
A Meta-Index to Integrate Specific Indexes:
Application to Multimedia∗

Ilaria Bartolini†, Paolo Ciaccia
DEIS - University of Bologna, Italy
{ibartolini, pciaccia}@deis.unibo.it

Lei Chen ‡

Hong Kong University of Science and Technology, China
leichen@cs.ust.hk

Vincent Oria
New Jersey Institute of Technology, USA

vincent.oria@njit.edu

Abstract

Although applications such as news, e-learning, e-
commerce require multimedia data of different types to co-
exist, data for each media type are often managed sepa-
rately because technically they do not have much in com-
mon. The common approach for providing the user with
an integrated multimedia database is to build an applica-
tion layer that presents a unified interface and deals with
the right mono-medium sub-system depending on the user
request. The problem is that this approach does not fully in-
tegrate the underlying systems. Another solution is to push
the integration into the query processor. This second ap-
proach necessitates to have access to the query processor
which is not always possible especially if the multimedia
system is using a commercial DBMS underneath. In this
paper, we propose a meta-index that hosts different specific
indexes and integrates the sub-query results to be returned
to the user.

1. Introduction

Database Management Systems (DBMS) offer some
functionalities (transaction management, declarative query
languages, recovery, etc.) that are necessary for novel ap-
plications (e.g., multimedia and bio-informatics). Although
current DBMSs offer solutions to store and manage the
complex data that the novel applications manipulate, they
cannot be used effectively for such applications. Even
though more suitable indexes exist for the specific appli-
cation, current DBMSs do not allow specific indexes to be

∗This work is partially supported by the WISDOM MIUR Project
†Part of the work was performed when the author was visiting NJIT
‡Work performed when the author was affiliated with NJIT

“plugged-in”. The reason is that indexes are to be used by
the query processor as access methods and a new index can-
not be used if the query processor is not aware of its exis-
tence. Most of the time, the query processor is not accessi-
ble to the users. This also means that a new index will not
be recognized and used by the query processor.

For classical data, the B+-tree has been widely accepted
as the index structure and offered by Relational DBMSs.
Such a standard does not exist for multidimensional data as
multidimensional indexes are very specialized [9]. For ex-
ample, range queries work better with an index of the R-tree
family [10], whereas similarity search applications perform
better with an index structure such as the SS-tree [15], the
SR-tree [11] or the M-tree [6]. Further, different multidi-
mensional indexes can be used for the same application.
The endless increasing number of multidimensional index
structures leave a lot of choices but pushes the choice of the
index to the application designer.

In this paper we propose a meta-index that allows (1)
a database system to integrate any user-defined index and
(2) an application developer to pick the appropriate indexes
for his/her applications. We define the operators needed at
the meta-index level to perform the integration of partial re-
sults based on partial orders. Then we show how the meta-
index can be used together with a unified semantic index to
create a full multimedia database system. The rest of the
paper is organized as follows: Section 2 depicts the meta-
index, Section 3 presents the semantic model for media ob-
ject annotation, Section 4 presents the experimental results
and Section 5 concludes.

2. The Meta-Index

We propose the meta-index as an interface between the
query processor and the indexes (see Figure 1). The idea is
to have the meta-index implemented in a database system

in order to facilitate the integration of new indexes into the
system. The meta-index is viewed by the query processor as
a single index that is responsible of certain types of queries.
As such, the meta-index has to be in charge of some of the

Meta-Index

Query Processor

DB1

IND1

DB2 DB3

IND2 IND3

Meta-Index

Query Processor

DB1

IND1

DB2 DB3

IND2 IND3IND3

Figure 1. Query Processor, Meta-Index and
Indexes

tasks typically devoted to the query processor: Decompose
queries it receives into sub-queries to be sent to individual
indexes; integrate the sub-query results received from indi-
vidual indexes.

For the meta-index, an index refers to a piece of software
that provides sorted access and/or random access to some
data as result of a query. In that sense, for the meta-index an
index can range from a regular index to a specific database
system.

