
The VLDB Journal (2007) 16:55–76
DOI 10.1007/s00778-006-0030-1

SPECIAL ISSUE PAPER

Consistent selectivity estimation via maximum entropy

V. Markl · P. J. Haas · M. Kutsch · N. Megiddo ·
U. Srivastava · T. M. Tran

Received: 15 January 2006 / Accepted: 3 August 2006 / Published online: 15 September 2006
© Springer-Verlag 2006

Abstract Cost-based query optimizers need to
estimate the selectivity of conjunctive predicates when
comparing alternative query execution plans. To this
end, advanced optimizers use multivariate statistics to
improve information about the joint distribution of attri-
bute values in a table. The joint distribution for all col-
umns is almost always too large to store completely,
and the resulting use of partial distribution information
raises the possibility that multiple, non-equivalent selec-
tivity estimates may be available for a given predicate.
Current optimizers use cumbersome ad hoc methods
to ensure that selectivities are estimated in a consis-
tent manner. These methods ignore valuable informa-
tion and tend to bias the optimizer toward query plans
for which the least information is available, often yield-
ing poor results. In this paper we present a novel method
for consistent selectivity estimation based on the

V. Markl · P. J. Haas (B) · N. Megiddo
IBM Almaden Research Center, San Jose, CA, USA
e-mail: peterh@almaden.ibm.com

V. Markl
e-mail: marklv@almaden.ibm.com

N. Megiddo
e-mail: megiddo@almaden.ibm.com

M. Kutsch
IBM Germany, Boeblingen, Germany
e-mail: kutschm@de.ibm.com

U. Srivastava
Stanford University, Stanford, CA, USA
e-mail: usriv@stanford.edu

T. M. Tran
IBM Silicon Valley Lab, San Jose, CA, USA
e-mail: minhtran@us.ibm.com

principle of maximum entropy (ME). Our method
exploits all available information and avoids the bias
problem. In the absence of detailed knowledge, the
ME approach reduces to standard uniformity and inde-
pendence assumptions. Experiments with our prototype
implementation in DB2 UDB show that use of the ME
approach can improve the optimizer’s cardinality esti-
mates by orders of magnitude, resulting in better plan
quality and significantly reduced query execution times.
For almost all queries, these improvements are obtained
while adding only tens of milliseconds to the overall time
required for query optimization.

1 Introduction

Estimating the selectivity of predicates has always been
a challenging task for a query optimizer in a relational
database management system. A classic problem has
been the lack of detailed information about the joint
frequency distribution of attribute values in the table
of interest. Perhaps ironically, the additional informa-
tion now available to modern optimizers has in a cer-
tain sense made the selectivity-estimation problem even
harder.

Specifically, consider the problem of estimating the
selectivity s1,2,...,n of a conjunctive predicate of the form
p1 ∧ p2 ∧ · · · pn, where each pi is a simple predicate (also
called a Boolean Factor or BF) of the form “column op
literal”. Here column is a column name, op is a relational
comparison operator such as “=”, “>”, or “LIKE”, and
literal is a literal in the domain of the column; some
examples of simple predicates are ‘MAKE = “Honda”’
and ‘YEAR > 1984’. By the selectivity of a predicate

56 V. Markl et al.

p1 p3

FETCH p2

s1,3

s1,3* s2

p1 p2

FETCH p3

s1,2

s1,2* s3

p1 p3

FETCH p2

s1* s3

s1,2* s3

1 3

FETCH p2

s1,3

s1,3* s2

1 2

FETCH p3

1,

s1,2* s3

1 3

FETCH p2

s1* s3

s1,2* s3 =≠

< < <

(b) (a) (c)

Fig. 1 Query execution plans(QEPs) and selectivity estimation

p, we mean, as usual, the fraction1 of rows in the table
that satisfy p.2 In older optimizers, statistics are main-
tained on each individual column, so that the individual
selectivities s1, s2, . . . , sn of p1, p2, . . . , pn are available.
Such a query optimizer would then impose an indepen-
dence assumption and estimate the desired selectivity as
s1,2,...,n = s1 ∗ s2 ∗ · · · ∗ sn. This type of estimate ignores
correlations between attribute values, and consequently
can be wildly inaccurate, often underestimating the true
selectivity by orders of magnitude and leading to a poor
choice of query execution plan (QEP).

Ideally, to overcome the problems caused by the inde-
pendence assumption, the optimizer should store the
multidimensional joint frequency distribution for all of
the columns in the database. In practice, the amount of
storage required for the full distribution is exponentially
large, making this approach infeasible. Both researchers
and system developers have therefore proposed stor-
age of selected multivariate statistics (MVS) that sum-
marize important partial information about the joint
distribution. Proposed MVS include multidimensional
histograms [29] on selected columns and simple
“column-group statistics” as used in DB2 UDB
[21]; see Sect. 9 for other examples. Thus, for predi-
cates p1, p2, . . . , pn, the optimizer typically has access to
the individual selectivities s1, s2, . . . , sn as well as a lim-
ited collection of joint selectivities, such as s1,2, s3,5, and
s2,3,4. The independence assumption is then used to “fill
in the gaps” in the incomplete information, e.g., we can
estimate the unknown selectivity s1,2,3 by s1,2 ∗ s3.

A new and serious problem now arises, however.
There may be multiple, non-equivalent ways of estimat-
ing the selectivity for a given predicate. Figure 1, for
example, shows possible QEPs for a query consisting of
the conjunctive predicate p1∧p2∧p3. The QEP in Fig. 1a

1 We sometimes refer to the cardinality of a predicate, which is
the absolute number of satisfying rows.
2 Note that without loss of generality each pi can also be a dis-
junction of simple predicates or any other kind of predicate (e.g.,
subquery, IN-list). For this work we only require that the optimizer
has some way to estimate the selectivity si of pi.

uses an index-ANDing operation (∧) to apply p1 ∧ p2
and afterwards applies predicate p3 by a FETCH oper-
ator, which retrieves rows from a base table according
to the row identifiers returned from the index-ANDing
operator.

Suppose that the optimizer knows the selectivities
s1, s2, s3 of the BFs p1, p2, p3. Also suppose that it knows
about a correlation between p1 and p2 via knowledge of
the selectivity s1,2 of p1 ∧ p2. Using independence, the
optimizer might then estimate the selectivity of p1 ∧p2 ∧
p3 as sa

1,2,3 = s1,2 ∗ s3.
Figure 1b shows an alternative QEP that first applies

p1 ∧ p3 and then applies p2. If the optimizer also knows
the selectivity s1,3 of p1 ∧ p3, use of the independence
assumption might yield a selectivity estimate sb

1,2,3 =
s1,3 ∗ s2. However, this would result in an inconsistency
if, as is likely, sa

1,2,3 �= sb
1,2,3. There are potentially other

choices, such as s1 ∗ s2 ∗ s3 or, if s2,3 is known, then s1,2 ∗
s2,3/s2; the latter estimate amounts to a conditional inde-
pendence assumption (see Appendix C). Any choice of
estimate will be arbitrary, since there is no supporting
knowledge to justify ignoring a correlation or assuming
conditional independence; such a choice will then arbi-
trarily bias the optimizer toward choosing one plan over
the other. Even worse, if the optimizer does not use the
same choice of estimate every time that it is required,
then different plans will be costed inconsistently, lead-
ing to “apples and oranges” comparisons and unreliable
plan choices.

Assuming that the QEP in Fig. 1a is the first to be
evaluated, a modern optimizer would avoid the fore-
going consistency problem by recording the fact that
s1,2 was applied and then avoiding future application
of any other MVS that contain either p1 or p2, but not
both. In our example, the selectivities for the QEP in
Fig. 1c would be used and the ones in Fig. 1b would not.
The optimizer would therefore compute the selectivity
of p1 ∧ p3 to be s1 ∗ s3 using independence, instead of
using the MVS s1,3. Thus the selectivity s1,2,3 would be
estimated in a manner consistent with Fig. 1a. Note that,
when evaluating the QEP in Fig. 1a, the optimizer used
the estimate sa

1,2,3 = s1,2 ∗ s3 rather than s1 ∗ s2 ∗ s3, since,
intuitively, the former estimate better exploits the avail-
able correlation information. In general, there may be
many possible choices; the complicated (ad hoc) deci-
sion algorithm used by DB2 UDB is described in more
detail in Appendix A.

Although the ad hoc method described above ensures
consistency, it ignores valuable knowledge, e.g., of the
correlation between p1 and p3. Moreover, this method
complicates the logic of the optimizer, because cum-
bersome bookkeeping is required to keep track of how
an estimate was derived initially and to ensure that it

Consistent selectivity estimation via maximum entropy 57

will always be computed in the same way when costing
other plans. Even worse, ignoring the known correla-
tion between p1 and p3 also introduces bias towards
certain QEPs: if, as is often the case with correlation,
s1,3 � s1 ∗ s3, and s1,2 � s1 ∗ s2, and if s1,2 and s1,3 have
comparable values, then the optimizer will be biased
towards the plan in Fig. 1c, even though the plan in
Fig. 1a might be cheaper, i.e., the optimizer thinks that
the plan in Fig. 1c will produce fewer rows during index-
ANDing, but this might not actually be the case. In gen-
eral, an optimizer will often be drawn towards those
QEPs about which it knows the least, because use of
the independence assumption makes these plans seem
cheaper due to underestimation. We call this problem
“fleeing from knowledge to ignorance”.3

In this paper, we provide a novel method for esti-
mating the selectivity of a conjunctive predicate; the
method exploits and combines all of the available MVS
in a principled, consistent, and unbiased manner. Our
technique rests on the principle of maximum entropy
(ME) [16,17], which is a mathematical embodiment of
Occam’s Razor and provides the “simplest” possible
selectivity estimate that is consistent with all of the avail-
able information. In the absence of detailed knowledge,
the ME approach reduces to standard uniformity and
independence assumptions; see Appendix B. Our new
approach avoids the problems of inconsistent QEP com-
parisons and the flight from knowledge to ignorance. A
preliminary version of this work appeared in [23,25].

We emphasize that the ME method is the first to sys-
tematically exploit all of the available MVS and actu-
ally refine the optimizer’s cardinality model beyond the
information explicitly given by the statistics. Our tech-
niques are also the first to systematically address the
problem of inconsistencies in available MVS. Finally, as
discussed in Sect. 9, our results differ from virtually all
current and previous work in this area, which deals only
with recommending [5,7,8,13,21], constructing [6,32],
storing [28], and maintaining [1,4,33] multivariate sta-
tistics. Indeed our methods can be used in conjunction
with any of these latter technologies.

Thus the contributions of our paper are (1) enunci-
ating and formalizing the problem of inconsistency and
bias during QEP evaluation in the presence of partial
knowledge about the joint frequency distribution, (2)
proposing a new method for cardinality estimation in
this setting that exploits all available distributional infor-
mation, (3) providing an efficient and robust method for
computing consistent and unbiased selectivity estimates
using the ME principle, and (4) providing a detailed
experimental evaluation of our approach with respect

3 This expression was originally coined by G. M. Lohman.

to quality and computation time, as well as a compar-
ison to the method used by the DB2 UDB optimizer.
Our work appears to be the first to apply information-
theoretic ideas to the problem of producing consistent
selectivity estimates.

