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Abstract

Accurately estimating the cardinality of aggregate views is crucial for logical and physical design of data

warehouses. This paper proposes an approach based on cardinality constraints, derived a-priori from the

application domain, which may bound either the cardinality of a view or the ratio between the cardinalities

of two views. We face the problem by first computing satisfactory bounds for the cardinality, then by

capitalizing on these bounds to determine a good probabilistic estimate for it. In particular, we propose a

bounding strategy which achieves an effective trade-off between the tightness of the bounds produced and

the computational complexity.

� 2002 Elsevier Science B.V. All rights reserved.

Keywords: Data warehousing; Logical design; View materialization

1. Introduction and motivation

The multidimensional model is the foundation for data representation and querying in multi-
dimensional databases and data warehouses. It represents facts of interest for the decision process
into cubes in which each cell contains numerical measures which quantify the fact from different
points of view, while each axis represents an interesting dimension for analysis. For instance, within
a four-dimensional cube modeling the phone calls supported by a telecommunication company, the
dimensions might be the calling number, the number called, the date, and the time segment in
which the call is placed; each cube cell could be associated to a measure of the total duration of the
calls made from a given number to another number on a given time segment and date.
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The basic mechanism to extract significant information from the huge quantity of data stored
in cubes is aggregation according to hierarchies of attributes rooted in dimensions [11]. In most
application cases, cubes are significantly sparse (for instance, most couples of telephone numbers
are never connected by a call in a given date), and so are the aggregate views.
Accurately estimating the actual cardinality of each view is crucial for logical and physical

design as well as for query processing and optimization [19]. As a relevant case, consider the view
materialization problem, where the aggregate views which are the most useful in answering the
workload queries have to be selected for materialization (see [18] for a survey). Since the number
of possible views which can be derived by aggregating a cube is exponential in the number of
attributes, most approaches assume that a constraint on the total disk space occupied by mate-
rialization is posed, and attempt to find the subset of views which contemporarily satisfies this
constraint and minimizes the workload cost [7,9,12]. Another case where estimation of view
cardinalities is relevant is index selection [10].
If the data warehouse has already been loaded, view cardinalities can be quite accurately es-

timated by using statistical techniques based, say, on histograms [15] or sampling [13]. However,
such techniques cannot be applied at all if the data warehouse is still under development, and the
estimation of view cardinalities is needed for design purposes. To obviate this, current approaches
are based on estimation models that only exploit the cardinality of the base cube and that of the
single attribute domains [16,17], which however leads to significant overestimation.
In this paper we propose a novel approach to estimate the cardinality of views based on a-priori

information derived from the application domain. Similarly to what is done when estimating the
cardinality of projections in relational databases [6], we face the problem by first computing
satisfactory bounds for the cardinality, then by capitalizing on these bounds to determine a good
probabilistic estimate for it. Besides the functional dependencies (FD�s) expressed by the multi-
dimensional scheme, the bounds we determine also take into account additional domain-derived
information expressed in the form of cardinality constraints, namely, bounds of the cardinality of
some views and bounds (called k-dependencies) on the ratio between the cardinalities of two views.
The main contribution of the paper is a bounding strategy comprising (1) a bounding function
which computes effective upper bounds of cardinalities and (2) a set of formal results aimed at
reducing the complexity of computation.
The paper is organized as follows. In Section 2, we provide some basic definitions, describe the

basic principles of our approach and provide a motivating example. Section 3 introduces the basic
properties of cardinality constraints, and Section 4 introduces the cover-based bounding strategy.
Section 5 presents all major formal results on the computation of bounds. Section 6 proposes a
simple probabilistic model to show how the bounds derived may be used to improve the cardi-
nality estimates. Section 7 discusses some interesting open issues. Finally, the most complex
proofs are included in the Appendix.

2. Outline of the approach

Before introducing the framework for our approach, we need to provide some basic definitions
on views and on their associated lattice.
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Definition 1 (Dimensional scheme). We call dimensional scheme D a couple ðU;FÞ where U is a
set of attributes and F ¼ fAi ! Aj : Ai;Aj 2 Ug is a set of FD�s which relate the attributes of U
into a set of pairwise disjoint directed trees. We call dimensions the attributes Ak 2 U in which the
trees are rooted, i.e., such that 8Ai 2 U ðAi ! AkÞ 62 F; let dimðDÞ 
 U denote the set of di-
mensions of D.

Definition 2 (View). Let D ¼ ðU;FÞ be a dimensional scheme. We call view on D any subset of
attributes V 
 U such that 8Ai, Aj 2 V ðAi ! AjÞ 62 Fþ where Fþ denotes the set of all FD�s
logically implied by F. 1

Example 1. Consider an enterprise with branches in different cities. A simple dimensional scheme
Transfers modeling the transfers of employees between offices might include:

U ¼ fdate;month; year; fromOffice; fromDept; fromCity; toOffice; toDept; toCity; employeeg
F ¼ fdate ! month;month ! year; fromOffice ! fromDept;

fromOffice ! fromCity; toOffice ! toDept; toOffice ! toCityg

thus the base cube is characterized by

dimðDÞ ¼ fdate; fromOffice; toOffice; employeeg
Examples of views on the Transfers scheme are:

V ¼ fmonth; fromOffice; toCity; employeeg
W ¼ fmonth; fromCity; fromDept; employeeg
Z ¼ fyear; fromOffice; toCityg

In this work we face the problem of accurately estimating the cardinality of a view when the
source data cannot be directly queried, which is the case during off-line logical design of multi-
dimensional databases. We assume that a set I of cardinality constraints is available instead, and
we look for effective ways to exploit them for estimation. Without loss of generality, suppose that
estimates are needed for the purpose of a view materialization algorithm. As sketched in Fig. 1,
whenever the materialization algorithm requires information about a candidate view V , our ap-
proach works in two steps. First, the bounder uses the set I of cardinality constraints supplied by
the user to determine an effective upper bound for the cardinality of V ; then, the estimator uses
this bound to derive a probabilistic estimate for the cardinality of V . Note that this two-steps
approach generalizes well-known parametric models for the estimation of the cardinality of re-
lational queries [14] and in particular those for projection size estimation [6], for which bounds are
typically given as input parameters.

1 We are using the term view to denote the set of grouping attributes used for aggregation, while the actual views will

also include one or more measures. This slight abuse in terminology is allowable in the context of this work since the

cardinality of a view only depends on its grouping attributes.
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We consider two different forms of cardinality constraints:

(1) the upper bound wþ of the cardinality w of a view W ;
(2) k-dependencies, expressing an upper bound of the ratio between the cardinalities of two views

W and Z (see Section 3.2).