2.1. Query Decomposition

The meta-index input is a well-formed query in disjunc-
tive normal form, Q = Q1 ∨ . . .∨Qn, where Qi is a mono-
answer space query. We say that a query Qi = Q1

i ∧. . .∧Qk
i

is a mono-answer space query if each sub-query Qj
i is a

mono-index query (i.e., results are obtained from a single
index) that expresses parts of the conditions of a query (Qi)
in conjunctive normal form. By well-formed we refer to the
classical correctness rules for queries: A query has a single
free variable (a query returns one type of objects as results)
and all the variables are range-restricted. For example, the
query “find images similar in color and texture to a given
image” is a mono-answer space query and each sub-query
(on color and texture, respectively) is a mono-index query
assuming that the features are indexed separately. The in-
tegration producing the final result is performed within a
single answer space. The term answer space comes from
of a graphical interpretation of sub-result integration where
each sub-query result is represented by an axis in a vector
space.

When the meta-index receives a query Q from the
query processor, the idea is to decompose this query into
{Q1, . . . , Qn} so that each sub-query Qi could be answered
through one answer space. That means that each of the cor-
responding sub-queries Qk

i uses one or more predicates de-
fined on the same objects. Hence the decomposition con-

sists in: Grouping sub-queries with conditions that involve
predicates on the same index; decomposing sub-queries
with complex conditions that involve predicates on different
indexes into smaller sub-queries with conditions on single
indexes.

2.2. The Meta-Index as an Interface

Normally, any index can be added to the meta-index by
the application developer. When an index is plugged into
the meta-index, the application developer should also spec-
ify the types of queries the index should be in charge of.
Basically, the query processor needs to be notified on the
type of queries that should be passed to the meta-index and
the meta-index should know the type of queries to be passed
to each index.

Since the queries are in disjunctive normal form, the
meta-index needs to know the type of atomic formulas to
be sent to individual indexes. Indexes are used as access
methods to select a subset of a set (table in the relational
world) that satisfy a certain condition defined on at least
one of the features of the objects. The conditions are de-
fined using some predicates (i.e. =, <,> in relational).
These conditions are used to define atomic formulas: For
example, t.A = constant, t.A = s.B, t.A < s.B are
atomic formulas on attributes A and B of tuples t ∈ R and
s ∈ S. If there is an index INDi defined on the attribute
A of R that works for the predicates <,>,=, then atomic
formulas of the form t.A < constant, t.A > constant
and t.A = contant should be sent to INDi for t ∈ R.
So when parsing a query, the meta-index should look for
t ∈ R and at least one of the following atomic formulas:
t.A < constant, t.A > constant and t.A = constant in
order to determine if part of the query should be sent to the
index INDi.

When the meta-index gets the lists of atomic formulas
that each index is in charge of, it compiles a complete list
of atomic formulas that it can handle and notifies the query
processor. The meta-index is between the query processor
and the indexes. It is responsible for decomposing queries
received into mono-index sub-queries, integrating the sub-
query results received and sending the result back to the
query processor.

2.3. Operators for Sub-Query Result Inte-
gration

For the meta index we define three operators: The join
with order, the difference with order and the union with
order as extensions respectively of the join, the difference
and the union relational operators. These operators are de-
fined in terms of partial orders because we have to be able
to reason about the queries and their results at the meta-

index level without knowing the metric used to define them.
As in relational databases, the conjunctive connectives are
mapped to joins with order, a negation is a difference with
order and a disjunctive connective is a union with order.

2.3.1 Join with Order

The result of a query posed against an index is a collec-
tion R of objects (e.g., “list images taken by Ilaria”) or a
ranked list (e.g., “list images similar to the query image”).
Although ranked lists are usually based on a metric, for the
sake of generality we represent a ranked list as a collection
R of objects with a partial order ≺, i.e., [R,≺], since total
orders are particular cases of partial orders. Note that [R,≺]
actually is a graph, where nodes are elements of R and an
arc (x, y), with x, y ∈ R, means that “x is better than y”.

Complex queries can involve the integration of the re-
sults of two ranked lists from different indexes. For ex-
ample, “images similar to a query image on texture and on
color”, assuming that colors and textures are indexed sepa-
rately. The cases where the integration is about unordered
collections is similar to the relational case. The novelty is
introduced by the orders and here we will focus on these.

Definition 2.1 (Join with Order) Given two collections R
and S of objects of the same type, the condition of the par-
tial order join is that the objects in both sets be identical
and the join with order between two collections R and S,
R ��≺ S, is defined as follows:

Case 1: R and S are sets: R ��≺ S = R �� S = R ∩ S
(recall that the join condition is that the objects are identi-
cal).