The paper is organized as follows. Section 2 gives
some background and formalizes the selectivity-
estimation problem. In Sect. 3, we describe the ME
approach to unbiased, efficient, and consistent selec-
tivity estimation. We show how the iterative scaling
algorithm can be applied in our setting; this well-known
algorithm uses a Lagrange-multiplier approach to
numerically compute an approximate ME solution.
Section 4 describes how our method deals with incon-
sistencies in the available MVS that would otherwise
prevent computation of a ME solution; such inconsis-
tencies can arise when the single-column statistics in
the catalog have been computed only approximately, or
when the various statistics used by the optimizer have
been computed at different points in time. We then show
in Sect. 5 how the efficiency of the ME computation can
be improved – often by orders of magnitude – by parti-
tioning the predicates into disjoint sets and computing a
ME distribution for each of the resulting subproblems.
In Sect. 6, we extend our methodology to estimate selec-
tivities of predicates that involve multiple tables, i.e.,
join predicates. Section 7 illustrates how our methodol-
ogy can easily be integrated into a commercial system
such as DB2 UDB, and Sect. 8 provides an experimental
evaluation. After surveying related work in Sect. 9, we
conclude in Sect. 10. Appendix A describes the current
state of the art in using MVS for cardinality estimation
in DB2 UDB, and Appendix B contains formal proofs
of the assertion that our new ME approach generalizes
classical independence and uniformity assumptions. We
show in Appendix C how certain ME selectivities can
be computed analytically.

2 Background

Commercial query optimizers [3,19,20,26] use statisti-
cal information on the number of rows in a table and the
number of distinct values in a column to compute the
selectivities of simple predicates. Assuming 10 distinct
values in the MAKE column and using the uniformity
assumption, the selectivity of the simple predicate p1:
‘MAKE = “Honda”’ is estimated as s1 = 1/10. Simi-
larly, with 100 distinct values in the MODEL column
and 10 distinct values in the COLOR column, we obtain
s2 = 1/100 for p2: MODEL = “Accord” and s3 =1/10 for
p3: COLOR = “red”. Advanced commercial optimizers
can improve upon these basic estimates by maintaining

58 V. Markl et al.

frequency histograms on the values in individual
columns.

As indicated previously, current optimizers compute
the selectivity of a conjunctive predicate using the inde-
pendence assumption in the absence of other informa-
tion. For instance, p1,2,3 = p1 ∧ p2 ∧ p3 is the predicate
restricting a query to retrieve all red Honda Accords,
and the selectivity of p1,2,3 is computed as s1,2,3 = s1 ∗
s2 ∗ s3. In our example, the optimizer would estimate the
selectivity of red Honda Accords to be 1/10,000. Because
only Honda makes Accords, there is a strong correlation
between these two columns, indeed, a functional depen-
dency. The true selectivity of p1,2 is therefore 1/100, and
a more appropriate estimate of the selectivity of p1,2,3 is
1/1,000, one order of magnitude larger than the estimate
based on the independence assumption.

2.1 Formalizing the selectivity estimation problem

We now formalize the problem of selectivity estima-
tion for conjunctive predicates, given partial MVS, and
define some useful terminology. Let P = {p1, . . . , pn}
be a set of BFs. For any X ⊆ N = {1, . . . , n}, denote
by pX the conjunctive predicate ∧i∈Xpi . Let s be a
probability measure over 2N , the powerset of N, with
the interpretation that sX is the selectivity of the pred-
icate pX .4 Usually, for |X| = 1, the histograms and col-
umn statistics from the system catalog determine sX and
are all known. For |X| > 1, the MVS may be stored
in the database system catalog either as multidimen-
sional histograms, index statistics, or some other form of
column-group statistics or statistics on intermediate
tables. In practice, sX is not known for all possible pred-
icate combinations due to the exponential number of
combinations of columns that can be used to define
MVS. Suppose that sX is known for every X in some
collection5 T ⊂ 2N . Then the selectivity estimation
problem is to compute sX for X ∈ 2N\T.

It is intuitively clear that the query optimizer should
avoid any extraneous assumptions about the unknown
selectivities while simultaneously exploiting all existing
knowledge, in order to avoid unjustified bias towards
any particular solution. In Appendix A, we survey the
method that DB2 uses to compute missing selectivities
and illustrate why this approach cannot use all exist-
ing knowledge without producing an inconsistent model.
In the following section, we present the ME principle,
which formalizes the notion of avoiding bias.

4 The quantity sX can also be interpreted as the probability that
a randomly selected row satisfies pX .
5 Note that the empty set Ø is always part of T, because sØ = 1
when applying no predicates.

2.2 The maximum-entropy principle

The ME principle [16,17] models all that is known and
assumes nothing about the unknown. It is a method for
analyzing the available information in order to deter-
mine a unique epistemic probability distribution. Infor-
mation theory [31] defines for a probability distribution
q = (q1, q2, . . .) a measure of uncertainty called entropy:

H(q) = −
∑

i

qi log qi.

The ME principle prescribes selection of the unique
probability distribution that maximizes the entropy func-
tion H(q) and is consistent with respect to the known
information.

Entropy maximization without any additional infor-
mation uses the single constraint that the sum of all
probabilities equals 1. The ME probability distribution
is then the uniform distribution. When constraints only
involve marginals of a multivariate distribution, the ME
solution coincides with the independence assumption.
See Appendix B for a proof of these assertions.

Thus, query optimizers that do not use MVS actu-
ally estimate their selectivities for conjunctive queries
according to the ME principle: they assume uniformity
when no information about column distributions is avail-
able, and they assume independence because they do not
know about any correlations. By integrating the more
general ME framework into the optimizer’s cardinality
model, we thereby generalize these concepts of unifor-
mity and independence. Our approach enables the opti-
mizer to take advantage of all available information in a
consistent way, avoiding inappropriate bias towards any
given set of selectivity estimates.

3 Selectivity estimation via maximum entropy

The ME principle applied to selectivity estimation
means that, given several selectivities of simple
predicates and conjuncts, we choose the most
uniform/independent selectivity model consistent with
this knowledge.

3.1 The constrained optimization problem

Given a set of predicates P = {p1, p2, . . . , pn}, denote
each of the corresponding atoms – terms in disjunctive
normal form (DNF) – by a binary string of length n.
For example, when n = 3, the string b = 100 denotes
the atom p1 ∧ ¬p2 ∧ ¬p3, and so forth. As before, set
N = {1, 2, . . . , n} and denote by 2N the set of all subsets
of N. For each predicate pX , X ∈ 2N , denote by C(X)

Consistent selectivity estimation via maximum entropy 59

the set of components of X, i.e., the set of all atoms
contributing to pX . Formally,

C(X) = {b ∈ {0, 1}n|bi = 1 for all i ∈ X} and

C(Ø) = {0, 1}n.

For example, for predicates p1 and p1,2 we have

C({1})={100, 110, 101, 111} and C({1, 2})={110, 111}.
Additionally, for each possible “knowledge set” T ⊆

2N , we denote by P(b, T) the set of all X ∈ T such that
pX has b as an atom in its DNF representation, i.e.,

P(b, T) = {X ∈ T|bi = 1 for all i ∈ X} ∪ {Ø}.
Thus, for the atom 011 and T = 2{1,2,3} we have

P(b, T) = {{2}, {3}, {2, 3}, Ø}.
Given sX for X ∈ T, we compute sX for X �∈ T

according to the ME principle. To this end, we must
solve the following constrained optimization problem:

minimize
xb |b∈{0,1}n

∑

b∈{0,1}n

xb log xb (3.1)

subject to the |T| constraints
∑

b∈C(X)

xb = sX , X ∈ T, (3.2)

where xb ∈ [0, 1] denotes the selectivity of atom b. The
constraints correspond to the known selectivities; one of
the included constraints is sØ = ∑

b∈{0,1}n xb = 1, which
asserts that the combined selectivity of all atoms is 1. The
solution is a probability distribution with the maximum
value of uncertainty (entropy), subject to the constraints.
Given this solution, we can compute any arbitrary selec-
tivity sX as sX = �bχC(X)xb. We can solve the above
problem analytically only in simple cases with a small
number of unknowns. In general, a numerical solution
method is required.

3.2 Example

Figure 2 shows the probability space for the case N =
{1, 2, 3}, T = {{1}, {2}, {3}, {1, 2}, {1, 3}, Ø}, and selectivi-
ties s1 = 0.1, s2 = 0.2, s3 = 0.25, s12 = 0.05, s13 = 0.03,
and sØ = 1.

We have the following six constraints:

(i) s1 = x100 + x110 + x101 + x111 = 0.1
(ii) s2 = x010 + x011 + x110 + x111 = 0.2

(iii) s3 = x001 + x011 + x101 + x111 = 0.25
(iv) s1,2 = x110 + x111 = 0.05

Fig. 2 Probability space for N = {1,2,3} and T = {{1}, {2}, {3}, {1, 2},
{1, 3}, Ø}

0.18333 p3

p2p1

000
0.56667

100
0.035

110
0.035

101
0.015

111
0.015

010
0.11333

011
0.03667

001
0.18333

Fig. 3 Maximum entropy (ME) solution for example problem

(v) s1,3 = x101 + x111 = 0.03
(vi) sØ = ∑

b∈{0,1}3 xb = 1

The task of selectivity estimation is to now compute
a solution for all atoms xb, b ∈ {0, 1}3 that maximizes
the entropy function –

∑
b∈{0,1}3 xb log xb and satisfies

the above six constraints. Any desired selectivity sX
can then be computed from the xb values as indicated
previously.

Figure 3 gives the results obtained when solving this
constrained optimization problem. For instance, in this
ME solution, we obtain the selectivity estimate s1,2,3 =
x111 = 0.015 and s2,3 = x111 + x011 = 0.05167.

In the next section, we describe an algorithm to com-
pute this result efficiently for an arbitrary collection P
of simple predicates and an arbitrary knowledge set T.

60 V. Markl et al.

Fig. 4 Iterative-scaling
algorithm

3.3 The iterative scaling algorithm

To solve the constrained optimization problem in its
general form, we first use the method of Lagrange mul-
tipliers to obtain a system of optimality equations. Since
the entropy function is concave, a solution of this sys-
tem yields the unique solution of the optimization prob-
lem [11]. We associate a Lagrange multiplier λX with
each known sX . This includes λØ, a multiplier associ-
ated with the constraint sØ = 1. The Lagrangian for
x = {xb : b ∈ {0, 1}n} and λ = {λX : XχT} is given by

L(x, λ)=
∑

b∈{0,1}n

xb log xb−
∑

X∈T

λX

⎛

⎝
∑

b∈C(X)

xb − sX

⎞

⎠(3.3)

Taking derivatives with respect to the xb and setting
them equal to zero yields the optimality equations

log xb + 1 =
∑

X∈P(b,T)

λX , b ∈ {0, 1}n. (3.4)

Setting zX = eλX , we obtain the equivalent exponen-
tial form

xb = 1
e

∏

X∈P(b,T)

zX . (3.5)

Using Eq. (3.5) to eliminate xb in Eq. (3.2), we find
that
∑

b∈C(Y)

∏

X∈P(b,T)

zX = sY ∗ e, Y ∈ T. (3.6)

The ME solution is thus obtained by determining the
set of (exponentiated) Lagrange multipliers Z = {zY :

Y ∈ T} that satisfies Eq. (3.6) and then computing the
xb values using Eq. (3.5); these latter values determine
sX for all X ∈ 2N .