We will assume that at least the upper bounds of the cardinalities of all the single attributes in
the dimensional scheme are known. This assumption, which is perfectly reasonable in all appli-
cation domains, is necessary in order to guarantee that at least one upper bound can be deter-
mined for each view.
The setI, together with the dimensional schemeD, univocally determines the least upper bound

vþ of the cardinality of V , meaning that:

(1) in each instance of D that does not violate any constraint in I, the cardinality v of V is such
that v6 vþ; and

(2) there exists an instance compatible with I where v ¼ vþ.

We say a constraint c 2 I is redundant iff all the bounds determined by I are equal to those
determined by I� fcg.

Definition 3 (Sound and minimal input). Let I be a set of cardinality constraints on dimensional
scheme D. We say I is sound iff there exists at least one non-empty instance of D which satisfies
all the constraints in I. We say I is minimal iff no constraint in I is redundant.

In this paper we will assume that the input I is sound and minimal. It is straightforward to
derive that, in this case, all the bounds in I are least upper bounds (whereas the opposite is not
necessarily true).
Computing the bounds implied byI turns out to be a challenging combinatorial problem, even

for simple forms of cardinality constraints. For instance, it is known that the problem is NP-hard
for arbitrary patterns of FD�s [5]. Furthermore, the actual computational effort needed to com-
pute these bounds might limit applicability in real-world cases. For this reason, the bounder is
built around the concept of bounding strategy. A bounding strategy s is characterized by a
bounding function that, given I, D, and V , computes an upper bound vþs such that vþ 6 vþs holds.

Fig. 1. Overall architecture for logical design.
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In other terms, a bounding strategy never computes bounds which are more restrictive than the
ones logically implied by the input constraints, trading-off accuracy for speed of evaluation.
Turning to the estimator, our framework supports different probabilistic models. A probabi-

listic model is a function that, givenI,D, V as well as bounds computed by the bounder, provides
an estimate, �vv, for the cardinality of V . In general, this step can use further information from the
application domain that is not suitable to derive bounds. Typically this is the case with infor-
mation concerning average values (e.g., the number of transfers of each employee on each year is
1.5 on the average).

Example 2. Let 104 be the number of employees who have been transferred at least once, and let
the enterprise consist of 103 offices distributed over 10 cities and belonging to one of 10 depart-
ments; let 103 days be the observation period. Let V ¼ fdate; fromOffice; toOfficeg. Since each
office is involved in transfers at most with every other office on each date, the first trivial upper
bound of v is 103 
 103 
 103 ¼ 109. If a constraint states that the maximum number of transfers
for an employee during one year is 2, and since we consider three years, it is derived that the
cardinality of the base cube is at most six times the number of transferred employees, i.e., 6
 104.
Thus, the upper bound of v can be improved to 6
 104 as well (the cardinality of a view cannot
exceed that of its base cube). Now, by using the probabilistic model in Section 6, the cardinality of
V is estimated as �vv ¼ 3:8
 104.

The following compact notation is used for some examples throughout the rest of the paper.
Uppercase letters from the beginning of the alphabet (A;B; . . .) denote dimensions. Attributes
which are functionally determined by another attribute, i.e. attributes other than dimensions, are
denoted by the corresponding primed letters (e.g., A ! A0, A0 ! A00). The sets of attributes which
define views are represented by omitting braces, thus writing ABC for fA;B;Cg. Lowercase letters
are used for the cardinalities of views and attributes (e.g., a is the cardinality of attribute A, ab is
the cardinality of the view with attributes AB, and so on).

3. Basics on cardinality constraints

The possibility of exploiting cardinality constraints to bound the size of a view relies on the
partial order induced on views by the FD�s in the multidimensional scheme:

Definition 4 (Roll-up). Given the set VD of all possible views on D, we define on VD the roll-up
partial order � as follows: V � W iff W ! V , i.e., iff 8Ai 2 V 9Aj 2 W : ðAj ! AiÞ 2 Fþ.

It is straightforward to verify that, given two views V 2 VD and W 2 VD, both their sup and inf
views always exist; we will denote them with V � W and V � W , respectively. 2 Thus, the roll-up
partial order determines a lattice, which we will call multidimensional lattice for D, whose top and
bottom elements are dimðDÞ and the empty view ;, respectively. The multidimensional lattice is
isomorphic to the lattice of the order ideals of a partially ordered set [1]; thus, it is distributive.

2 From a relational point of view, V � W is obtained by dropping from the natural join V ffl W the functionally

dependent attributes.
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Given two views V and W , we will denote with V � W the least view Z such that Z � ðV � W Þ ¼
V . A nice property of this operator, which we will use in the proof of Lemma 7, is the following:

ðV �W Þ �W ¼ V � W ð1Þ

Proof. By definition of �, if we let Z ¼ V � W , it is Z � ðV 
 W Þ ¼ V which implies
Z � ðV � W Þ � W ¼ V �W . On the other hand, for the absorption property of distributive lat-
tices it is Z � ðV �W Þ �W ¼ Z � W , from which Z � W ¼ V � W . �

Example 3. It is ABC0D� AB0CE ¼ ABCDE, ABC0D� AB0CE ¼ AB0C0, ABC0D� AB0CE ¼ BD (see
Fig. 2).

3.1. Upper bounds

The basic observation to determine bounds for view cardinalities using bounds of the cardi-
nalities of other views is that the multidimensional lattice induces an isomorphic structure over
such cardinalities; this fact is expressed by the following two lemmas, where we use the notation
sEt to denote the cardinality of a view that is the result of an expression E.

Lemma 1. If W � Z, then wþ
6 zþ.

Proof. From Definition 4 it follows that W � Z implies w6 z in each instance of D, since Z ! W
holds. Now, assume that wþ > zþ. Then, there is an instance of D in which z6 zþ < wPwþ, thus
z < w, which is a contradiction. �

Lemma 2. Let S be a set of views and let S 0 
 S consist of all the views W 2 S such that for no Z 2 S
it is W � Z. Then, it is s� ðSÞtþ ¼ s� ðS 0Þtþ 6

Q
W 2S0 w

þ.

