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ABSTRACT
Effective keyword search on image databases is a major open
problem, due to the inherent imprecision of keywords (tags)
used to describe images’ content. In this paper we present a
novel approach to deal with this problem, as implemented in
the Scenique image retrieval and browsing system. Scenique
is based on a multi-dimensional model, where each dimen-
sion is a tree-structured taxonomy of concepts, also called
semantic tags, that are used to describe the content of im-
ages. We first describe an original algorithm, called Ostia

(Optimal Semantic Tags for Image Annotation), that, by
exploiting low-level visual features, tags, and metadata as-
sociated to an image, is able to predict a high-quality set of
semantic tags for that image. Then, we describe how seman-
tic tags can be effectively used for the purpose of improving
the precision of keyword search.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Image Search
and Retrieval

General Terms
Algorithms

Keywords
Taxonomies, Keywords, Semantic tags, Annotation

1. INTRODUCTION
Automatic image annotation aims to enable text-based

techniques (search, browsing, clustering, classification, etc.)
to be applied also to objects that otherwise could only be
dealt with by relying on feature-based similarity assessment,
which is known to be inherently imprecise [18]. Approaches
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to automatic image annotation include a variety of tech-
niques, and they even differ in what “annotation” actually
means, ranging from enriching images with a set of key-
words (or tags) [10, 13, 1, 7, 11], to providing a rich seman-
tic description of image content through the concepts of a
full-fledged RDF ontology [16]. Further, solutions may dif-
fer in what kind of tags/concepts they ultimately provide,
in this case the difference being among general-purpose sys-
tems and others that are tailored to discover only specific
concepts/classes [15, 20].

It is however a fact that even text-based techniques, as ex-
emplified by the image search extensions of Google and Ya-
hoo!, and by systems like Microsoft’s Photo Gallery, Google
Picasa, and Yahoo’s Flickr, yield a highly variable retrieval
accuracy. This is due to the imprecision and the incom-
pleteness of the manual annotation process (in the case of
Photo Gallery, Picasa, and Flickr), or to the poor corre-
lation that often exists between surrounding text of Web
pages and the visual image content (for the case of Google
and Yahoo!). Nonetheless, since keyword search allows data
to be retrieved in a simple way and without the knowledge
of data schema and query languages [6, 14], it is not easy to
find alternatives that are both effective and user-friendly.

Complementary to the possibility of searching images by
keyword and/or visual features is that of browsing them.
In this case, images are typically organized in a hierarchi-
cal way, and users can focus on the parts of interest of the
database by navigating through the hierarchy. The inade-
quacy of a single hierarchy has been demonstrated by sys-
tems like Flamenco [22], where multi-faceted hierarchies al-
low users to explore a data collection across multiple, or-
thogonal classification criteria. Along this direction in [2]
we have introduced Scenique, an integrated image search
and browsing system that allows images to be searched and
explored using both tags and visual features.

In this paper we present a novel approach for the prob-
lems of image annotation and keyword-based search that: (i)
Predicts for an image a set of so-called semantic tags, i.e.,
concepts taken from a set of tree-structured taxonomies; (ii)
exploits such semantic annotations for improving the pre-
cision of keyword search. Semantic tags can be seen as a
means to annotate images that is more precise than free tags
(that have no inherent semantics), yet not so complex to be
derived as concepts of RDF-like ontologies (whose semantics
might not be so easy to grasp by end-users).

Figure 1 provides an intuition on the annotation problem
we deal with: Given an image, possibly coming with some
textual description, and a set of taxonomies, the objective



is to predict which are the concepts in such taxonomies that
better describe the image.

Image data Taxonomies

My favorite bears…

Figure 1: For the image on the left, predicted seman-
tic tags (on the right) are animal/bear/polar, land-

scape/water/ice, landscape/land/, and geo/artic.