It is usually impossible to compute Z analytically. We
therefore use a variant of the iterative scaling algorithm
[11] to efficiently obtain an approximation to Z, and
hence an approximate ME solution. The algorithm pro-
duces a set of approximate multipliers by a process of
iterative refinement. During an iteration step, the algo-
rithm sequentially selects each element in zY ∈ Z and
adjusts the value of zY (while keeping the other multipli-
ers constant) so that the particular equality in Eq. (3.6)
that corresponds to sY is satisfied. More specifically, the
algorithm sets

zY = sY ∗ e∑
b∈C(Y)

∏
X∈P(b,T)\{Y} zX

(3.7)

for each Y ∈ T. We call Eq. (3.7) the iterative scaling
equation; it is obtained from Eq. (3.6) by observing that
zY occurs in every summand on the left side, so that it
can be factored out of the sum. In general, this adjust-
ment will cause the remaining equalities in Eq. (3.6) to
be violated, which is why the solution is only approxi-
mate. It can be shown, however, that the sequence of
iterated solutions converges to Z in the limit [11]. The
algorithm therefore terminates when �z becomes neg-
ligible, where �z denotes the absolute sum of the rel-
ative changes in the Lagrange-multiplier values during
the current iteration. Figure 4 below shows the complete
scaling algorithm.

Consistent selectivity estimation via maximum entropy 61

3.4 A priori elimination of zero atoms

In practice, it is often the case that the constraints in
Eq. (3.2) imply that the selectivity of certain atoms must
be zero in any feasible solution. For instance, if p1 ⇒ p2,
so that s1 = s1,2, then x100 = x101 = 0 in any solution x.
These zero atoms destabilize the iterative scaling algo-
rithm. Indeed, although the entropy function H(x) is
well defined when xb = 0 (because limx→0 x log x = 0 by
L’Hospital’s rule), the derivative is infinite:

∂H/∂xb = −1 − log xb = +∞.

It follows that there does not exist a finite solution to
the optimality equation (Eq. 3.4), and the iterative scal-
ing algorithm fails to converge. All zero atoms must
therefore be identified and explicitly removed from the
both the objective function and the constraints in the
ME optimization problem prior to execution of itera-
tive scaling.

Identifying zero atoms is nontrivial in general,
because the reasoning involved can be arbitrarily com-
plex. In the following, we provide both an exact (but
expensive) iterative method and a quick approximate
method for automatically detecting zero atoms.

3.4.1 Iterative detection of zero atoms

The exact iterative method for detecting zero atoms is
based on the following fact. If, for a given atom b, there
exists a feasible solution x that satisfies all constraints in
Eq. (3.2) and in which xb > 0, then xb is also positive
in the ME solution. Intuitively, if xb = 0 and xb′ > 0
in some feasible solution, then transferring probabil-
ity mass by decreasing xb′ and increasing xb will make
the distribution more uniform, and hence increase the
entropy; some such transfer is possible because the exis-
tence of x as above shows that having xb > 0 will not in
general violate the constraints.

The initial set A0 of candidate zero atoms contains all
of the atoms: A0 = {0, 1}n. In the first iteration we set
i = 0 and solve the linear program (LP)

maximize
xb |b∈0,1n

∑

b∈Ai

xb subject to Eq. (3.2) and to

xb ∈ [0, 1], b ∈ 0, 1n (3.8)

using, e.g., the simplex method. The idea is that a solu-
tion to the above problem will make each xb as large as
possible while satisfying the feasibility conditions. Any
xb that is equal to 0 in the LP solution is therefore likely
to be a zero atom. However, an xb that is equal to 0 in
the LP solution is not guaranteed to be a zero atom; it
could be the case that xb = 0 in the computed optimal LP

solution but not in other possible optimal LP solutions.
The algorithm therefore refines the set of candidates as
A1 = A0\{b|xb �= 0}, sets i = 1, and solves the resulting
LP in Eq. (3.8). The algorithm proceeds in this manner,
iterating until either (i) Ai = Ø or (ii) xb = 0 for every
bεAi. In the former case, each candidate atom has been
shown to have positive probability in at least one feasi-
ble solution, and hence, as discussed previously, must be
positive in the ME solution; we therefore conclude that
there are no zero atoms. In the latter case, we see that
the objective-function value for the solution to the LP in
Eq. (3.8) is 0, and therefore each atom bεAi must have
xb = 0 in any feasible solution – otherwise, the optimal
objective-function value would have been positive – and
hence in the ME solution. Thus Ai is precisely the set of
zero atoms.

3.4.2 Example: iterative zero detection

Suppose that N = {1, 2, 3}, T = {{1}, {2}, {3}, {1, 2}, {1, 3},
{2, 3}, Ø}, s1 = 0.23, s2 = 0.01, s3 = 0.015, s1,2 = 0.01,
s1,3 = 0.01, s2,3 = 0.01, and sØ = 1. The constraints in
the ME optimization problem are

s1 = x100 + x110 + x101 + x111 = 0.23
s2 = x010 + x011 + x110 + x111 = 0.01
s3 = x001 + x011 + x101 + x111 = 0.015
s1,2 = x110 + x111 = 0.01
s1,3 = x101 + x111 = 0.01
s2,3 = x011 + x111 = 0.01
sØ = ∑

b∈{0,1}3 xb = 1

Setting A0 = {0, 1}3 and solving the LP in Eq. (3.8), we
obtain a solution in which x000, x100, x001, and x111 are
nonzero. For the next iteration we therefore set A1 =
{010, 110, 101, 011}. Solving the resulting LP, we find that
x010 = x110 = x101 = x011 = 0, so that A2 is the set of
zero atoms.

The foregoing method is guaranteed to discover every
zero atom and not misclassify any nonzero atoms as
zero atoms. Unfortunately, due to its iterative nature,
the algorithm is so computationally expensive as to be
impractical in real-world applications, even with a highly
sophisticated LP solver.

3.4.3 Zero detection via approximation

In our actual implementation of the ME method, we
employ an approximate detection technique that offers
a reasonable trade-off between accuracy and execution
time. The idea is to rewrite the selectivity of each atom
as the sum of two new variables: xb = vb + wb. We now

62 V. Markl et al.

solve the following LP:

maximize
vb,wb

∑

b∈{0,1}n

vb

subject to

∑

b∈C(X)

vb + wb = sX , X ∈ T

0 � wb � 1 and 0 � vb � ε, b ∈ {0, 1}n

where ε is a small value; in our implementation we set
ε = 0.0001. After solving this LP, an atom b is considered
to be a zero atom if and only if wb = vb = 0. The idea is
that setting xb = 0 requires setting vb = 0, which signifi-
cantly decreases the objective-function value because of
the ε upper bound on all of the selectivities. Thus only
“true” zero atoms are likely to be identified by the solu-
tion to the LP. We include the wb variables because they
provide the “padding” needed to ensure that the original
constraints in Eq. (3.2) are satisfied. This algorithm finds
all of the zero atoms, but is approximate in that it can
mislabel some nonzero atoms as zero atoms. In practice,
we found that such mislabelings are infrequent, so that
the quality of the ultimate ME solution is good.

3.4.4 Example: zero detection via approximation

Again suppose that N = {1, 2, 3}, T = {{1}, {2}, {3},
{1, 2}, {1, 3}, {2, 3}, Ø}, s1 = 0.23, s2 = 0.01, s3 = 0.015,
s1,2 = 0.01, s1,3 = 0.01, s2,3 = 0.01, and sØ = 1. The
constraints in the resulting LP are

s1 = v100 + w100 + v110 + w110 + v101 + w101 + v111
+ w111 = 0.23

s2 = v010 + w010 + v011 + w011 + v110 + w110 + v111
+ w111 = 0.01

s3 = v001 + w001 + v011 + w011 + v101 + w101 + v111
+ w111 = 0.015

s1,2 = v110 + w110 + v111 + w111 = 0.01
s1,3 = v101 + w101 + v111 + w111 = 0.01
s2,3 = v011 + w011 + v111 + w111 = 0.01
sØ = ∑

b∈{0,1}3 vb + wb = 1

In the solution returned by the simplex algorithm,
the following variables are equal to zero: v010, w010, v110,
w110, v101, w101, v011, w011. We therefore take the set of
zero atoms as {010, 110, 101, 011}. Observe that this solu-
tion coincides with the solution returned by the exact
iterative algorithm.

4 Dealing with inconsistencies

A significant problem encountered when applying ME
techniques in a real-world database management sys-
tem is that the given selectivities {sX : XεT} might not
be mutually consistent. For example, the selectivities s1
= 0.1 and s1,2 = 0.15 are inconsistent, because they vio-
late the obvious requirement that sX ≥ sY whenever
X ⊆ Y. In the presence of inconsistent statistics, there
will not exist any solutions to the constrained optimiza-
tion problem in Eqs. (3.1) and (3.2), much less an ME
solution, and the iterative scaling algorithm, if applied
blindly, will fail to converge.

There are two typical causes of inconsistent statis-
tics. First, the single-column statistics in T are often
taken from the system catalog directly or derived by the
optimizer from catalog statistics. Because collection of
accurate statistics can be a highly cost-intensive process,
commercial database systems typically compute cata-
log statistics using approximate methods such as ran-
dom sampling or probabilistic counting. Even when the
catalog statistics are exact, the selectivity estimates com-
puted by the optimizer from these statistics often incor-
porate inaccurate uniformity assumptions or use rough
histogram approximations based on a small number of
known quantiles. The other cause of inconsistent knowl-
edge is the fact that different statistics may be collected
at different points in time, and the underlying data can
change in between collection epochs. This problem is
particularly acute in modern systems, where some of
the MVS used by the optimizer might be based on query
feedback or materialized statistical views.

We therefore need a scheme that will adjust the input
selectivities to obtain a set of satisfiable constraints, prior
to execution of the iterative-scaling algorithm. Ideally,
the adjustments should be as small as possible to avoid
introducing unnecessary bias into the selectivity esti-
mates. Devising such a scheme is not straightforward,
however. First, there exist inconsistencies that are not as
obvious as the one described above. Furthermore, sim-
ply applying ad hoc adjustments, e.g. setting s1 = 0.15
in the foregoing example, might introduce new inconsis-
tencies.