Case 2: One of the collections (let us say R with the
partial order ≺r) is a ranked list: R ��≺ S = [R,≺r] ∩
S = [R ∩ S,≺], where for x ∈ R − S and y ∈ R, ≺=≺r

−{(x, y), (y, x)}.
Case 3: Both R and S are ranked lists ([R,≺r], [S,≺s]):

R ��≺ S = [R,≺r] ��≺ [S,≺s] = [R ∪ S,≺], where ≺
defines a global partial order among the objects in R and S
(see discussion).

We will discuss only Cases 2 and 3 as Case 1 is identical
to the join in the relational model. An example of query of
Case 2 is Q: “list images taken by Ilaria that look like the
image i”. Given a collection S of images taken by Ilaria
and a ranked list [R,≺r] of images similar to image i, the
aim is to select the objects of R that also belong to S and
define a new partial order on the qualifying objects. This
is derived from ≺ by simply removing from it all the pairs
(x, y) where x is not part of the result, x ∈ R − S (i.e., all
images not taken by Ilaria).

Given at least 2 sub-query results with partial orders, the
idea in Case 3 is to compute a set with only one partial order.
Each sub-query deals with one index and the final result is

computed starting from sub-query partial results. The ques-
tion is which order to use for the final result. We discuss the
solutions in Section 2.4.

The model of queries we consider includes the standard
one, where the user is interested in obtaining the top-k re-
sults, the major difference being, of course, the criterion
according to which objects are ranked. To this end, we rely
on the well-defined semantics of the Best [14] and Winnow
[5] operators, recently proposed in the context of relational
DBs. The Best operator, Best(R), returns all the objects o
in R such that there is no object in R better than o according
to ≺. Ranking can be easily obtained by recursively apply-
ing the Best operator to the remaining objects (i.e., those
not in R − Best(R), and so on). This leads to a layered
view of the search space where all the objects in one layer
are “indifferent”.

2.3.2 Difference with Order

This is equivalent to integrating the results of sub-queries
with negation.

Definition 2.2 (Difference with Order) Given two collec-
tions R and S of objects of the same type, the difference
with order between two collections R and S, R −≺ S, is
defined as follows:

Case 1: R and S are sets: R −≺ S = R − S.
Case 2 (a): R is a set and S is a ranked list [S,≺s]:

R −≺ [S,≺s] = R − S.
Case 2 (b): R is a ranked list [R,≺r] and S is a set:

[R,≺r]−S = [R−S,≺] where for x ∈ R∩S and y ∈ R,
≺=≺r −{(x, y), (y, x)}.

Case 3: Both R and S are ranked lists ([R,≺r], [S,≺s]).
Since the difference of two partial orders is not a partial
order anymore (the transitivity property of partial orders
cannot be guaranteed), this case is not considered.

Let us consider the following two queries to illustrate the
definition: Q1: “list images taken by Ilaria that do not look
like the image i” and Q2: “list images that look like the
image i that are not taken by Ilaria”. Again let us assume
that S is the collection of images taken by Ilaria and [R,≺r]
the ranked list of images that are similar to the image i.
Query Q1 corresponds to Case 2 (a), where the result should
be a set of image taken by Ilaria, that is, S−R, thus ignoring
the partial order associated to R. This makes sense if R
contains a top-k-like answer where not all the objects in the
database are in the result, otherwise the result of the query
will always be empty. Query Q2 corresponds to Case 2 (b),
where the result should consist of images of R that do not
belong to S, with a new partial order that involves only the
objects that are in R but not in S. This is obtained from ≺
by removing from it all the pairs (x, y) where x ∈ R ∩ S
(i.e., images taken by Ilaria).

2.3.3 Union with Order

Definition 2.3 (Union with Order) Given two collections
R and S of objects of the same type, the union with order
between two collections R and S R ∪≺ S is defined as fol-
lows:

Case 1: R and S are sets: R ∪≺ S = R ∪ S.
Case 2: R is a set and S is a ranked list [S,≺s]: R ∪≺

[S,≺s] = [R ∪ S,≺s].
Case 3: Both R and S are ranked lists ([R,≺r] and

[S,≺s]). Again, taking the union of two partial orders do
not yield a partial order. For this reason the union is not
performed, but the two ranked lists are returned separately
as alternate solutions. Note that this makes sense even when
sub-results have different types (e.g., text and image).