We have implemented our approach in the Scenique sys-
tem and tested over real data. Preliminary results demon-
strate that it can be highly effective in retrieving relevant
images with respect to traditional keyword image search.
Our main contributions can be summarized as follows:

(i) An effective algorithm, called Ostia (Optimal Semantic
Tags for Image Annotation), able to automatically annotate
images with semantic tags; (ii) a keyword-based search al-
gorithm, called Ostia-KWS, that exploits semantic tags for
improving the precision of results.
The rest of the paper is organized as follows. In Sec-

tion 2 we briefly describe the model on which Scenique is
based and introduce the problems we deal with. Section 3
presents and details the proposed algorithms. Section 4 ex-
perimentally evaluates the proposed techniques. Section 5
overviews related work and Section 6 concludes.

2. THE PROBLEMS
Scenique [2] is an integrated searching and browsing sys-

tem that allows images to be organized and searched along
a set of orthogonal dimensions (also called facets). Each
dimension is organized as a tree and can be viewed as a par-
ticular coordinate used to describe the content of images.
Scenique supports both semantic and visual facets, the lat-
ter being used to organize images according to their low-level
features and not relevant in this paper.
A semantic dimensionDh, h = 1, . . . ,M , is a tree-structured

taxonomy of concepts, also called semantic tags. More pre-
cisely, a semantic tag stj is a path inDh, stj = n0/n1/ . . . /nk

∈ Dh, where each ni is a node of the taxonomy. Node ni

has a label that, for the sake of simplicity, we also denote as
ni.

1 The label of the root node is the dimension name (e.g.,
location, subject, etc.)
In the scenario we consider, Scenique manages an image

database DB = {I1, . . . , IN} and a set of M dimensions
D1, . . . , DM . In the more general case, an image Ii ∈ DB
has the following components: A source file Pi (e.g., a JPEG
picture); a set of low-level visual features Fi automatically
extracted from Pi; the image metadata Mi, of which for the
purpose of this paper we consider only the title, a textual

1This is only to simplify the presentation: Scenique
allows the same label to be attached to multiple
nodes, e.g., activity/sport/soccer/Italy and activ-
ity/sport/basket/Italy.
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Figure 2: Image annotation: Overall approach (a)
and the modules of the Ostia algorithm (b).

description and a set of free tags (some, or even all, of these
metadata might be missing for an image); a set of keywords
Ki = {kwdi,j}, automatically derived from Mi; and a set
of semantic tags STi = {sti,j}. Thus, each image Ii can be
concisely represented as Ii = (Pi, Fi,Mi,Ki, STi). The first
problem we consider concerns annotation of images:

Problem 1 (Annotation) Given an image database DB
and a (query) image Q = (P,M) (i.e., F = K = ST = ∅),
determine the set of m (m ≥ 1) semantic tags ST that better
describe the content of the image Q.

Solving Problem 1 for the database images provides se-
mantic annotations which can be profitably exploited for
solving keyword-based queries:2

Problem 2 (Keyword search) Given an annotated im-
age database DB and a keyword query K = {kwd1, kwd2, . . . , kwdn},
determine the set of ki (ki ≥ 1) images that better match
the keywords K.

3. THE APPROACH
Sections 3.1 and 3.2 provide the solutions for Problem 1

and Problem 2, respectively.

3.1 The Ostia Algorithm
We adopt a 2-step approach to solve Problem 1, as il-

lustrated in Figure 2 (a). First, a set of low-level visual
features F and high-quality keywords K are extracted from
Q = (P,M). To this end we use, respectively, the feature
extraction algorithm of the Windsurf library [3], which char-
acterizes an image with color and texture features, and text
analysis procedures, such as stemming, stoplist, and NLP [4]
techniques,3 not further described here for lack of space.

Once both F and K have been extracted, they are input
to an algorithm, called Ostia (Optimal Semantic Tags for
Image Annotation), that exploits information associated to
images in the DB that are similar to Q either at the visual
or the textual level (or both), to predict a set of semantic
tags for Q. Ostia consists of two main modules, see Figure 2
(b). A first module is in charge of predicting a superset
of ST , which are hereafter called candidate semantic tags
(or simply candidates) and denoted CST . A second module
organizes, for each dimension Dh, the candidates into a can-
didate tree CTh ⊆ Dh, ranks them, and returns the top-m
ones.
2For the purposes of this paper we focus on keyword search
only, being understood that our approach can also be used
if visual features of an input image are available.
3OpenNLP: http://opennlp.sourceforge.net/