We solve the inconsistency problem using the follow-
ing technique. First, associate two “slack” variables a+

X
and a−

X with each of the original constraints in Eq. (3.2),
except for the constraint corresponding to sØ; this
latter constraint ensures that the atom selectivities sum
to 1, and therefore must not be modified. Then solve the
following LP:

minimize
a+

X ,a−
X ,xb

∑

X∈T\Ø

a+
X + a−

X

Consistent selectivity estimation via maximum entropy 63

subject to

∑

b∈C(X)

xb + a+
X − a−

X = sX , X ∈ T\{Ø},
∑

b∈{0,1}n

xb = 1,

a+
X ≥ 0, a−

X ≥ 0,

0 ≤ sX − a+
X + a−

X ≤ 1 (4.1)

The slack variables represent either positive or negative
adjustments to the selectivities needed to ensure the
existence of a feasible solution. In this connection, note
that, in the optimal solution to the LP, at most one of
the two slack variables for a constraint will be nonzero;
indeed, for a specified value a+

X − a−
X of the total adjust-

ment, any solution that has a nonzero value for both
slack variables will yield a higher value of the objec-
tive function than a solution with only a single nonzero
slack variable. The presence of a nonzero slack vari-
able both signals the presence of an inconsistency and
indicates how to obtain consistency, namely, by setting
s∗

X := sX − a+
X + a−

X . The constraint in Eq. (4.1) ensures
that the adjusted selectivities lie in the range [0,1]. By
taking the objective function as the sum of the slack vari-
ables, we ensure that the adjustments to the constraints
are as small as possible.

Our approach offers interesting possibilities for
enhancements in future implementations. Typically, for
example, some statistics are more reliable than others,
and it is possible to reflect this fact by weighting the
terms in the objective function. A large weighting coeffi-
cient for the slack variables a+

X and a−
X means that the

corresponding selectivity sX is reliable; this selectivity is
relatively unlikely to be adjusted because an adjustment
would incur a relatively large penalty in the objective
function. By means of this device, unreliable statistics
are more likely to be subject to adjustments than
reliable ones.

Note that a newly consistent set of constraints may
have zero atoms. In our complete algorithm, we first
obtain a consistent starting set of constraints using the
techniques described in this section and then detect and
remove zero atoms as described in Sect. 3.4.

4.1 Example: inconsistency detection and removal

Suppose that N = {1, 2}, T = {{1}, {2}, {1, 2}, Ø}, s1 =
0.99, s2 = 0.99, s1,2 = 0.90, and sØ = 1. The constraints
for the LP are given by

s1 = x10 + x11 + a+
1 − a−

1 = 0.99

s2 = x01 + x11 + a+
2 − a−

2 = 0.99

s1,2 = x11 + a+
1,2 − a−

1,2 = 0.90
sØ = x00 + x10 + x01 + x11 = 1

Minimizing the sum over all slack variables yields the
following solution:

a+
1 = a−

1 = 0

a+
2 = a−

2 = 0

a+
1,2 = 0

a−
1,2 = 0.08

Although it may not be readily apparent, the constraint
set T contains an inconsistency, because a−

1,2 = 0.08.
Applying the resulting adjustment, we obtain the set of
consistent selectivities s∗

1 = 0.99, s∗
2 = 0.99, and s∗

1,2 =
0.98.

5 Improving scalability by partitioning

Even though iterative scaling has a complexity of
O(|T|2|P|), we can often avoid executing the algorithm
on the full predicate set P. The idea is to compute
the ME solution by partitioning P into several disjoint
subsets and executing the scaling algorithm on each
subset independently. This approach reduces the com-
plexity substantially, and makes the iterative scaling
algorithm feasible even for extremely complex queries
with large sets of predicates. In the following, we discuss
some exact and approximate partitioning strategies. In
our discussion, we assume that, as is usual in practice,
individual selectivities s1, s2, . . . , sn of single predicates
p1, p2, . . . , pn are always available.

5.1 Partitioning

Suppose that we can split N = {1, 2, . . . , n} into non-
empty disjoint subsets N1, N2, . . . , Nk, such that for each
X ∈ T we have X ⊆ Ni for some i ∈ {1, 2, . . . , k}. Parti-
tion P and T accordingly by setting

Pi = {pj|j ∈ Ni} and Ti = {X ∈ T|X ⊆ Ni}

for 1 ≤ i ≤ k.6 We claim that the ME solution for (P, T)
can be obtained by first using iterative scaling to com-
pute the ME solutions for (P1, T1), (P2, T2), . . . , (Pk, Tk)

and then using the independence assumption to

6 Note that the Ti sets are not completely disjoint, because they
all contain Ø.

64 V. Markl et al.

combine selectivity estimates for predicates in different
partitions; i.e., we compute

sX =
∏

i∈{1,2,...,k}
sX∩Ni

for X ∈ 2N . See Appendix B for a formal justification
of this claim.

For example, when N = {1, 2, 3, 4} and T = {{1}, {1, 2},
{3}, {3, 4}, Ø}, we can take N1 = {1, 2}, N2 = {3, 4}, T1 =
{{1}, {1, 2}, Ø}, and T2 = {{3}, {3, 4}, Ø}. We can then, e.g.,
compute s2 by obtaining the ME solution for (P1, T1),
compute s4 by obtaining the ME solution for (P2, T2),
and finally compute s2,4 using the independence assump-
tion as s2,4 = s2 ∗ s4.

Partitioning reduces the computational complexity
from O(|T|2|N|) to O(T12|N1| + · · · + Tk2|Nk|), making
iterative scaling feasible even for large sets of predicates
N. For example, when N = {1, 2, . . . , 12}, |T| = 25, k =
4, |Ni| = 3 and |Ti| = 7, the use of partitioning reduces
the complexity by two orders of magnitude.

In practice, partitioning can reduce the computational
complexity even more than is indicated above, by avoid-
ing execution of the iterative scaling algorithm alto-
gether for specified partitions (Pi, Ti). In the above
example, for instance, we can compute the selectivity
s1,2,4 as s1,2,4 = s1,2 ∗ s4; because s1,2 is known a priori.
Thus we need only run iterative scaling on (P2, T2) and
not on (P1, T1). Similarly, if a partition contains only a
few predicates, it may be possible to compute the desired
ME selectivity analytically, without requiring iterative
scaling. For example, suppose that Pi = {p1, p2, p3}, Ti =
{{1}, {2}, {3}, {1, 2}, {2, 3}, Ø}, and we need to compute
s1,2,3. It can be shown (see Appendix C) that s1,2,3 =
s1,2 * s2,3 / s2, so that no iterative scaling is needed. In
general, it may be possible to maintain a “library” of
such identities, and perform a quick syntactic analysis at
selectivity-estimation time to see if any of the identities
apply.

5.2 Forced partitioning

As shown by the experiments in Sect. 8, iterative scaling
cannot compute the ME solution in sub-second time if
the cardinality of N is too large. In order to guarantee
sub-second computation time, we need to ensure that
each partition Ni as in Sect. 5.1 has cardinality at most
μ, where μ is a constant that depends on the computer
hardware and system load.7

7 In practice, the constant μ depends primarily on the CPU speed
of the computer. On a single-user laptop using an Intel Pen-
tium(R) III Mobile CPU 1,133 MHz with 512 MB RAM, we found
that μ = 8.

Unfortunately, it is not always possible to partition
N as in Sect. 5.1 into subsets of cardinality at most
μ for a given set T. For example, suppose that N =
{1, 2, 3, 4, 5, 6} and T = {{1}, {2}, {3}, {4}, {5}, {6}, {1, 2},
{2, 3}, {3, 4}, {4, 5}, {5, 6}}. Then N cannot be partitioned
for any μ < 6 since, for any partitioning of N into N1 and
N2, there exists at least one X ∈ T such that X ∩N1 �= Ø
and X ∩ N2 �= Ø.

In such cases, we must remove elements from T in
order to force a partitioning in which |Ni| ≤ μ. How-
ever, this forced partitioning will potentially degrade
the quality of the ME solution, since we are discard-
ing information. Ideally, a forced-partitioning algorithm
should remove those elements that have the least impact
on the ME solution. Such an algorithm, however, would
be very computationally expensive, because it would
have to consider the interaction of every constraint with
every other constraint. In the following, we describe
a pragmatic algorithm with complexity O(|T| log |T|)
that ignores interactions and greedily removes elements
from T with the goal of minimizing the impact on the
ME solution.

When generating partitions, we keep track of the car-
dinality ci of each partition Ni. At the beginning we start
with |N| partitions, Ni = {i} and ci = 1 for every parti-
tion. We then iteratively merge partitions based on each
element X ∈ T, i.e,

Ni =
{⋃

j|X∩Nj �=Ø Nj if i = min(X);
Ø otherwise,

which reduces the number of partitions, but increases ci.
We only add an element X ∈ T to the knowledge set Ti

of partition Ni if afterwards the constraint ci ≤ μ will be
satisfied; if the constraint will be violated, we ignore X,
thereby removing X from T.

In order to have as little impact as possible on the
overall ME solution, we need to avoid discarding those
elements XεT that correspond to knowledge about the
largest deviations from independence. We can achieve
this goal by processing elements in decreasing order of
�X , where �X = max(sX/

∏
i∈X si,

∏
i∈X si/sX). The

quantity �X measures the degree to which the corre-
sponding sX constraint in Eq. (3.2) forces the ME solu-
tion away from independence. Figure 5 summarizes the
algorithm for forced partitioning. Note that an efficient
implementation stores T as list sorted according to �X
and thus has a complexity of O(|T| log |T|).

5.2.1 Example: forced partitioning

Let N = {1, 2, 3, 4, 5, 6} and T = {{1}, {2}, {3}, {4}, {5}, {6},
{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}}. Also suppose that

Consistent selectivity estimation via maximum entropy 65

≠
D D>_

…

… …

m

Fig. 5 Forced-partitioning algorithm

s1 = 0.1, s2 = 0.2, s3 = 0.3, s4 = 0.4, s5 = 0.5, s6 = 0.6
and s1,2 = 0.1, s2,3 = 0.2, s3,4 = 0.3, s4,5 = 0.4, s5,6 = 0.5.
It follows that �1,2 = 5, �2,3 = 3.33, �3,4 = 2.5, �4,5 =
2, and �5,6 = 1.67. With μ = 3, we therefore obtain k = 2,
N1 = {1, 2, 3}, T1 = {{1}, {2}, {3}, {1, 2}, {2, 3}}, N2 =
{4, 5, 6}, and T2 = {{4}, {5}, {6}, {4, 5}, {5, 6}}. The element
{3,4} has been dropped in order to enable the partition-
ing of N into N1 and N2. Of all the elements that prevent
partitions of size 3 from being constructed, the element
{3,4} has the smallest impact on the ME solution.

6 Predicates over multiple tables

The discussion so far has focused on sets of predicates
such that all of the predicates in the set refer to a sin-
gle table. Our techniques extend naturally to sets of
predicates that refer to two or more tables, i.e., sets con-
taining both local and join predicates. The idea is to
generalize the notion of selectivity in the usual way: if a
set P of predicates refers to tables R1, R2, . . . , Rk, then
the selectivity of each predicate pεP is defined as the
fraction of elements of the Cartesian product R1 × R2 ×
· · · × Rk that satisfy p. Observe that the selectivity of a

local predicate (i.e., a predicate that refers only to the
columns in a specified table R) coincides with the single-
table selectivity defined previously. We can now proceed
precisely as in previous sections.

