-

umably leading to pessimistic estimates. The current

analysis superseeds the old one, since, according to (Ob-

servation 3), the uniform case is just a special case of a

fractal distribution.

We believe that the fractal dimension will become a

powerful modeling tool for multi-variate distributions

in relational and spatial databases. Future work could

examine its potential applications, such as:

● Analysis of other spatial access methods, such as

quadtree9/octree9, grid fileg etc. For example,

in [ACF+ 94] we stored the 3-dimensional MRI-scans

of human brains using an oct-tree decomposition;

we observed that the number of octants required

to cover the surface of human brains increased

exponentially with the resolution, with an exponent

of 2.6 (close to the fract al dimension 2.7 of mammal

brains [Man77] ,P.113). Thus, knowledge of the

fractal dimension of a surface (or set of points, in

general), is useful in the prediction of the storage

requirements for the resulting quadtrees/octrees.

Query optimization, for multi-attribute queries and

for geometric/geographic databases. For example,

Eq. 18 can be used to predict the selectivity of a

range query (number of qualifying points) by setting

the leaf capacity C=l.

Generation of synthetic but realistic data, to study

the performance of spatial access methods: instead

of generating points that follow the uniform distribu-

tion, or gaussian or some other ad-hoc distribution,

we propose to generate points that have the desir-

able fract al dimension. Methods to generate point-

sets with a given fract al dimension are described,

eg., in [Man77](chapter 32), using the so-called ‘L&y

flights’.

Acknowledgement : we would like to thank Erik

Heel for providing MGCounty and LBCounty datasets.
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