Proof. When S 0 ¼ S the result immediately follows, since the least upper bound of a set of views
corresponds to their natural join, whose size can never exceed that of the Cartesian product of the
views. When S 0 � S, the result follows from the observation that �ðSÞ ¼ �ðS0Þ, since each view in
S � S0 is functionally determined by some view in S 0. �

Example 4. Let S ¼ fAB;B0C;A0g; it is s� ðSÞtþ ¼ s� ðfAB;B0CgÞtþ ¼ abcþ 6 abþ � b0cþ.

Fig. 2. Roll-up relationships of views in Example 3.
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3.2. The k-dependencies

A k-dependency (kD) is a relevant case of cardinality constraint which naturally generalizes
a FD. In the authors� experience, kD’s are particularly useful to characterize the knowledge of
the business domain held by the experts in the field. For instance, in the transfer domain, we
might have some information concerning the number of destination cities for an employee,
or on the number of distinct departments moved to from each department. If such infor-
mation is in the form of bounds, it can be effectively used to improve the bounds of view
cardinality.

Definition 5 (k-dependency). Let X and Y be two views on D. We say that a kD holds between X
and Y , and denote it with X !k Y , when kðkP 1Þ is an upper bound of the number of distinct tuples
of Y which correspond to each distinct tuple of X within view X � Y .

Example 5. In the Transfers scheme, assume the domain expert provides the following informa-
tion: The maximum number of inter-department transfers of an employee during one year is 2.
This constraint can be formalized by the following kD : X !2 Y , where X ¼ fyear; employeeg,
Y ¼ ftoDeptg. Intuitively, from this we can derive that the cardinality of the view
fyear; employee; toDeptg cannot exceed twice the cardinality of X .

The kD�s have been studied in the context of relational database theory, where they are also
known as numerical dependencies. Grant and Minker [8] have proven that kD�s are not finitely
axiomatizable, thus no fixed set of inference rules can be used to determine whether or not a given
kD is logically implied by a set of kD�s. Nonetheless, a basic set of rules, which naturally extend
those for FD�s, was proposed in [8]. The rules we use, here generalized to work with the multi-
dimensional lattice, are:

R1: X !k Y ‘ X � Z!k Y � Z

R2: X !k Y ^ Y !l Z ‘ X !k�l Y � Z

R3: X !k Y � Z ‘ X !k Y

R4: X !k Y ^ X !l Z ‘ X !k�l Y � Z

R5: X � W !k Y ‘ X ����!k�sW�Ztþ

Y � Z

Note that the ‘‘union’’ rule R4 can be easily derived from R1 (‘‘extension’’), R2 (‘‘transitivity’’),
and R3 (‘‘decomposition’’). As to R5, it may be proved by considering that, for each W and Z, we

can write a dummy kD X ����!sW�Ztþ

W � Z, from which by applying R1 we obtain X ����!sW�Ztþ

W �
Z � X . On the other hand, by applying R1 to X �W !k Y we obtain X � W � Z!k Y � Z. Applying

R2 to X ����!sW�Ztþ

W � Z � X and X � W � Z!k Y � Z we have X ���!k�sW�Ztþ

Y � Z, which proves R5.

The influence of kD�s on the determination of bounds is summarized by the following lemma.

Lemma 3. If X !k Y , then sX � Y tþ 6 k � xþ.
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Proof. From Definition 5 it follows immediately that, if X !k Y , the cardinality of X � Y is related
to the cardinality of X by inequality sX � Y t6 k � x. The inequalities on bounds follow imme-
diately. �

The following inequalities summarize Lemmas 2 and 3, thus relating upper bounds of view
cardinalities to kD�s:

X !k Y ) sX � Y tþ 6 k � xþ 6 xþ � yþ ð2Þ
where k6 yþ follows from the assumption of sound and minimal input.

4. The cover-based bounding strategy

In this section we introduce a bounding strategy, called cover-based, which relies on the concept
of cover of a view to compute upper bounds.

Definition 6 (Candidate set). We call candidate set a couple C ¼ ðS;KÞ, where S is a set of views
and K is a set of kD�s. We denote with lhsðKÞ and rhsðKÞ, respectively, the sets of views which are
left- and right-hand sides for the kD�s in K; besides, let NC ¼ S [ lhsðKÞ [ rhsðKÞ.

Definition 7 (Cover). Let V 2 VD be a view on D and C ¼ ðS;KÞ be a candidate set. C is called a
V -cover iff V � �ðNCÞ.

Thanks to Lemmas 1 and 2, V -covers can be used to bound from above the cardinality of V ,
since vþ 6 s� ðNCÞtþ. More precisely, the cover-based bounding strategy cb computes vþcb as:

vþcb ¼
vþ if vþ 2 I
minfucbðCÞ : C is a V � coverg if vþ 62 I

�
ð3Þ

where ucbðCÞ is the bound yielded by cover C. In general, since ucbðCÞ depends in turn on the
bounds of the views in C, evaluating the cover-based bound may lead to a recursive computa-
tional flow; note however that the ‘‘case-0’’ of recursion, vþcb ¼ vþ, is correctly defined since we
assumed the input I to be minimal.
To start simple, assume that the V -cover C does not include any kD, thus NC ¼ S. In this case

the bound provided by C is directly derived from Lemma 2:

ucbðCÞ ¼ ucbððS; ;ÞÞ ¼
Y
Wj2S0

wþ
j;cb ð4Þ

where S0 is defined as in Lemma 2.
Let us now turn to the more general (and complex) case when also kD�s are present: due to Eq.

(2), it is clear that their presence can be exploited to strenghten bounds. Intuitively, if V � X � Y
and only xþ and yþ are known, the best we can do is to infer that v6 xþ � yþ. On the other hand, if
X !k Y also holds, then the bound can be improved to v6 k � xþ, which can be much better than
xþ � yþ. In the following we precisely characterize how sets of views and kD�s can be combined
together in a common framework.
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Definition 8 (C-graph). The C-graph GC associated with C ¼ ðS;KÞ is a labeled directed graph 3

whose nodes correspond to the views in NC and whose arcs are defined as follows:

(1) For each kD W !k Z 2 K there is an arc, labeled k, from node W to node Z;
(2) For each pair of nodes W and Z such that Z � W there is an arc, labeled 1, from node W to

node Z.

The nodes of GC with no incoming arcs are called the roots of GC, and their set is denoted as
root(GC). The C-graph GC is called reachable iff for each node W there exists at least one directed
path from a root of GC to W .