For the case of, e.g., k = 2 tables and in the absence of
any other information, the ME estimate of the selectiv-
ity of a join predicate is 0.5, since any pair of rows is as
likely to join as to not join. In practice, enough informa-
tion is usually available so that the estimated selectivity
is much lower than 0.5. In one common scenario, for
example, a join predicate pi is known to be a foreign-
key join, with table R1 containing the key column and
table R2 containing the foreign-key column. Thus the
number of elements in the Cartesian product R1 × R2
that satisfy pi is |R2|. In this case, we add the element
X = {i} to the knowledge set T, with corresponding
selectivity sx = 1/|R1|.

7 Integration into the DB2 optimizer

The existing DB2 UDB optimizer precomputes
selectivities from single-column statistics and MVS prior
to plan enumeration, costing, and selection. When

66 V. Markl et al.

Fig. 6 Precomputation phase
for computing ME model (k
partitions)

Retrieve known single and
multivariate statistics T

from the database

Partition N with respect to T

Resolve Inconsistencies for
N1, T1

Resolve Inconsistencies for
Nk, Tk

Detect Implied Zeros for
N1, T1

Detect Implied Zeros for
Nk, Tk

Compute ME Solution for
N1, T1

Compute ME Solution for
Nk, Tk

…

…

…

Combine Partitions
Using Independence

Query with predicates
N

ME Model

Retrieve known single and
multivariate statistics T

from the database

Partition N with respect to T

Resolve Inconsistencies for
N1, T1

Resolve Inconsistencies for
Nk, Tk

Detect Implied Zeros for
N1, T1

Detect Implied Zeros for
Nk, Tk

Compute ME Solution for
N1, T1

Compute ME Solution for
Nk, Tk

…

…

…

Combine Partitions
Using Independence

Query with predicates
N

ME Model

costing a plan that involves a conjunctive predicate p,
the optimizer estimates p’s selectivity by using a
precomputed selectivity if available, or else combin-
ing several precomputed selectivities using the ad hoc
method outlined in Appendix A. The optimizer takes
precautions to avoid inconsistencies by keeping track
of how a missing estimate for a predicate p was
computed when it was first requested by a subplan
during join enumeration. Subsequent requests for p’s
selectivity estimate will use this recorded information
to ensure that the estimate is always derived in the
same way. Although this approach avoids incon-
sistencies, it discards useful information. Moreover, the
plans chosen by the optimizer depend on how the
selectivities are derived initially, which in turn depends
on the order in which the selectivity estimates are
requested during optimization; this order is completely
arbitrary, leading to an arbitrary bias in the choice
of plans.

The ME model can be easily integrated into the DB2
UDB optimizer, in that changes to the code are essen-
tially isolated within a single subroutine. For our proto-
type implementation, we extended the precomputation
phase to not only compute selectivities based on

statistical information, but also to precompute all miss-
ing selectivities, using the techniques for partitioning,
inconsistency resolution, zero detection, scaling, and
combination described earlier. This precomputation
eliminates the need to use the heuristic given in
Appendix A for costing. It also eliminates the need to
keep track of how selectivities were combined in order
to avoid inconsistencies during estimation, because the
ME estimate for a given selectivity is unique. The DB2
optimizer uses these precomputed selectivity estimates
during dynamic programming to compute the cardinal-
ities of each partial QEP it considers.

Figure 6 shows the overall architecture of the
precomputation phase as implemented in our DB2
prototype.

Our extensions to the cardinality model enable the
optimizer to use all available statistics in a consistent
way, for all plans in the plan space. This improved knowl-
edge results in better query plans and improved query
execution times, as shown experimentally in the next
section. Our modifications also simplify the query
optimizer’s logic, as consistency checks and record-
keeping are no longer necessary during cardinality
estimation.

Consistent selectivity estimation via maximum entropy 67

8 Experimental evaluation

In this section we describe a set of experiments that we
ran in order to evaluate the quality of the estimates pro-
duced by the ME approach, as well as the computational
costs of the algorithms. We focused primarily on single-
table queries, using all available information about both
single and joint column frequencies.

The workload used in our experiments was derived
from a real-world 1 GB database and collection of 200
queries, both obtained from a department of motor
vehicles (DMV) data center. The workload involves
four tables: OWNER, CAR, DEMOGRAPHICS, and
ACCIDENTS. For all of our experiments except those
in Sect. 8.3, we focused on the portion of each query that
references the CAR table. Figure 7 shows the schema of
the CAR table.

The CAR table has a base cardinality of 143,309 rows.
The table also contains strong correlations between
MAKE, MODEL, COLOR, and YEAR; multivariate
statistics are required on at least a subset of these
columns in order to obtain reasonable cardinality
estimates. We focused on the three-way correlation
between MAKE, MODEL, and COLOR, as this is the
correlation most frequently encountered in actual
queries.

8.1 Quality of the estimates

We first assessed the quality of the ME estimates, com-
paring our new methodology to the state-of-the-art
(SOTA) estimation method in DB2 UDB v8.2 as
described in Appendix A. Specifically, we ran experi-
ments to estimate the selectivities of queries of the form
“SELECT * FROM CAR WHERE p1 AND p2 AND
p3” with

p1: CAR.MAKE = :literal1
p2: CAR.MODEL = :literal2
p3: CAR.COLOR = :literal3

We used a workload of 200 queries having different
values for each of the three literals in each query in-
stance. From the base statistics, the optimizer always

id Integer (Primary Key)
ownerid Integer (Foreign Key)
year Integer
make Char (20)
model Char (20)
color Char (20)

Fig. 7 Schema of the CAR table (DMV data-base)

knew the selectivities s1, s2, and s3, of the simple pred-
icates, i.e., {{1}, {2}, {3}} ⊆ T. Additionally, we created
MVS to make the optimizer aware of several of the cor-
relations between the three columns referenced by the
predicates. We considered five major cases, each repre-
senting different available knowledge about joint col-
umn distributions. We label each case as “f .c,” where
f is the maximum number of BFs in any of the known
conjuncts, and c is the number of such maximally sized
conjuncts:

Case 1.3 Only the selectivities of the single pred-
icates (marginals) s1, s2, s3 are known. In this special
case, the ME solution can be computed analytically
and is identical to the SOTA solution (Example c in
Appendix A).

Case 2.1 Besides the marginals, the selectivity of one
conjunctive predicate consisting of two BFs is known.
Since our query comprises three BFs, we distinguish
three possible subcases. In Case 2.1a the selectivity s1,2
for the conjunct on MAKE and MODEL is known, in
Case 2.1b the selectivity s1,3 for the conjunct on MAKE
and COLOR is known, and in Case 2.1c the selectiv-
ity s2,3 for the conjunct on MODEL and COLOR is
known. The ME estimate for s1,2,3 is just the product
s1,2∗s3 for Case 2.1a, and analogously for the other cases.
The ME estimates coincide with the SOTA estimates.

Case 2.2 Besides the marginals, the selectivity of two
conjunctive predicates consisting of two BFs is known.
In this case, we again distinguish three subcases, depend-
ing on which conjunctive predicates are known:

• 2.2a: s1,2, s1,3 for (MAKE, MODEL), (MAKE, COLOR)

• 2.2b: s1,2, s2,3 for (MAKE, MODEL), (MODEL, COLOR)

• 2.2c: s1,3, s2,3 for (MAKE, COLOR), (MODEL, COLOR)

The ME solution can again be computed analytically, as
discussed in Appendix C: for Case 2.2a, s1,2,3 = s1,2 ∗
s1,3/s1, and analogously for Cases 2.2b and 2.2c. Note
that this solution does not correspond to the SOTA com-
putation.

Case 2.3 Selectivities for all three conjunctive
predicates consisting of two BFs are known. In this case,
the ME solution can no longer be computed analytically,
and the iterative-scaling algorithm must be applied. Note
that the ME result in this case again does not
correspond to the SOTA estimate.

Case 3.1 The selectivity s1,2.3 of the overall conjunc-
tive predicate consisting of three BFs is known. Since
this is the selectivity that we seek, the ME algorithm
simply returns s1,2,3 as the answer. The SOTA estimate
(Example a in Appendix A) is identical.

The experiments reported in this section do not use
forced partitioning. Preliminary experiments indicated

68 V. Markl et al.

that for a value of μ = 8, use of forced partitioning had
a negligible impact on the quality of the ME solution.

8.1.1 Using all information

We ran a workload of 200 queries; for each query we
computed the absolute estimation error E = ∣∣ĉ − c

∣∣,
where ĉ is the ME estimate of the cardinality (i.e., num-
ber of rows returned by the query) and c is the true
cardinality. The box plots in Fig. 8 summarize the abso-
lute estimation errors of the ME estimates in each of
the cases described above. The bottom of a box gives
the first quartile (twenty-fifth percentile) of the error
over the 200 queries, the horizontal line inside a box
and the number to the right of the line give the value of
the median error, the top of a box gives the third quartile
(seventy-fifth percentile) of the error, and the endpoints
of the vertical lines that extend above and below the box
give the maximum and minimum error. The estimation
error for Case 1.3 is considerable – with a median value
of 788 and a maximum value of almost 10,000 – because
the estimates use the independence assumption, thereby
ignoring the strong correlations between the columns.
Using MVS on even a single pair of columns reduces
both the maximum and median error by an order of mag-
nitude. Observe that the correlation between MAKE
and MODEL is apparently stronger than the correla-
tion between any other column pair, since the use of
MVS for (MAKE, MODEL) yields the smallest error
(both median and maximum) for Case 2.1.

If MVS are available for two of the column pairs,
then the error is reduced even further. When one of
those pairs comprises the strongly correlated MAKE
and MODEL columns, both the median and maximum
error are reduced by two orders of magnitude over Case

0

100

200

300

400

500

600

700

800

900

1000

1.3 2.1b 2.1.c 2.1a 2.2c 2.2a 2.2b 3.1

A
b

so
lu

te
 E

st
im

at
io

n
 E

rr
o

r 75%: 2138

788

79 79
42 65

11 9 6 0

100%: 9583

2.3

Fig. 8 Box plots of absolute estimation error for various
knowledge sets (200 queries)

1.3 (known marginals only). Note that when we only
have MVS for the not-so-strongly correlated (MAKE,
COLOR) and (MODEL, COLOR) column pairs (Case
2.2c), the overall error reduction – while greater than
when MVS are available for only one column pair –
is not as pronounced as when MVS are available on
(MAKE, MODEL). Both the median and seventy-fifth
percentile of the absolute error are reduced even fur-
ther in Case 2.3, where MVS are available for all three
column pairs. In Case 3.1, perfect knowledge results in
zero error.

Overall, the experiment shows that our ME estima-
tion method has the desired property of reducing the
absolute estimation error as more knowledge becomes
available. We conducted further experiments for que-
ries involving more than three predicates, with similar
results.