Let us briefly comment on Case 2. Since, by definition,
a partial order does not require that all the elements are or-
dered, when we take the union of a set R and a ranked list
[S,≺s], we can simply add the objects in R − S without
having to change the order of the objects in S.

2.4. Operator Implementation

The implementation of the difference with order is not
too much different from a set difference with sorted and
random access. We will then focus on the join with order.

Given a query divided in independent sub-queries, the
goal is to provide the user with the set of top results min-
imizing the number of objects to be accessed for it. More
in details, the top-k retrieval paradigm is applied, by split-
ting the initial complex query into a set of m simpler sub-
queries. Each sub-query deals with only some of the query
predicates and the final result is computed starting from sub-
query partial results. A relevant example of top-k queries
are “middleware” queries [7, 8, 3, 2], where the best k ob-
jects are retrieved given the (partial) descriptions provided
for such objects by m distinct data sources. In this scenario,
a first assumption is that each data source is able to return a
ranked list of results. More precisely, each returned object
comes with an ID that identifies the object in the data source
plus a score that numerically quantifies in which measure
the object matches the query on that data source (named
partial score). By means of the getNext() method it is
possible to execute a sorted access obtaining the best next
object together with its partial score.

With regard to the aggregation rule of partial scores,
one possibility is to use a scoring function, such as the
(weighted) average, the maximum and the minimum, that
aggregates the m partial scores into a global similarity
score. In this case, objects are linearly ordered and only the
highest scored ones returned to the user. A more general
solution, that contains the scoring function-based approach
as special case, consists in adopting qualitative preferences

(e.g., Skyline [1] and Region-prioritized Skyline [14]) able
to define arbitrary partial orders on the objects. Moreover,
with qualitative preferences a more flexible comparison cri-
teria able to take into account all the partial scores is pos-
sible. The only requirement of this aggregation modality
is thus to define a binary preference relation able to assert
when an object is “better” than another one.

Although each of the above integration solutions could
be applied to implement our operators, in this work we
adopted the iMPO [2] algorithm. The aim of this paper,
in fact, is to find a minimum common denominator to the
involved indexes, with or without ranking, and to propose
an algebra to integrate their results, independently from the
specific integration choice; the only requirement being that
it just fit our framework.

iMPO is based on a partial order approach which means
that the meta-index can integrate the results of the indexes
without having to know the metrics they are using. In par-
ticular, for the computation of the top-k results we rely on
the BestTop [2] operator that combines the semantics of the
Best and top-k operators. BestTop recursively applies Best
to the objects by computing the first l layers containing the
top-k results.

3. The Meta-Index for Multimedia

Although users want to be able to manipulate in the same
application any type of medium and multimedia data (e.g.,
images, audio, documents and video), data of different me-
dia types are totally different: They have different represen-
tation schemes, different features, different possible queries
and they need different tools to render the data. The MPEG-
7 standard [4] gives an exhaustive description of the features
for each media type. But different media objects can share
the same semantics and a semantic index common to all the
media type can help integrate the different media types and
build a full multimedia application. Figure 2 depicts the
functional architecture of the meta-index for a multimedia
application in which the semantic index plays a central role.
Although the semantic index is put at the same level as the

META-INDEX

DB1

IND1

DB2 DB3

IND2 IND3SIND

META-INDEX

DB1

IND1IND1

DB2 DB3

IND2 IND3IND3SIND

Figure 2. Semantic Integration of Multimedia
Data with the Meta-Index

other indexes, it references object in the other indexes.

To that end, we propose a simple multimedia type sys-
tem that follows the common multimedia system organiza-
tion where each media type is handled by a specialized sub-
system. As also shown in Figure 3, the type system should
be rooted with multimedia as the root type. The rooted type
system is important as it allows the semantic index to refer
to only one type of objects (e.g., multimedia). The multi-
media type defines two types of features, synthetic metadata
(low-level features extracted from raw multimedia data) and
semantic information (salient objects). In Figure 2, SIND
is the semantic index shared by all the media types, IND1
can be an index on image visual features, IND2 can be an
index on video, and IND3 an index on text. The generic
media type with synthetic and semantic information is the
minimum required as the integration is based on the com-
mon semantics. The goal is not to discuss how to obtain the
semantic information but how to use this information in a
meta-index to glue data from different media types.