Example 6. The reachable C-graph associated to C ¼ ðfA0B;Cg; fA0!k1 A;D0!k2 DgÞ is depicted in
Fig. 3. It is rootðGCÞ ¼ fA0B;C;D0g.

Note that an acyclic C-graph is always reachable, whereas the converse is not necessarily true;
on the other hand, GC is reachable only if each connected component of GC has at least one root
(see Fig. 4).
While each candidate set C is univocally associated to one C-graph, different candidate sets may

be associated to the same C-graph. We say that C is reduced iff there exists no C0 � C such that
GC0 ¼ GC (for instance, C0 ¼ ðfCg; fA!k BgÞ is the reduced form of C ¼ ðfA;B;Cg; fA!k BgÞ).

Lemma 4. A candidate set C ¼ ðS;KÞ is reduced iff S \ ðlhsðKÞ [ rhsðKÞÞ ¼ ;.

Proof (Only if). Trivial, since if W 2 S \ ðlhsðKÞ [ rhsðKÞÞ then C ¼ ðS;KÞ and C0 ¼ ðS � fW g;
KÞ have the same C-graph.
(If.) Assume that C is not reduced. Then we can reduce either S or K and obtain the same C-

graph. Clearly, we cannot reduce K by dropping a kD, since the corresponding graph will have

3 Technically, GC is a multi-graph, since two arcs may share the same couple of nodes. This, however, does not

influence the following arguments.

Fig. 3. The C-graph associated to the candidate set in Example 6 (arrows denote kD�s).

Fig. 4. Four examples of C-graphs (from left to right): acyclic and reachable, cyclic and unreachable without roots,

cyclic and reachable, cyclic and unreachable with root.
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one arc less than GC. Then, we can only remove a view W in S. This will leave unaltered the set of
nodes only if W appears as the left or right side of some kD in K, as claimed. �

The following theorem, whose proof is reported in the Appendix, precisely characterizes how
the bound obtained from a candidate set is related to its C-graph. For brevity, from now on we
will write

Q
E ki to denote the product of all the labels of the arcs in set E.

Theorem 1. Let V be a view, C ¼ ðS;KÞ be a V -cover, and GC be the C-graph associated with C. If
GC is reachable it is:

ucbðCÞ ¼ ucbððS;KÞÞ ¼
Y
EC

ki �
Y

Wj2rootðGCÞ
wþ
j;cb ð5Þ

Example 7. Let V ¼ ABC. Below we consider some examples of V -covers and, for each of them,
show how the bound of v provided by Theorem 1 can be justified considering the lemmas proved
so far and the inference rules for kD�s. In order to help the reader, Fig. 5 depicts the roll-up
relationships between the views involved.

• C1 ¼ ðfABCDg; ;Þ is a V -cover since V � �ðNC1
Þ ¼ ABCD. From Lemma 1 it is derived

abc6 abcdþ.
• C2 ¼ ðfAB;BCg; ;Þ is a V -cover since V � �ðNC2

Þ ¼ ABC. Since the natural join between two
views is a subset of their Cartesian product, it is abc6 abþ � bcþ.

• C3 ¼ ð;; fAB!k CgÞ. From Lemma 3 it immediately follows abc6 abþ � k.
• C4 ¼ ð;; fA!k1 B;B!k2 CgÞ. By applying rule R2, we derive A!k1k2BC, thus abc6 aþ � k1 � k2.
• C5 ¼ ð;; fA!k1 B;A!k2 CgÞ. Rule R4 is now used to derive A!k1k2BC, thus abc6 aþ � k1 � k2.
• C6 ¼ ðfA0B;Cg; fA0!k AgÞ. According to rule R1 it is A0B!k AB, and from Lemma 3

abþ 6 k � a0bþ. On the other hand, abc6 abþ � cþ, thus abc6 k � a0bþ � cþ.

Note that Theorem 1 correctly captures also the case when no kD�s are present, thus gener-
alizing Eq. (4); in fact, in this case rootðGCÞ ¼ S0, where S 0 is as in Lemma 2. The reason why

Fig. 5. Roll-up relationships of views in Example 7.
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Theorem 1 applies only to reachable C-graphs can be understood by means of a simple exam-
ple. Let C ¼ ð;; fA!k1 B;B!k2 AgÞ, thus GC has no roots and is not reachable (see Fig. 4). If we try
to apply Eq. (5) to such graph we obtain uðCÞ ¼ k1 � k2, which is clearly wrong. On the other hand,
a non-reachable C-graph can be easily transformed into a reachable one by dropping one or more
kD�s (for instance, B!k2 A in the example above): for this reason, all the C-graphs considered from
now on are implicitly assumed to be reachable. Besides, since according to Theorem 1 the bound
yielded by a candidate set only depends on its associated C-graph, in the following we will always
consider reduced candidate sets.
In order to ensure that the cover-based strategy is consistent, we need to verify that the

properties expressed by Lemmas 1–3 are valid also for the cover-based upper bounds.

Lemma 5. If W � Z, then wþ
cb 6 zþcb. If S is a set of views, then s� ðSÞtþcb 6

Q
Wi2S0 w

þ
i;cb. If X !k Y ,

then sX � Y tþcb 6 k � xþcb.

Proof. The first property is obvious, since the set of the W -covers includes Z and all the Z-covers.
The second one derives from the fact that C ¼ ðS; ;Þ is a cover for �ðSÞ ¼ �ðS 0Þ, and
ucbðCÞ ¼

Q
Wi2S0 w

þ
i;cb. The third one is true since C ¼ ð;; fX !k Y gÞ is a cover for X � Y , and

ucbðCÞ ¼ k � xþcb. �

5. Domination between candidate sets

In this section we complete the presentation of the cover-based bounding strategy by presenting
some formal results useful to limit the complexity of algorithms aiming to compute upper bounds
of view cardinalities. The problem is inherently difficult, since the space of V -covers to be analyzed
in order to determine vþcb has exponential size. On the other hand, under some circumstances, a V -
cover C can be discarded from the search space without even computing its associated bound
ucbðCÞ.

Definition 9 (Domination). Let C and C0 be two candidate sets. We say that C0 dominates C,
written C0 v C, iff ucbðC0Þ6 ucbðCÞ for every possible input I.