8.1.2 Improvement over the state of the art

Figure 9 contrasts the absolute estimation error of our
ME approach with the SOTA method for cardinality
estimation described in Appendix A. Note that the esti-
mation errors of SOTA and ME are identical for the
Cases 1.3, 2.1, and 3.1, because the ME principle reduces
to the assumptions of uniformity and independence used
by SOTA. However, as soon as more than one selectivity
for a two-conjunct predicate becomes available, SOTA
and ME return different results. In these cases, SOTA
cannot use the additional information to improve esti-
mates, and thus is reduced to using information about
only a single two-conjunct predicate. In contrast, ME
exploits all available information, thereby yielding lower
median and maximum errors than SOTA in every case.
The improved performance of ME relative to SOTA is

0

100

200

300

400

500

600

700

800

900

1000

SOTA ME SOTA ME SOTA ME SOTA ME

A
b

so
lu

te
 E

st
im

at
io

n
 E

rr
o

r

2.2a 2.2b 2.2c 2.3

44 4411 9
79 65 43 6

Fig. 9 Comparison of ME to SOTA (200 queries)

Consistent selectivity estimation via maximum entropy 69

especially striking when one of the available selectiv-
ities is on the strongly correlated (MAKE, MODEL)
column pair (Cases 2.2a and 2.2b) and when selectivi-
ties are available on all three column pairs (Case 2.3).
Experiments for |P| > 3 (not reported here) show even
more dramatic improvements of ME over SOTA.

8.1.3 Backward Computation

We can also use the iterative scaling algorithm for
backward computation, i.e., using knowledge of sX to
compute sY , where Y ⊂ X. Thus if we have three-way
selectivities on (MAKE, MODEL, COLOR), then the
ME approach allows us exploit this information in order
to handle the two-column correlations between MAKE
and MODEL, MAKE and COLOR, or MODEL and
COLOR without resorting to erroneous independence
assumptions. Figure 10 displays box plots of the absolute
estimation error for the SOTA method versus the ME
approach when computing the cardinalities for predi-
cates on these column pairs.

As can be seen, use of the ME method can reduce
both the median and the maximum estimation error
substantially. Note that the error reduction is smaller for
MAKE and MODEL than for the other cases, because
ME – when knowing nothing about the two-way
correlations – apportions the correlation “uniformly”
among all three two-way correlations. The true correla-
tion between MAKE and MODEL is the strongest of
the two-way correlations, so that the selectivity correc-
tion achieved by ME in this case is smaller than in the
other two cases.

0
100
200
300
400
500
600
700
800
900

1000
1100
1200

SOTA ME SOTA ME SOTA ME

ab
so

lu
te

 e
st

im
at

io
n

 e
rr

o
r

MAKE = ? AND MODEL =? MAKE = ? AND COLOR =?MODEL = ? AND COLOR =?

Fig. 10 Comparison of ME and State of the art (SOTA) when
estimating s1,2, s2,3, or s1,3 from s1,2.3 (200 queries)

8.2 Performance of the ME method

In this section we study both the processing time
required to produce the ME estimates and the numerical
stability of the ME computation, examining the impact
of our various preprocessing steps.

8.2.1 Iterative scaling without partitioning

The time complexity of iterative scaling, as described in
Sect. 3.3, is exponential in |P|, the number of predicates,
and linear in |T|, the size of the knowledge set (or, equiv-
alently, the number of constraints in Eq. (3.2)). There-
fore, it is important to analyze the maximum number of
predicates for which this algorithm is feasible in practice.
We ran the iterative scaling algorithm for different num-
bers of predicates and different-sized knowledge sets,
using an Intel Pentium(R) III Mobile CPU 1,133 MHz
with 512 MB RAM. For our experiments, we ensured
that zero atoms were not a problem, in order to focus
on the performance impact of the number of predicates.

Figure 11 shows the elapsed time (in seconds) until
the iterative-scaling algorithm converges as a function
of |P| and |�T|, where �T = T\{{1}, {2}, . . . , n}. When
|P| < 5, the time until convergence is less than 1 s for
all values of |T|, and thus is omitted from the figure.
When |P| < 8, the iterative-scaling algorithm exhib-
its sub-second convergence time and the performance
impact of |T| is negligible.

As |P| increases, the computation time rises exponen-
tially. We found that iterative scaling is impractical for
more than ten predicates, for then the response time
exceeds 1 s and thus has a clearly noticeable impact
on the overall query optimization time. When |P| is
large, moreover, the amount of available knowledge
|T| has a noticeable impact on the overall performance.
Fortunately, the algorithm’s performance is generally

0

25

50

75

100

5 6 7 8 9 10 11 12 13 14 15 16 17 18

number of predicates |P|

ti
m

e
u

n
ti

l c
o

n
ve

rg
en

ce
 o

f
it

er
at

iv
e

sc
al

in
g

0
1
2
3
4
5
6
7
8
9
10

0

1

2

3

4

5

6

7

8

9

10

|T|

Fig. 11 Time (seconds) until convergence of iterative scaling, for
various |P| and |�T|

70 V. Markl et al.

acceptable when iterative scaling is performed over the
local predicates on each single table separately (i.e., P
being the set of local predicates on a table). We rarely
encountered more than ten local predicates on a single
table, even for very complex real-world queries. Indeed,
all but five queries in the customer workloads available
to the authors had less than 6 local predicates on a sin-
gle table, even though the total number of predicates
in many queries exceeded 50. Only three queries had
more than 8 predicates on a single table, 11 being the
maximum. As discussed in Sect. 5, when the number
of predicates exceeds 8 we can often use preprocessing
steps to bring down the number of predicates used for
scaling to a reasonable number.

8.2.2 Comparison of algorithms for zero-atom detection

This section considers the relative performance impact
of the two algorithms for zero-atom detection given in
Sect. 3.4. Based on a set of 500 experimental queries,
the box plots in Fig. 12 summarize the required com-
putation times for these algorithms. The performance
of the iterative (“I”) and the approximation (“A”) algo-
rithms is essentially identical for up to six predicates, and
then the computation times diverge sharply from seven
predicates onward, with the approximation algorithm
becoming much faster than the iterative algorithm.

Further experiments with ten or more predicates indi-
cated that the median processing time for iterative zero-
detection exceeds 10 s in the presence of 11 predicates
and increases exponentially as the number of predi-
cates increases further, whereas the processing time for
the approximation method is less than 1 s in all cases
considered.

0

1

2

3

4

5

a) 6
preds

b) 6
preds

a) 7
preds

b) 7
preds

a) 8
preds

b) 8
preds

a) 9
preds

b) 9
preds

C
o

m
p

u
ta

ti
o

n
 T

im
e

(s
ec

)

6 7

A I A I A I A I

8 9

Fig. 12 Performance of preprocessing using two zero-atom
detection algorithms, |P| = 6, 7, 8, 9

8.2.3 Impact of partitioning

We analyzed the impact of partitioning on a synthetic
workload of 2,000 queries with between 10 and 14 pred-
icates. The knowledge sets T were generated randomly.
The box plots in Fig. 13 summarize the cumulative
elapsed times for preprocessing and iterative scaling
(i) without partitioning, (ii) with forced partitioning (as
in Sect. 5.2) using various values for the partition-size
parameter μ, and (iii) with “unforced” partitioning as in
Sect. 5.1 (μ = ∞). Although the median time of 2.5 s for
the unpartitioned case may appear to be almost accept-
able, the worst-case time of 136 s prevents this algorithm
from being practical. Without impacting the quality of
the solution, unforced partitioning reduces the median
to 0.1 s. In this case, the 75% of the elapsed times are
also sub-second, while the maximum elapsed time is still
unacceptably large at about 62 s. With little impact on
the overall ME solution quality, forced partitioning with
μ = 10 brings the maximum computation time down to
2 s. Reducing μ further to 8 (and 5) achieves sub-second
computation times for all queries.

Figure 14 shows the impact of partitioning on the
quality of the ME solution for this workload. For each

Fig. 13 Performance of partitioning

A

Fig. 14 Quality of partitioning

Consistent selectivity estimation via maximum entropy 71

query and each partitioning scheme considered, we com-
puted the absolute error E = ∣∣s′ − s

∣∣, where s is the
exact ME selectivity estimate (i.e., with no partitioning)
and s′ is the corresponding selectivity estimate based on
partitioning. As can be seen from the box plots in the
figure, the error is trivially zero in the cases of unpar-
titioned iterative scaling and unforced partitioning, and
increases with decreasing μ.

In our experiments, a median error of less than 0.007
(about 1,000 rows) had no significant impact on ulti-
mate query performance, and so we selected μ = 8 as
our default value for partition sizes.

8.2.4 Overall numerical stability and performance of
iterative scaling with preprocessing

Figure 15 shows the effect of the preprocessing steps on
the numerical stability of the ME computation. We used
600 random queries with BFs involving between 3 and
14 columns. The first (respectively, second) three bars
show the effect of the preprocessing without (respec-
tively, with) partitioning. With no preprocessing (Bar
1), the iterative-scaling algorithm fails for 24% of the
queries due to inconsistent constraints and for an addi-
tional 2% of the queries due to implied zeros. Incon-
sistency resolution (Bar 2) guarantees the existence of
a maximum entropy solution, but iterative scaling still
converges for only 74% of the queries because of implied
zeros. Elimination of implied zeros (Bar 3) produces a
maximum entropy solution for every query. Bars 1P–3P
show similar results in the presence of partitioning.

Based on a workload of 2,000 queries as in the parti-
tioning experiments of Sect. 8.2, Fig. 16 shows the aver-
age processing time (in ms) for each step of the ME
computation. As in the previous section, we distinguish
between various partitioning strategies: unpartitioned
(denoted by “U” in the figure), unforced partitioning

74%74%

100%

76% 76%

100%

0%

25%

50%

75%

100%

1 2 3 1P 2P 3P

MAXENT Preprocessing Steps

P
er

ce
n

ta
g

e
o

f
60

0
Q

u
er

ie
s

IS Algorithm Converges IS Algorithm Fails to Converge No Feasible MAXENT Solution

24% 22% 24%26%

2% 2%

Fig. 15 Robustness of the ME computation

0

163

138

0

126

107

0

15
24

7
0

7 6 20
6 4 1

0

50

100

150

200

partitioning inconsistency
removal

implied zero
removal

iterative scaling

A
ve

ra
g

e
C

o
m

p
u

ta
ti

o
n

 T
im

e
in

 m
s

μ = U ∞ 10 8 5 U ∞ 10 8 5 U ∞ 10 8 5 U ∞ 10 8 5

18828

12507

Fig. 16 Performance of iterative scaling with preprocessing

(μ = ∞), and forced partitioning with various values
of μ. We again see that forced partitioning has a tre-
mendous impact on the overall computation time. Also
note that, with μ = 8, the overall time required to com-
pute the ME solution is only about 15 ms on average,
while the impact on the quality of the ME solution is
negligible, as mentioned previously.

8.3 Query execution time

Although improving the cardinality estimates yields a
better model for the query optimizer, the bottom line
of optimization is the improvement in query execu-
tion time. We measured the impact that use of the ME
method has on the query execution time for our experi-
mental workload of 200 queries against the DMV data-
base. Recall that, in the previous experiments, we used
only the part of each query that selects a particular
MAKE, MODEL, and COLOR from the CAR table,
ignoring all other tables referenced by the query. In this
experiment we used each query in its entirety. Besides
applying selection predicates to the CAR table, each full
query also joins the CAR table with up to three addi-
tional tables and applies additional local predicates on
the other tables. For all queries, the execution time of
iterative scaling was less than one second and also below
1% of the total query execution time.