3.1. Media Content Description Model

The description of media objects mainly obeys two struc-
tures. The first one is the media class hierarchy and the sec-
ond one is the media object aggregation hierarchy:

Media Class Hierarchy: The media class structure hi-
erarchy is based on the “IS-A” relationship and defines the
properties for each class. We distinguish the media class hi-
erarchy used to group related media objects and the media
content hierarchy that defines the descriptors for each me-
dia class. Note that the two hierarchies can be combined so
that every media object comes with its content descriptors.

Media Object Aggregation Hierarchy: Every media
object has an inherent structure. For example, the common
hierarchy admitted for a video is: A video is composed of
scenes, scenes are composed of shots, shots are composed
of key frames (images). On the other hand, the structure of
an XML document is given by a DTD or a XML schema.

The media class hierarchy defines the necessary descrip-
tors for each media object depending of its class. It is ap-
plication dependent so has to be provided when the applica-
tion is being developed. We capture the user-defined media
class hierarchy by attaching it to the right super-class in our
pre-defined rooted type system as shown in Figure 3. The

Image Class
Hierarchy

Multimedia

Image

Video

Audio

Document

Video Class
Hierarchy

Audio Class
Hierarchy

Document
Class

Figure 3. The Multimedia Type System

media object aggregation hierarchy defines different granu-

larity levels for each media object. These granularity levels
are important in the content description of the media object.
The media class hierarchy and the media object aggregation
hierarchy form the media object metadata scheme and can
be defined using an object-relational model or MPEG-7.

3.2. Media Object Tree

Given a media object metadata scheme and a media ob-
ject, we can construct the media object tree that reflects the
composition of the media object and records the descrip-
tors. Figure 4, for example, gives a media tree of a video
composed of 2 scenes, 5 shots, and 7 key frames.

v1

sc1 sc2

Video

Scenes

sh3 sh4sh1 sh2 sh5Shots

kf1
Key
Frames

kf2 kf3 kf4 kf5 kf7kf6

v1

sc1 sc2

Video

Scenes

sh3 sh4sh1 sh2 sh5Shots

kf1
Key
Frames

kf2 kf3 kf4 kf5 kf7kf6

Figure 4. The Media Tree of a Video

The media object trees are media objects together with
descriptors. They can be stored as MPEG-7 documents and
queried using an XML query language like XQL [16]. The
query processing will be more effective with an index. We
used the MBM indexing method [12] that extends the BUS
[13] method to index the media object trees. Each element
of the media object is assigned a Unique element IDentifier
(UID) using a left-to-right, top-to-bottom traversal that can
be used to calculate the parent UID. The BUS also intro-
duced the concept of the General element Identifier (GID)
by extending the UID concept to include (1) Document
Number, (2) the UID of the element, (3) the level of the
element in the tree and (4) the element type number. The
central concept of the BUS method that the MBM method
inherited is that indexing information (the GID, term fre-
quency, etc.) are maintained only for the leaf nodes of the
media tree (e.g. keyframe for a video). We extended the
GID to include the media type number (1:image, 2:video,
3:audio, and 4:document) stored using 2 bits. The media
type information helps select the GID of a given media type
as all the media types share the same semantic index.

4. Experiments

In the experimental section we design several scenarios
to show how the meta-index interacts with the query proces-
sor and quantify, by means of a set of preliminary results,
the improvement obtained by using the meta-index in term

of both effectiveness and efficiency. All programs are writ-
ten in Java programming language (J2SE, v. 1.5) and ex-
periments are run on a Sun-Blade-1000 workstation under
Solaris 2.8 with 1GB of memory. Results are obtained on a
simple database which extracts video clips and key frames
from two movies1. In details, the dataset contains 20 video
clips, 230 key frames (images) extracted from the video
clips, and 23 salient objects (for semantic queries). From
each image, we extracted a 32-bins color histogram repre-
sented in the HSV color space and a 60-bin texture vector
using Gabor filters. To compare both color and texture
feature vectors we used the Euclidean distance.