Again, let us consider the basic case where no kD�s are present first. Note that, when C1 ¼ ðS1; ;Þ
and C2 ¼ ðS2; ;Þ, C1 can dominate C2 only if�ðS1Þ � �ðS2Þ. In fact, if �ðS1Þ� � ðS2Þ, there exists
at least one attribute A 2 �ðS1Þ which does not belong to �ðS2Þ: intuitively, this means that the
bound provided by S2 is independent of the cardinality of A, whereas the bound yielded by S1 is not,
which is enough to show that C1 cannot dominate C2.
The following theorem, whose proof is reported in the Appendix, provides a necessary and

sufficient condition for checking dominance between two candidate sets without kD�s.

Theorem 2 (Domination between sets of views). Let C1 ¼ ðS1; ;Þ and C2 ¼ ðS2; ;Þ, with
S1 ¼ fW1;1; . . . ;W1;i; . . . ;W1;mg, and let S 0

1 as in Lemma 2, thus S 0
1 ¼ fW1;1; . . . ;W1;i; . . . ;W1;m0g with

m0
6m. C1 dominates C2 iff S2 can be partitioned into m0 subsets S2;1; . . . ; S2;m0 such that W1;i �

�ðS2;iÞ 8i ¼ 1; . . . ;m0.
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Example 8. It is fA0B;Cg v fAB;CD;Eg, since A0B � AB and C � �ðfCD;EgÞ ¼ CDE.

Domination between candidate sets including kD�s is much more complex to analyze; in the
following we present a set of partial results, beginning with a simple corollary of Theorem 1.

Corollary 1. Let C be a candidate set associated to a non-forest 4 C-graph GC, and let C0 be a
candidate set associated to a forest C-graph GC0 such that NC0 ¼ NC and E0

C � EC. Then C0 v C.

As discussed in the proof of Theorem 1, a forest C-graph satisfying the conditions above exists
when the reason why GC is not a forest is that two or more arcs corresponding to kD�s converge
in the same node. Since Corollary 1 states that this kind of non-forest C-graphs are always
dominated, in the following they will not be considered. On the other hand, the other reason why
GC is not a forest may be that at least two arcs labeled 1 converge in the same node: in this case,
since removing such arcs would violate the very definition of C-graph, Corollary 1 cannot be
applied.
Next lemma expresses a sufficient condition for domination when one of the two candidate sets

includes no kD�s.

Lemma 6. Let C0 ¼ ðfV g; ;Þ and C ¼ ðS;KÞ be two candidate sets. If V � �ðNCÞ then C0 v C.

Proof. C is a V -cover since V � �ðNCÞ, hence, from Theorem 1 it is vþcb 6 ucbðCÞ. Since
ucbðC0Þ ¼ vþcb, the result follows immediately (see Fig. 6). �

The following definition is preliminary to Lemma 7:

Definition 10 (C-subgraph). Given C ¼ ðS;KÞ with associated C-graph GC ¼ ðNC;ECÞ, let
NC1

� NC. The C-subgraph induced by NC1
is defined as GC1

¼ ðNC1
;EC1

Þ, where
EC1

¼ fðX ; Y Þ 2 EC : X 2 NC1
^ Y 2 NC1

g. The C-subgraph is called proper iff 8ðX ; Y Þ 2 EC if
Y 2 NC1

then X 2 NC1
, i.e., iff there is no arc entering GC1

. The (possibly empty) set

4 A forest is a set of disjoint directed trees.

Fig. 6. Two C-graphs in Lemma 6.
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bdgðGC1
Þ ¼ fðX ; Y Þ 2 EC : X 2 NC1

^ Y 2 NC � NC1
g, i.e., the set of the arcs exiting GC1

, is called
the bridge induced by NC1

.

Example 9. Consider the C-graph shown in Fig. 7. The C-subgraph induced by NC1
is proper; if

also the arc shown in dotted line were included in C, GC1
would not be proper.

Lemma 7. Let C0 ¼ ð;; fV1!
k0
V2gÞ and C ¼ ðS;KÞ be two candidate sets. If NC can be partitioned

into two subsets NC1
and NC2

such that:

(1) GC1
is proper; and

(2) V1 � �ðNC1
Þ; and

(3) V2 � �ðNC2
Þ; and

(4) �ðlhsðbdgðGC1
ÞÞÞ � V1 � �ðNCu [ rhsðbdgðGCuÞÞÞ, where NCu 
 NC2

is the subset of nodes of
GC2

that are not reachable from bdgðGC1
Þ

then C0 v C.

Example 10. Given C0 ¼ ð;; fAB!k1 CgÞ and C ¼ ðfAg; fBE!k2 C; F !k3 D;D!k4 EgÞ it is C0 v C. In
fact, if NC1

¼ fA;BEg and NC2
¼ fC;D;E; F g (see Fig. 8), it is:

• AB ¼ V1 � �ðNC1
Þ ¼ ABE;

• C ¼ V2 � �ðNC2
Þ ¼ CDEF ;

• lhsðbdgðGC1
ÞÞ ¼ BE, �ðlhsðbdgðGC1

ÞÞÞ � V1 ¼ E, �ðNCuÞ ¼ DF , �ðrhsðbdgðGCuÞÞÞ ¼ E, and fi-
nally E � DEF .

Since both C0 and C are covers for ABC, we derive that abcþ 6 abþ � k16 aþ � beþ � f þ � k2 � k3 � k4.

From this lemma we may finally derive the following theorem, stating a sufficient condition
which may be used to recursively prove domination in the general case. Both Lemma 7 and
Theorem 3 are proved in the Appendix.

Theorem 3. Let C0 ¼ ðS 0;K 0Þ and C ¼ ðS;KÞ be two candidate sets. Let V 2 NC0 be a node of GC0

with no outgoing arcs, and let GC0
1
be the C-subgraph induced by NC0 � fV g. If NC can be partitioned

into two subsets NC1
and NC2

such that:

Fig. 7. A proper C-subgraph.
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(1) The C-subgraph GC1
induced by NC1

is proper; and
(2) C0

1 v C1; and
(3) V � �ðNC2

Þ; and
(4) If bdgðGC1

Þ 6¼ ; then 9ðW ; V Þ 2 EC0 : �ðlhsðbdgðGC1
ÞÞÞ � W � �ðNCu [ rhsðbdgðGCuÞÞÞ,

where NCu 
 NC2
is the subset of nodes of GC2

that are not reachable from bdgðGC1
Þ

then C0 v C.