Figure 17 shows the performance benefit observed
when running the queries with MVS created for all three
two-way correlations on CAR, improving the estimates
for the CAR table as in Case 2.3 in Sect. 4.1. Of the 200
queries, 92 showed only marginal performance gains or
no gains at all. On the other hand, many queries exe-
cuted between two and five times faster when using the
ME estimates as opposed to the SOTA estimates. Nine
queries had a performance gain of more than an order

72 V. Markl et al.

92

61

24

14
9

0

10

20

30

40

50

60

70

80

90

100

1 2 5 10 ≥10

speedup factor

n
u

m
b

er
 o

f
q

u
er

ie
s

Fig. 17 Performance benefit of using two-way MVS

of magnitude, due to improvements in join order and/or
join methods; we emphasize that these improvements
resulted from the better cardinality estimates on just
the CAR table alone.

9 Related work

Cost-based query optimization was introduced in [30].
Many researchers have investigated the use of statis-
tics for query optimization, especially for estimating the
selectivity of single-column predicates using histograms
[18,27,28] and for estimating join sizes [22,34,35] using
parametric methods [10,24]. Some MVS proposed for
cardinality estimation include multidimensional histo-
grams [29], statistics on views [6,13], and Bayesian [15]
or other forms [12] of probabilistic models.

Recent research in selectivity estimation has mostly
focused on determining which statistics to collect and
how to collect them efficiently. The methods in [5,8]
analyze the query workload to select a set of statistics
to maintain, such as MVS on base data or query expres-
sions. In [33], a feedback loop is employed in which
query executions are monitored, the monitored infor-
mation is analyzed to determine estimation errors, and
the feedback information is used to adjust various stored
statistics. The papers of [1,4,32] provide approaches to
maintaining MVS based on query feedback by incre-
mentally building a multidimensional histogram that can
be used to estimate the selectivity of conjunctive pred-
icates. The techniques in [2] use runtime feedback and
other information to determine when and how to collect
statistics. [21] use a sampling-based chi-squared test to
determine the most relevant MVS to collect for query
optimization.

Although a large body of work, as surveyed above,
focuses on various aspects of recommending, comput-

ing, storing, and maintaining statistics for query optimi-
zation, no previous research has addressed the problem
of combining selectivities derived from arbitrary (pos-
sibly inconsistent) available MVS to improve selectiv-
ity estimation of conjunctive predicates. Prior methods
have derived selectivities for each conjunct from single-
column statistics and combined them using the assump-
tion of statistical independence, typically in an ad hoc
manner.

Information theory and the broad mathematical prin-
ciple of maximum entropy have been applied to other
domains such as machine translation [14] and informa-
tion retrieval [9]. Recently, [32] have proposed the use
of ME methods for maintaining multivariate histograms,
i.e., not for combining MVS as in the current paper, but
rather for producing MVS in the first place.

10 Conclusions

We have presented a novel ME method for estimat-
ing the selectivity of conjunctive predicates, based on
an information-theoretically sound approach that takes
into account available statistics on both single columns
and groups of columns. The model avoids arbitrary
biases, inconsistencies, and the flight from knowledge to
ignorance by deriving missing knowledge using the ME
principle. This principle consistently extends the prin-
ciples of uniformity and independence used in state-
of-the-art selectivity models to exploit any available
multi-attribute information. The specific embodiment of
our approach described here solves the constrained ME
optimization problem using Lagrange multipliers and an
iterative scaling algorithm. We have implemented this
method in a prototype version of DB2 UDB, improving
the quality of the query optimizer while also simplifying
its logic.

We have also developed several enhancements of the
basic technology in order to handle the various real-
world challenges that we encountered during imple-
mentation and testing. These include partitioning
strategies that permit application of our methods to
complex queries with many predicates, techniques for
dealing with inconsistent input data, and an approach to
handling join queries.

In our experiments, use of the ME approach improved
selectivity estimates significantly over the state-of-the-
art model used in DB2 UDB, often by orders of mag-
nitude. This increased accuracy in turn yielded consid-
erable improvements in query execution times for an
example workload on our DMV dataset, with several
queries running faster by orders of magnitude. Itera-
tive scaling, together with our preprocessing techniques,

Consistent selectivity estimation via maximum entropy 73

produced selectivity estimates for real-world queries
with response times on the order of tens of millisec-
onds, adding less than a second to overall optimization
time in all but the most complex queries.

Future work includes the investigation of efficient
alternatives to the iterative scaling algorithm to fur-
ther reduce the time required to compute the ME solu-
tion; we are currently investigating an algorithm based
on Newton’s method. We are also investigating more
sophisticated approaches to forced partitioning; the idea
is to use a criterion for discarding an element of T that
explicitly depends upon whether the element spans mul-
tiple tables, the set of elements that have been discarded
previously, and so forth. In addition, we are working
on extending the scope of our ME method to permit
cardinality estimation for distinct projections; the latter
functionality is needed for optimizing queries with DIS-
TINCT or GROUP BY clauses. Finally, we are studying
a variety of potential applications of the ME principle
to the recommendation, construction, and maintenance
of MVS.

Acknowledgements The authors wish to thank the reviewers for
helpful comments that greatly improved the paper.

Appendix A: selectivity estimation for conjunctive
predicates in DB2 UDB

We describe the state of the art in exploiting MVS during
query optimization. To our knowledge, prior research
has neither formalized nor described solutions to this
problem that go beyond classical independence and/or
using MVS when they exactly match the columns refer-
enced in a conjunctive predicate. We therefore describe
the approach currently taken by DB2 UDB, using the
notation introduced in Sects. 2.1 and 3.1.

In the following we assume that the selectivities of
simple predicates are always available, so that the
knowledge set T satisfies T ⊇ T0, where T0 = {{1},
{2}, . . . , {n}}. The goal is to estimate the selectivity sX
for some X ∈ 2{1,2,...,n} with |X| > 1. We say that an
element Y ∈ T is relevant to sX if Y ⊆ X, and denote by
RX the set of all elements in T that are relevant to sX .
We also write T0,X = {{i}|i ∈ X} ∪ {Ø}. For Y, Z ∈ RX ,
we say that Y has a higher degree of correlation than Z,
and write Y � Z, if either (i) |Y| > |Z| or (ii) |Y| = |Z|
and sY/

∏
i∈Y si ≥ sZ/

∏
i∈Z si.

DB2 UDB estimates sX as
∏k

i=1 sXi , where the sets
X1, X2, . . . , Xk ∈ RX are chosen such that

(1) X = ⋃k
i=1 Xi,

(2) Xi ∩ Xj = Ø for i �= j, and

(3) Xi � Y for Y ∈ RX\{X1, X2, . . . , Xi},
i = 1, 2, . . . , k,

i.e., the Xi’s are exhaustive and mutually exclusive, and
the Xi sequence is constructed by selecting elements of
RX in decreasing order of degree of correlation. Any
ties with respect to degree of correlation are broken
arbitrarily; thus if there exist several possible sequences
of Xi’s that satisfy the above criteria, then one such
sequence is selected arbitrarily.

Examples:

(a) Estimate s1,2,3 given RX = T0,X ∪ {{1, 2, 3}}:
s1,2,3 = s1,2,3.

(b) Estimate s1,2,3 given RX = T0,X ∪ {{1, 2}, {2, 3},
{1, 2, 3}}:
s1,2,3 = s1,2,3.

(c) Estimate s1,2,3 given RX = T0,X :
s1,2,3 = s1 ∗ s2 ∗ s3.

(d) Estimate s1,2,3,4,5 given RX = T0,X ∪ {{1, 2}, {3, 4}}:
s1,2,3,4,5 = s1,2 ∗ s3,4 ∗ s5.

(e) Estimate s1,2,3,4,5 given RX = T0,X∪{{1, 2, 5}, {3, 4}}:
s1,2,3,4,5 = s1,2,5 ∗ s3,4.

(f) Estimate s1,2,3,4,5 given RX = T0,X∪{{1, 2}, {2, 3, 4}}:
s1,2,3,4,5 = s2,3,4 ∗ s1 ∗ s5.

(g) Estimate s1,2,3,4,5 given RX = T0,X ∪ {{1, 2}, {2, 3}}
with {1, 2} � {2, 3}:
s1,2,3,4,5 = s1,2 ∗ s3 ∗ s4 ∗ s5.

(h) Estimate s1,2,3,4,5 given RX = T0,X ∪ {{1, 2}, {2, 3},
{1, 3}} with {1, 2} � {2, 3} and {1, 2} � {1, 3}:
s1,2,3,4,5 = s1,2 ∗ s3 ∗ s4 ∗ s5.

Typically, MVS are provided to the optimizer pre-
cisely for those column sets in which the independence
assumption breaks down. It follows that in scenarios
such as Examples (f) through (h), the foregoing estima-
tion method can produce large errors by ignoring crucial
information. For instance, in Example (f), the final esti-
mate ignores any correlation between s1 and s2. Like-
wise, in Examples (g) and (h), the estimation method
assumes (probably erroneously) that s3 is completely
independent of s1 and s2. Use of this method can cripple
dynamic optimization and reoptimization schemes, in
which increasing amounts of information are provided
to the optimizer over time. For example, although the
optimizer has been provided with one more piece of
information in Example (h) relative to Example (g), the
estimate of s1,2,3,4,5 does not improve. These problems
motivate our new ME estimation method, which uses all
available information.

74 V. Markl et al.

Appendix B: validity of partitioning

It suffices to prove the claim in Sect. 5.1 for the case
k = 2; the general case then follows from a straight-
forward induction argument. The claim is a direct con-
sequence of the following theorem. Consider two sets
A = {a1, a2, . . . , am} and B = {b1, b2, . . . , bn}, and let
{pij : 1 ≤ i ≤ m, 1 ≤ j ≤ n} be the ME probability distri-
bution over the Cartesian product A × B, subject to sets
of constraints of the form

∑

i∈Us

n∑

j=1

pij = φs, s = 1, 2, . . . , S (B.1)

and

∑

j∈Vt

m∑

i=1

pij = θt, t = 1, 2, . . . , T, (B.2)

where each Us is a subset of {1, 2, . . . , m} and each Vt

is a subset of {1, 2, . . . , n}. Let {qi : 1 ≤ i ≤ m} be the
ME distribution over the elements in A, subject to the
constraints in Eq. (B.1), which can be rewritten as
∑

i∈Us

qi = φs, s = 1, 2, . . . , S.

Similarly, let {rj : 1 ≤ j ≤ n} be the ME distribu-
tion over the elements in B, subject to the constraints in
Equation B.2.

Theorem The joint ME distribution satisfies pij = qi ∗ rj
for 1 ≤ i ≤ m, 1 ≤ j ≤ n.