The most typical queries that we want to test are mono-
type (Q1) and mixed-type media (Q2) queries defined as
following:

Q1: {i: Image | i ∈ Images, ∃A ∈ Objects, ∃B ∈
Objects, i contains A ∧ i contains B ∧ i.color similar
query.color ∧ i.texture similar query.texture ∧ A besides
B};

Q2: {i: MM | i ∈ Images ∨ i ∈ KFs ∃ A ∈ Objects,
∃ B ∈ Objects, i contains A∧ i contains B ∧ i.color simi-
lar query.color ∧ i.texture similar query.texture ∧ A besides
B}.

In these formulas, contains, similar and besides are pred-
icates, MM is a root type for multimedia, Images is a set of
images, KFs is a set of key frames in videos and Objects is
a set of salient objects. Finally, query is the example query
image.

To deal with this type of queries, we implemented the
join with order operator (see Section 2.3.1). In particu-
lar, we applied join with order (Case 3), for the integra-
tion of low-level features results, whereas for the integra-
tion with salient objects-based results we adopted join with
order (Case 2). We indexed both feature vectors for color
and texture using an index structure for high-dimensional
nearest neighbor queries (i.e., the M-tree [6]), whereas for
salient objects we adopted MBM [12].

All results we present are averaged over a sample of 50
randomly-chosen query images containig two salient ob-
jects.

We test the efficacy of meta-index using mono-type (Q1)
and mixed-type media (Q2) queries. To measure the effec-
tiveness of our solution we consider the classical precision
metric, i.e., the percentage of relevant images found by a
query (in our experiments we set k = 20), averaged over
the query workload.

For each query Q1 the meta-index first decomposes
the query into mono-type sub-queries and makes a search
among registered indexes. Then, each mono-type sub-query
is sent to the corresponding registered indexes, i.e., the color
index, the texture index, and the salient object index. Re-
sults returned from low level image feature indexes (e.g.,

1“Gladiator”, 2000 and “Life is Beautiful”, 2000.

color and texture) are integrated by the meta-index using
iMPO algorithm [2] (this correspond to Case 3). The set of
images returned by salient-object index are combined with
color-texture integrated results by taking their intersection
(Case 2). As for queries Q2, the meta-index preforms simi-
lar steps. This depends on the fact that a query Q2 is com-
posed by several queries Q1. Further, in this case, in addi-
tion to images, video clips where images are extracted from
are also returned.

We compared precision results obtained when the meta-
index was switched on with those obtained without meta-
index. We start by showing a visual example (depicted in
Figure 5), where the top 3 results for the same query (the
image on the left most column) are depicted when using a
single index on color (a), a single index on texture (b), and
the meta-index (c).

(a) color index results

(b) texture index results

(c) meta-index results

Figure 5. Visual Results using Color Index (a),
Texture Index (b) and Meta-Index (c)

By Figure 5, we can find out that with the meta-index,
we can achieve more effective results: Images in (c) are
much closer to the query in terms of both low level fea-
tures and semantics than those obtained only using single
indexes. The reason being that the meta-index gets the best
from low-level features results (i.e., color and texture) and
semantic results (i.e., salient objects).

The trend in visual example is generalized by Figure 6
(a), where averaged precision values for the query work-
load are reported. In particular, we use the term No-Meta-
Index to refer to the average precision obtained using sin-
gle indexes, whereas with Meta-Index results obtained by
the meta-index. As we can observe from the graph, Meta-
Index outperforms No-Meta-Index for all value of k with
a final average improvement of 19.44% (for k = 15) and
15% (for k = 20), respectively.

We report the efficiency test of using meta-index in an-
swering queries. As for the measure, we consider the run-
ning time needed to answer a query based on low-level fea-
tures (i.e., color and texture) and salient objects with re-

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20

K

P

Meta-Index

No-Meta-Index

(a)

0

20

40

60

80

100

120

140

160

0 5 10 15 20

K

to
ta

l
ti

m
e

 (
s
e

c
)

Meta-Index

Query-Processor

(b)