Example 11. Given C0 ¼ ðfAB;Dg; fA0!k1 CgÞ and C ¼ ðfA;BEg; fA0B!k2 E;C!k3 BF ;D0!k4 DgÞ it is
C0 v C. In fact, as shown in Fig. 9, it is possible to apply recursively Theorem 3 to progressively
smaller C-graphs:

• Step 1. Let V ¼ D and NC2
¼ fD;D0g. Conditions (1), (3) and (4) are immediately verified, we

have to verify that ðfABg; fA0!k1 CgÞ v ðfA;BEg; fA0B!k2 E;C!k3 BF gÞ.
• Step 2. Let V ¼ C and NC2

¼ fC;E;BF g. Conditions (1) and (3) are immediately verified, as to
condition (4) it is W ¼ A0, �ðlhsðbdgðGC1

ÞÞÞ � W ¼ BC � �ðNCu [ rhsðbdgðGCuÞÞÞ ¼ BCF . It is
left to verify that ðfAB;A0g; ;Þ v ðfA;BE;A0Bg; ;Þ, which is immediate due to Theorem 2.

Since both C0 and C are covers for ABCD, we derive that abcdþ
6 abþ � dþ � k16 aþ � beþ � a0bþ�

cþ � d 0þ � k2 � k3 � k4.

Fig. 9. The two C-graphs in Example 11.

Fig. 8. The two C-graphs in Example 10.
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6. The estimator

Assuming that effective bounds have been derived, cardinality estimation must be based on a
probabilistic model to derive an estimate, �vv, of the cardinality of view V . The model we adopt
here is based on the Cardenas� formula [2], which states that, when throwing N distinct objects
into B buckets, the expected number of buckets in which at least one object will fall can be
estimated as:

UðB;NÞ ¼ B 1

 
� 1

�
� 1

B

�N
!
6 minfB;Ng ð6Þ

Within the approach proposed in [17], (6) is used to estimate v by relying on the maximum
cardinality of V , defined as the Cartesian product of the cardinalities of the attributes in V ,
vmax ¼

Q
Ai2V ai, and on the cardinality of the base cube, d ¼ s dimðDÞt, that is:

�vvsdnr ¼ Uðvmax; dÞ6 minfvmax; dg ð7Þ

This formula turns out to significantly overestimate the cardinalities and can easily lead to violate
the constraint �vvsdnr 6 vþ.
In our approach, denoted se (‘‘safe-estimate’’), the above estimate is improved in two ways: by

replacing vmax with the upper bound computed for v, for instance vþcb, as a measure of the max-
imum cardinality of V , and by replacing the cardinality of the base cube d with an estimate, �wwse, of
the cardinality of a view W such that V � W . This leads to:

�vvse ¼ Uðvþcb; �wwseÞ6 minfvþcb; �wwseg ð8Þ

Since both vþcb and �wwse can be considerably lower than vmax and d, respectively, it is usually the
case that �vvse � �vvsdnr. The rationale for (8) is that we can view the problem of estimating v as the
one of distributing the tuples of view W , which are estimated to be �wwse, over a number of vþcb
‘‘buckets’’.
Due to the need to know �wwse, it is obvious that our estimation process must move downward

from the top of the lattice (whose cardinality d is typically known) following a path leading to V .
Clearly, this represents a simplification of the correct estimation procedure, which would require
to determine �vv by following all the paths from dimðDÞ to V . On the other hand, this would lead to
combinatorial explosion and necessitate of highly complex probabilistic models that are well
beyond the current state-of-the-art knowledge.
From a more practical (numerical) point of view, it should be noted that moving from upper

bounds to estimates leads to significant differences under specific conditions only. Two relevant
cases should be considered, which arise from the limit behavior of Cardenas� formula:

(1) When �wwse 6 0:1vþcb it is �vvse � �wwse

(2) When �wwse P 3vþcb it is �vvse � vþcb

The values 0.1 and 3 can thus be used to predict whether the estimator will deliver results which
substantially differ from those directly obtainable from the bounder.
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Example 12. In the Transfers scheme, we consider three input situations:

I1 ¼ fdategþ
	

¼ 103; fyeargþ ¼ 3; femployeegþ ¼ 104;

ffromOfficegþ ¼ ftoOfficegþ ¼ 103; ffromCitygþ ¼ ftoCitygþ ¼ 10;

ffromDeptgþ ¼ ftoDeptgþ ¼ 10



I2 ¼ I1 [ femployee; yearg !4 ffromOffice; toOffice; dateg
n o

I3 ¼ I2 [
n
ffromCity; fromDeptgþ ¼ 40; ftoCity; toDeptgþ ¼ 40;

ffromCity; fromDeptg !2 ftoCity; toDeptg; ffromCity; fromDeptg !30 ffromOfficeg;

ftoCity; toDeptg !30 ftoOfficeg
o

Let W ¼ dimðDÞ ¼ fdate; employee; fromOffice; toOfficeg be the base cube and V ¼ ffromOffice;
toOfficeg be the view whose cardinality is to be estimated.

• When I ¼ I1, the best W - and V -cover are, respectively,

C1 ¼ ðffdateg; femployeeg; ffromOfficeg; ftoOfficegg; ;Þ
C2 ¼ ðfffromOfficeg; ftoOfficegg; ;Þ

Clearly, C2 v C1.
• When I ¼ I2, the best cover for both W and V is

C3 ¼ ð;; ffemployee; yearg!4 ffromOffice; toOffice; dateggÞ

No domination relationship exists between C1 and C3 and between C2 and C3.
• When I ¼ I3, the best W -cover is still C3, while the best V -cover is

C4 ¼ ð;; fffromCity; fromDeptg !2 ftoCity; toDeptg; ffromCity; fromDeptg !30 ffromOfficeg;

ftoCity; toDeptg !30 ftoOfficeggÞ
Still, no domination relationship exists with the other candidate sets.