To apply this result in the setting of selectivity estima-
tion, we identify the elements of A with the atoms cor-
responding to the predicate set P1 and the elements of
B with the atoms corresponding to the predicate set P2.

We prove the theorem by forming the Lagrangian for
the full ME optimization problem over the Cartesian
product, where we denote by λs the Lagrange multi-
plier corresponding to the sth constraint in Eq. (B.1), by
μt the multiplier corresponding to the tth constraint in
Eq. (B.2), and by γ the multiplier corresponding to the
constraint that the pij’s sum to 1. Taking derivatives, we
find that the optimality equations are given by

log pij + 1 =
∑

s∈�i

λs +
∑

t∈
j

μt + γ ,

where

�i = {s|i ∈ Us} and
j = {t|j ∈ Vt}.
Exponentiating and dividing by e, we see that the joint
probabilities in the ME distribution have the form

pij = cαiβj. (B.3)

Define marginal probabilities for the above ME distri-
bution by setting

yi =
n∑

j=1

pij and zj =
m∑

i=1

pij.

Substituting the relation in Eq. (B.3) into the above
equations and solving, we find that

αi = yi

c
∑

j βj
and βj = zj

c
∑

i αi
,

so that

pij = xi ∗ yj

c
∑

i αi
∑

j βj
.

Substituting Eq. (B.3) into the relation �i,jpij = 1, we see
that the denominator of the foregoing equation is equal
to 1, so that pij = xi ∗ yj for all i and j. Thus the joint ME
distribution over the Cartesian product is equal to the
product of two marginal distributions. To complete the
proof, observe that, for the joint ME distribution,
∑

i, j

pij log pij =
∑

i, j

xiyj log xiyj =
∑

i, j

xiyj(log xi + log yj)

=
∑

i

xi log xi +
∑

j

yj log yj,

where we have used the fact that the xi’s and yj’s both
sum to 1. Thus, to maximize the entropy, we must take
xi = qi and yj = rj.

The foregoing proof formally establishes the fact that,
in the absence of information about joint probabilities,
the ME condition reduces to the independence assump-
tion. An even easier proof shows that, for a marginal
distribution with no available information, the ME con-
dition reduces to the uniformity assumption. Indeed,
for a distribution {xi : 1 ≤ i ≤ m}, let λ be the Lagrange
multiplier corresponding to the constraint that the prob-
abilities sum to 1. Then the optimality equation is

log xi + 1 = λ, 1 � i � m,

so that that xi = xj for all i, j, and hence the distribution
is uniform: xi = 1/m for all i.

Appendix C: conditional independence under ME

Suppose that N = {1, 2, 3} and T = {{1}, {2}, {3}, {1, 2},
{2, 3}, Ø}, and we are given arbitrary but fixed feasible
values for the selectivities s1, s2, s3, s1,2 and s2,3. Also
suppose that the unknown selectivity s1,2,3 is computed
using the ME principle. We establish the identity
s1,2,3 = s1,2 ∗ s2,3/s2 that is used in the text. Note that, if

Consistent selectivity estimation via maximum entropy 75

we divide both sides by s2, then we obtain the equivalent
identity

s1,2,3

s2
= s1,2

s2
∗ s2,3

s2
,

which is equivalent to s1,3|2 = s1|2 ∗ s3|2, where sY|X
can be interpreted as the probability that a randomly
selected row satisfies the predicates {pj : jεY}, given
that the row satisfies the predicates {pj : jεX}. Thus the
foregoing identity asserts that p1 and p3 are condition-
ally independent, given that p2 holds. In this sense the
ME distribution tries to be “as independent as possible”
given the knowledge set T.

To establish the desired result, we observe that the
optimality equations are given by

x000 = c

x100 = c ∗ z1

x010 = c ∗ z2

x001 = c ∗ z3

x101 = c ∗ z1 ∗ z3

x110 = c ∗ z1 ∗ z2 ∗ z1,2

x011 = c ∗ z2 ∗ z3 ∗ z2,3

x111 = c ∗ z1 ∗ z2 ∗ z3 ∗ z1,2 ∗ z2,3,

where c = zØ/e. Using these identities, we find that

s1,2s2,3

s2
= (x110 + x111)(x011 + x111)

x010 + x110 + x011 + x111

= (cz1z2z1,2 + cz1z2z3z1,2z2,3)(cz2z3z2,3 + cz1z2z3z1,2z2,3)

cz2 + cz1z2z1,2 + cz2z3z2,3 + cz1z2z3z1,2z2,3

= cz1z2z1,2(1 + z3z2,3)cz2z3z2,3(1 + z1z1,2)

cz2(1 + z1z1,2 + z3z2,3 + z1z3z1,2z2,3)

= cz1z2z3z1,2z2,3 · (1 + z3z2,3)(1 + z1z1,2)

(1 + z1z1,2 + z3z2,3 + z1z3z1,2z2,3)

= cz1z2z3z1,2z2,3

= s1,2,3.

References

1. Aboulnaga, A., Chaudhuri, S.: Self-tuning histograms: Build-
ing histograms without looking at data. SIGMOD 181–192
(1999)

2. Aboulnaga, A., Haas, P., Lightstone, S., et al.: Automated sta-
tistics collection in DB2 UDB. VLDB 1146–1157 (2004)

3. Ault, M., Tumma, M., Liu, D., et al.: Oracle Database 10 g
new features: Oracle10 g reference for advanced tuning and
administration. Rampant TechPress (2003)

4. Bruno, N., Chaudhuri, S., Gravano, L.: STHoles: a multi-
dimensional workload-aware histogram. SIGMOD 211–222
(2001)

5. Bruno, N., Chaudhuri, S.: Exploiting statistics on query
expressions for optimization. SIGMOD 263–274 (2002)

6. Bruno, N., Chaudhuri, S.: Efficient creation of statistics over
query expressions. ICDE 201–212 (2003)

7. Bruno, N., Chaudhuri, S.: Conditional selectivity for statistics
on query expressions. SIGMOD 311–322 (2004)

8. Chaudhuri, S., Narasayya, V.: Automating statistics manage-
ment for query optimizers. ICDE 339–348 (2000)

9. Chiu, D., Wong, A., Cheung, B.: Information discovery
through hierarchical maximum-entropy discretization and
synthesis. In: Piatesky-Shapiro, G., Fracley, W.J., (eds.),
Knowledge Discovery in Databases. pp. 125–140 MIT Press,
Cambridge (1991)

10. Christodoulakis, S.: Estimating record selectivities. Inf. Syst.
8(2):105–115 (1983)

11. Darroch, J.N., Ratcliff, D.: Generalized iterative scaling
for log-linear models. Ann. Math. Statist. 43:1470–1480
(1972)

12. Deshpande, A., Garofalakis, M., Rastogi, R.: Independence is
good: dependency-based histogram synopses for high-dimen-
sional data. SIGMOD 199–210 (2001)

13. Galindo-Legaria, C., Joshi, M., Waas, F., et al.: Statistics on
views. VLDB 952–962 (2003)

14. García-Varea, I., Och, F., Ney, H., et al.: Refined Lexikon
models for statistical machine translation using a maximum-
entropy approach. ACL 204–211 (2001)

15. Getoor, L., Taskar, B., Koller, D.: Selectivity estimation using
probabilistic models. SIGMOD 461–472 (2001)

16. Greiff, W., Ponte, J.: The maximum-entropy approach and
probabilistic IR models. ACM Trans. Inform. Sys. 18(3):246–
287 (2000)

17. Guiasu, S., Shenitzer, A.: The principle of maximum-entropy.
Math. Intell. 7(1):42–48 (1985)

18. Haas, P., Swami, A.: Sampling-based selectivity estimation
for joins using augmented frequent-value statistics. ICDE
522–531 (1995)

19. IBM Corp.: DB2 Universal Database for iSeries: Database
Performance and Query Optimization (2002)

20. IBM Corp.: DB2 v8.2 Performance Guide (2004)
21. Ilyas, I.F., Markl, V., Haas, P.J., Brown, P.G., Aboulnaga, A.:

CORDS: automatic discovery of correlations and soft func-
tional dependencies. SIGMOD 647–658 (2004)

22. Ioannidis, Y.E., Christodoulakis, S.: Propagation of errors in
the size of join results. SIGMOD 268–277 (1991)

23. Kutsch, M., Haas, P.J., Markl, V., Megiddo, N., Tran, T.M.: Inte-
grating a maximum-entropy cardinality estimator into DB2
UDB. EDBT 1092–1096 (2006)

24. Lynch, C.A.: Selectivity estimation and query optimization
in large databases with highly skewed distribution of column
values. VLDB 240–251 (1988)

25. Markl, V., Megiddo, N., Kutsch, M., Tran, T.M., Haas, P.J.,
Srivastava, U.: Consistently estimating the selectivity of con-
juncts of predicates. VLDB 378–384 (2005)

26. Microsoft Corp.: SQL Server 2000 Books Online v8.00.02
(2004)

27. Piatetsky-Shapiro, G., Connell, C.: Accurate estimation of the
number of tuples satisfying a condition. SIGMOD 256–276
(1984)

28. Poosala, V., et al.: Improved histograms for selectivity estima-
tion of range predicates. SIGMOD 294–305 (1996)

29. Poosala, V., Ioannidis, Y.: Selectivity estimation without the
attribute value independence assumption. VLDB 486–495
(1997)

76 V. Markl et al.

30. Selinger, P.G., et al.: Access path selection in a relational
DBMS. SIGMOD 23–34 (1979)

31. Shannon, C.E.: A mathematical theory of communication.
Bell Sys. Tech. J. 27, 379–423 623–656 (1948)

32. Srivastava, U., Haas, P.J., Markl, V., Megiddo, N.:
ISOMER: consistent histogram construction using query
feedback. ICDE 6 (2006)

33. Stillger, M., Lohman, G., Markl, V., Kandil, M.: LEO – DB2’s
learning optimizer. VLDB 19–28 (2001)

34. Swami, A.N., Schiefer, K.B.: On the estimation of join result
sizes. EDBT 287–300 (1994)

35. Van Gelder, A.: Multiple join size estimation by virtual
domains. PODS 180–189 (1993)

	Consistent selectivity estimation via maximum entropy
	Abstract
	Introduction
	Background
	Formalizing the selectivity estimation problem
	The maximum-entropy principle
	Selectivity estimation via maximum entropy
	The constrained optimization problem
	Example
	The iterative scaling algorithm
	A priori elimination of zero atoms
	Iterative detection of zero atoms
	Example: iterative zero detection
	Zero detection via approximation
	Example: zero detection via approximation
	Dealing with inconsistencies
	Example: inconsistency detection and removal
	Improving scalability by partitioning
	Partitioning
	Forced partitioning
	Example: forced partitioning
	Predicates over multiple tables
	Integration into the DB2 optimizer
	Experimental evaluation
	Quality of the estimates
	Using all information
	Improvement over the state of the art
	Backward Computation
	Performance of the ME method
	Iterative scaling without partitioning
	Comparison of algorithms for zero-atom detection
	Impact of partitioning
	Overall numerical stability and performance of iterative scaling with preprocessing
	Query execution time
	Related work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