Figure 6. Precision for Meta-Index and No-
Meta-Index vs Number of Retrieved Images
k (a) and Running Time Comparison Using
Meta-Index and Query Processor (b)

spect to the number of retrieved object k (in our experi-
ments we vary k between 1 and 20), averaged over the ran-
domly picked up queries. For this experiment, we only
use mono-type queries (Q1). As shown in the previous
section, queries Q1 are the bases for mixed-type media
queries Q2. In particular, we assume that not all query
features have supporting indexes (i.e., indexes for textures
do not exist). Under this assumption, given a query Q1,
the query processor decomposes it into a set of mono-type
sub-queries and keeps the sub-queries whose specified fea-
tures do not have supporting indexes (the query processor
can not find the registered index in the interface to match
the sub-query) and sends sub-queries with supporting in-
dexes to the meta-index. Results returned from the indexes
and the query processor are then integrated by the query
processor. Performance is compared between queries us-
ing the meta-index and the query processor only. For the
queries answered by the meta-index, the execution time can
be saved by integrating the results returned by the indexes
first, once the results from the query processor are returned,
the final results can be intergraded. For the queries that are
answered by the query processor directly, the results can
only be integrated when all results are returned.

Figure 6 (b) shows average running time results. In par-
ticular, we observe how Meta-Index, by using indexes on
salient objects (MBM) and low level features (M-tree), is
able to achieve better performance than Query-Processor
with a final overage improvement of 94.47%. This depends
on the correct selection of indexes and the early integration
of ranked lists alloweb by the meta-index.

5. Conclusions

In this paper we have proposed a meta-index to integrate
specific indexes in a multimedia DBMS. We have defined
three operators for performing integration of ranked lists,
namely, join with order, difference with order and union

with order. These operators are defined in terms of partial
orders, which allows an integration of sub-results without
knowing the specific metrics used by the underlying indexes
to order them. The experimental results confirm the efficacy
and efficiency of the meta-index in answering top-k queries.

References

[1] S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline operator.
In Proc. of the 17th International Conference on Data Engineering
(ICDE’01), 2001.

[2] I. Bartolini, P.Ciaccia, V. Oria, and M. T. Özsu. Flexible integration
of multimedia sub-queries with qualitative preferences. Multimedia
Tools and Applications, 2006. To appear.

[3] N. Bruno, L. Gravano, and A. Marian. Evaluating top-k queries over
web-accessible databases. In Proc. of the 18th International Confer-
ence on Data Engineering (ICDE’02), 2002.

[4] S.-F. Chang, T. Sikora, and A. Puri. Overview of the MPEG-7 stan-
dard. IEEE Transactions on Circuit and Systems for Video Technol-
ogy, 11(6), 2001.

[5] J. Chomicki. Querying with intrinsic preferences. In Proc. of the
6th International Conference on Extending Database Technology
(EDBT02), 2002.

[6] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient access
method for similarity search in metric spaces. In Proc. of the 23rd In-
ternational Conference on Very Large Data Bases (VLDB’97), 1997.

[7] R .Fagin. Combining fuzzy information from multiple systems. In
Proc. of the 15th ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, 1996.

[8] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms
for middleware. In Proc. of the 20th ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, 2001.

[9] V. Gaede and O. Günther. Multidimensional access methods. ACM
Computing Surveys, 30(2), 1998.

[10] A. Guttman. R-trees: A dynamic index structure for spatial search-
ing. In Proc. of the ACM International Conference on Management
of Data, 1984.

[11] N. Katayama and S. Satoh. The SR-tree: An index structure for high
dimensional nearest neighbor queries. In Proc. of ACM SIGMOD
International Conference on Management of Data, 1997.

[12] V. Oria, A. Shah, and S. Sowell. Indexing XML documents: Improv-
ing the BUS method. In Proc. of 7th Intl Workshop on Multimedia
Information Systems (MIS’01), 2001.

[13] D. Shin, H. Jang, and H. Jin. BUS: An effective indexing and re-
trieval scheme in structured documents. In Proc. of the International
Conference on Digital Library (DL’98), 1998.

[14] R. Torlone and P. Ciaccia. Finding the best when it’s a matter of
preference. In Proc of Workshop on Recommendation and Personal-
ization in eCommerce (AH’02), 2002.

[15] D. A. White and R. Jain. Similarity indexing with the SS-tree. In
Proc. of the 12th International Conference on Data Engineering
(ICDE’96), 1996.

[16] R. K. Wong. The extended XQL for querying and updating large
XML databases. In Proc. of the 2001 ACM Symposium on Document
Engineering, 2001.