Table 1 shows how the upper bound wþ
cb of W , the upper bound vþcb of V and the estimate �vvse

improve as new cardinality constraints are progressively supplied. The estimate �vvse is based on the
estimate of w, �wwse, which is assumed to be equal to its upper bound wþ

cb. Note how, in the absence
of cardinality constraints (i.e. if only the upper bounds of the cardinalities of all the single at-
tributes in the dimensional scheme are known) the only reasonable estimate that can be inferred is
�vvsdnr ¼ 106 obtained by formula (6) using B ¼ 106 and N ¼ 1013. Even assuming that the cardi-
nality of the base cube is known does not improve the estimate significatively; for example, as-
suming w ¼ 1:2
 105, the estimate obtained using directly the Cardenas formula as in [17] is
�vvsdnr ¼ 1:2
 105, that is much worse than those obtained exploiting the constraints in I2 and I3.
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7. Conclusions and open issues

In this paper we have shown how cardinality constraints derived from the application domain
may be employed to determine effective bounds on the cardinality of aggregate views and how, in
turn, such bounds can be used to estimate the cardinality of the views. In order to improve the
approach effectiveness, some issues still need to be investigated. In the following we briefly discuss
those we believe to be crucial:

• Computation. The utility of an approach to cardinality estimation depends on the efficiency of
its computation. When no kD�s are included among the input constraintsI, the search for non-
redundant upper bounds can be restricted to the set of minimal V -covers, where a minimal V -
cover is one which is not dominated by any other V -cover and whose views are all constrained
within I [3]; in the branch-and-bound algorithm sketched in [4], a careful enumeration of min-
imal covers allows to significatively reduce the (otherwise exponential) search space. On the
other hand, considering minimality issues when kD�s are involved is much more complex for
two main reasons: firstly, a kD may be useful to compute an optimal cover even if the view
on its left-hand side is not constrained in I; secondly, the utility of a kD in determining a cover
can be evaluated only by considering the other kD�s included in the cover itself. Currently we
are inclined to pursue a branch-and-bound approach which enumerates forest V -covers by as-
sembling ‘‘useful’’ trees out of the constraints inI. Once a tree covering a view W � V through
a set of constraints I0 � I has been built, the problem is reduced to covering view V � W
through the constraints in I�I0, and so on recursively.

• Cardinality constraints. The input knowledge may be further extended by considering other
forms of cardinality constraints which are typically known to the experts of the application do-
main. For instance, while in this paper we have defined kD�s to express bounds on the ratio be-
tween the cardinalities of two views, they may also be used to denote the average of such ratio;
while this kind of knowledge cannot be used by the bounder, it allows the cardinality estima-
tions to be improved. For instance, knowing that the average number of transfers for each em-
ployee on each year is 2, would allow the cardinality of the base cube to be estimated as twice
the cardinality of view femployee; yearg.

• Probabilistic estimates. Estimates based on Cardenas� formula can be improved in several ways.
In particular, information on lower bounds of cardinalities could be considered by exploiting the
results in [6], as well as information concerning the distribution of attribute values over their
domains. Obviously, this requires to develop a bounding strategy for computing lower bounds;
[3] presents some results in this direction.

Table 1

Improving upper bounds and estimates for increasing domain-derived information

Input wþ
cb vþcb �wwse �vvse

I1 1013 106 1013 106

I2 1:2
 105 1:2
 105 1:2
 105 7:6
 104

I3 1:2
 105 7:2
 104 1:2
 105 5:8
 104
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Appendix A

Proof of Theorem 1.We will first prove that Eq. (5) holds when GC is a forest, i.e., a set of pairwise
disjoint rooted trees. Then we will generalize to arbitrary C-graphs.
Assume that GC is a forest. The set rootðGCÞ can be partitioned into two subsets: aloneðGCÞ,

which contains the ‘‘stand-alone’’ nodes, i.e. those for which the tree consists only of a root node,
and a ¼ rootðGCÞ � aloneðGCÞ, which contains the other roots (see Fig. 10). Let ðNj;EjÞ be the
tree rooted in Wj 2 a. Now, since NC ¼ aloneðGCÞ [ ð

S
j:Wj2a NjÞ, it is

s� ðNCÞt ¼ s� ðaloneðGCÞÞ � ð�j:Wj2að�ðNjÞÞÞt6
Y

Wj2aloneðGCÞ
wþ
j �

Y
j:Wj2a

s� ðNjÞt

By repeatedly applying rules R2 and R4 to ðNj;EjÞ it is derived Wj ���!
Q

Ej
ki

� ðNj � fWjgÞ, hence for
Lemma 3

s� ðNjÞt6wþ
j �
Y
Ej

ki

which leads to

s� ðNCÞt6
Y

Wj2aloneðGCÞ
wþ

j �
Y
j:Wj2a

wþ
j �
Y
Ej

ki

 !
¼

Y
Wj2rootðGCÞ

wþ
j �
Y
EC

ki

Since by Definition 7 it is V � �ðNCÞ, we obtain v6 s� ðNCÞt; thus, ucbðCÞ can be written as
claimed.
When GC ¼ ðNC;ECÞ is reachable but is not a forest, it is always possible to find E0

C � EC such
that the graph GC0 ¼ ðNC;E0

CÞ is a forest with the same roots as GC. If GC0 satisfies the definition of
C-graph, meaning that it is obtained by dropping no arcs labeled 1, it is obviously v6
ucbðC0Þ6 ucbðC0Þ (the first inequality follows from the first part of the proof, since GC0 is a forest
and V � �ðNC0 Þ; the second inequality follows from rootðGC0 Þ ¼ rootðGCÞ and from the obser-
vation that E0

C � EC implies
Q

E0
C
ki <

Q
EC
ki).

On the other hand, if a forest GC0 can be obtained from GC only by dropping one or more arcs
labeled 1, Eq. (5) is still valid since arcs labeled 1 do not contribute to the bound expressed by
ucbðCÞ. �

Proof of Theorem 2. (If.) If W1;i � �ðS2;iÞ 8i ¼ 1; . . . ;m0 the result directly follows from Lemma 2.

Fig. 10. A forest C-graph; white circles denote views in rootðGCÞ.
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(Only if.) We only provide a sketch of the complete proof. Without loss of generality as-
sume m ¼ m0 ¼ 2 and �ðS1Þ � �ðS2Þ. If S2 is not partitionable as required by the theorem there
exists a view W2;j that is used to cover both W1;1 and W1;2. We can write W1;1 ¼ X � Y1 � Z1,
W1;2 ¼ X � Y2 � Z2, W2;j ¼ U � X � Y1 � Y2, �ðS2;1Þ ¼ W2;j � ðZ1 � U1Þ, and �ðS2;2Þ ¼ W2;j�
ðZ2 � U2Þ, which guarantees that W1;1 � �ðS2;1Þ and W1;2 � �ðS2;2Þ due to the definition of �
(see Fig. 11). In the complete proof it is shown that there exist legal instances such that
wþ
1;1 � sX � Y1t

þ � zþ1 , wþ
1;2 � sX � Y2t

þ � zþ2 , wþ
2;j � sX � Y1 � Y2t

þ
, sZ1 � U1t

þ � zþ1 , and sZ2�
U2t

þ � zþ2 . Under these conditions, the inequality that should hold for domination is:
wþ
1;1 � wþ

1;2 ¼ ðsX � Y1t
þ � zþ1 Þ � ðsX � Y2t

þ � zþ2 Þ6 sX � Y1 � Y2t
þ � zþ1 � zþ2 ¼ s� ðS2Þtþ, that is sX �

Y1t
þ � sX � Y2t

þ
6 sX � Y1 � Y2t

þ
, which can be easily invalidated. �

Proof of Lemma 7. We have to prove that

ucbðC0Þ ¼ k0 � vþ1;cb 6
Y
EC

ki �
Y

Wi2rootðGCÞ
wþ
i;cb ¼ ucbðCÞ

Let NCr ¼ NC2
� NCu be the set of nodes of GC2

reachable from bdgðGC1
Þ; since GC1

is proper it is
bdgðGC2Þ ¼ ;, thus we may write (see Fig. 12):

EC � EC1
¼ bdgðGC1

Þ [ EC2
¼ bdgðGC1

Þ [ ECr [ bdgðGCuÞ [ ECu

where ECr and ECu are, respectively, the arcs in GCr and GCu . In fact, it is necessarily bdgðGCrÞ ¼ ;
since, otherwise, the nodes in NCu would become reachable. We can now rewrite ucbðCÞ as:

ucbðCÞ ¼
Y
EC

ki �
Y

Wi2rootðGCÞ
wþ
i;cb ¼

Y
EC1

ki �
Y

Wi2rootðGC1
Þ
wþ

i;cb

0
@

1
A �

Y
EC�EC1

ki �
Y

Wi2rootðGCu Þ
wþ

i;cb

¼ ucbðC1Þ �
Y

bdgðGC1
Þ[ECr

ki �
Y

bdgðGCu Þ[ECu

ki �
Y

Wi2rootðGCu Þ
wþ
i;cb

Since C1 is a V1-cover, it is vþ1;cb 6 ucbðC1Þ. Thus, letting h ¼
Q

bdgðGC1
Þ[ECr

ki, it is sufficient to prove
that

k0 6 h �
Y

bdgðGCu Þ[ECu

ki �
Y

Wi2rootðGCu Þ
wþ

i;cb

Fig. 11. Roll-up relationships of views in the Proof of Theorem 2.
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From the arguments used in the proof of Theorem 1 it can be easily derived, by a repeated ap-
plication of rules R2 and R4, that

�ðlhsðbdgðGC1
ÞÞÞ!h � ðNCrÞ

thus, by letting W ¼ �ðlhsðbdgðGC1
ÞÞÞ, R ¼ �ðNCrÞ, and applying rules R1 and R3, we obtain:

V1 � W !h R

Due to property (1), we may write V1 � ðW � V1Þ!
h
R. From here, rule R5 leads to

V1 ����������!h�sðW�V1Þ�ðV2�RÞtþ
R� ðV2 � RÞ

Again for property (1), this is equivalent to

V1 ����������!h�sðW�V1Þ�ðV2�RÞtþ
R� V2

ðR3Þ ) V1 ����������!h�sðW�V1Þ�ðV2�RÞtþ
V2

Since V1!
k0
V2 and the input is sound and minimal by hypothesis, it is necessarily

k0 6 h � sðW � V1Þ � ðV2 � RÞtþ

Now, letting U ¼ �ðNCu [ rhsðbdgðGCuÞÞÞ and Y ¼ V2 � R (see Fig. 13), we will prove that
ðW � V1Þ � Y � U . By definition of the � operator it is Y � ðV2 � RÞ ¼ V2 and for each Y 0 such
that Y 0 � ðV2 � RÞ ¼ V2 it is Y � Y 0. Let Y 0 ¼ V2 � U ; using the distributive and the absorption
properties, and considering that V2 � �ðNC2

Þ ¼ �ðNCr [ NCuÞ ¼ R� U by hypothesis, we get

Y 0 � ðV2 � RÞ ¼ ðV2 � UÞ � ðV2 � RÞ ¼ ððV2 � UÞ � V2Þ � ððV2 � UÞ � RÞ
¼ V2 � ðR� V2Þ � ðR� UÞ ¼ V2

Hence, Y � V2 � U � U . On the other hand, W � V1 � U by hypothesis. Thus:

k0 6 h � sðW � V1Þ � Y tþ 6 h � sUt
þ

Fig. 12. Two C-graphs in Lemma 7.
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Finally, because of Theorem 1 it is

sUt
þ ¼ s� ðNCu [ rhsðbdgðGCuÞÞÞt

þ
6

Y
bdgðGCuÞ[ECu

ki �
Y

Wi2rootðGCu Þ
wþ

i;cb

which proves the lemma. �

Proof of Theorem 3. We will first examine the case bdgðGC1Þ ¼ ;. In this case it is:

ucbðCÞ ¼ ucbðC1Þ � ucbðC2Þ
ucbðC0

1Þ6 ucbðC1Þ ðsince C0
1 v C1Þ

vþcb 6 ucbðC2Þ ðfor Lemma 6Þ
If in GC0 there is an arc, labeled k0, entering V (with 16 k0 6 vþ since the input is sound) it is

ucbðC0Þ ¼ ucbðC0
1Þ � k0 6 ucbðC1Þ � vþcb 6 ucbðC1Þ � ucbðC2Þ ¼ ucbðCÞ

Otherwise, it is ucbðC0Þ ¼ ucbðC1Þ � vþcb 6 ucbðCÞ. In both cases, we have C0 v C.
Now, let bdgðGC1

Þ 6¼ ;; we have
ucbðC0Þ ¼ ucbðC0

1Þ � k0

ucbðCÞ ¼
Y
EC

ki �
Y

Wi2rootðGCÞ
wþ
i;cb

¼ ucbðC1Þ �
Y

bdgðGC1
Þ[ECr

ki �
Y

bdgðGCu Þ[ECu

ki �
Y

Wi2rootðGCu Þ
wþ
i;cb

where the last equality follows from the proof of Lemma 7. Since C0
1 v C1 it is ucbðC0

1Þ6 ucbðC1Þ;
for Lemma 7 it also is k0 6

Q
bdgðGC1

Þ[ECr
ki �
Q

bdgðGCu Þ[ECu
ki �
Q

Wi2rootðGCu Þ
wþ

i;cb. Thus, the theorem is
proved. �
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