3.1.1 Generating Candidate Semantic Tags
The first module of Ostia predicts, for each dimension

Dh, a set of candidate semantic tags CSTh, with CST =⋃M

h=1
CSTh. The basic rationale of CSTh computation is

to exploit available information of the query Q (i.e., K and
F ) in order to find images Ii ∈ DB that might contain tags
relevant for Q.
We exploit query keywords K by applying a co-occurrence

search on DB image keywords. The search provides a set
of images that share at least e terms with K. We rank
the images on the base of the co-occurrence value and, for
the top-p images only, their keywords are added to a set
RK of relevant keywords (which by default includes all key-
words in K), and all the semantic tags are used to initial-
ize CST . For example, if K = {beach, sea, sun}, e = 2,
and there is an image Ii with Ki = {beach, sea, sky} and
STi = {landscape/water/sea}, then sky is added to RK
and landscape/water/sea to CST .
Starting from the query features F , a nearest-neighbors

search is performed on the DB, which determines the set
of the g images most similar to Q. For all keywords kwdj

(resp. semantic tags stj) associated to at least one of such
images, a frequency score is computed as the number of top-
g images annotated with kwdj (resp. stj). Such annotations
are then ranked based on their frequency and the top-s ones
are added to RK and CST , respectively.
After the above-described steps, each relevant keyword

kwdj ∈ RK is processed, since it can provide new candidate
semantic tags. For each kwdj we check if there is any path
(i.e., semantic tag) stj in the taxonomy of some dimension
Dh terminating with a label equal to kwdj (we call this step
joining phase). If this is the case, stj is added to CSTh and
kwdj deleted from RK.
For keywords that, after the joining phase, still populate

RK, we apply a keyword expansion step in order to verify
if it is possible to collect further semantic tags by means of
correlated terms (namely, synonyms) available from Word-
Net.4 For instance, if sea ∈ RK and the label sea is
not part of any dimension, whereas the semantic tag stj =
landscape/water/ocean appears in some Dh, then stj will
be added to CSTh. For each keyword kwdj ∈ RK, we find
the matching lexical concept in WordNet, collect the syn-
onyms of the associated synsets, add them to RK, and then
apply to them the joining phase. Figure 3 shows possible
ways to join a keyword to a semantic tag.

K={kwd1,kwd2, …, kwdn} 

Taxonomies

Wordnet

Figure 3: Ways to join keywords to semantic tags.

Algorithm 1 summarizes the above steps. Notice that,
since in general a semantic tag stj can be predicted multiple

4WordNet: http://wordnet.princeton.edu.

times, we keep trace of its frequency, freqj , which will be
used by the second module of Ostia.

Algorithm 1 Ostia: Candidate Semantic Tags Predictor

Input: Q = (F,K): query image, DB: image database,
e, p, g, s: integer

Output: CST : candidate semantic tags
1: CST ← ∅, RK ← K;
2: COImg ← Top(KwdSearch(K,DB, e), p);

. Top-p images sharing ≥ e kwd’s with Q
3: RK ← RK ∪ {kwdi,j : Ii ∈ COImg};
4: CST ← CST ∪ {sti,j : Ii ∈ COImg};
5: NNImg← NNImgSearch(F,DB, g);

. Top-g most similar images to Q
6: RK ← RK ∪ Top({kwdi,j : Ii ∈ NNImg}, s);

. Top-s freq.-based keywords
7: CST ← CST ∪ Top({sti,j : Ii ∈ NNImg}, s);

. Top-s freq.-based semantic tags
8: CST ← CST ∪ Joining(RK, {Dh});

. join keywords in RK to paths in some Dh

9: RK ← GetSynonyms(RK);
10: CST ← CST ∪ Joining(RK, {Dh});
11: return CST = {(stj , freqj)}.

3.1.2 Ranking the Candidates
The second module of Ostia organizes, for each dimension

Dh, the candidate semantic tags CSTh into a candidate tree
CTh ⊆ Dh, and then computes the overall top-m results.
Ranking is based on weights. The weight wj of stj is com-
puted as wj = freqj · utilj , where freqj is the frequency
of stj and utilj is the so-called utility of stj wrt all other
candidates sti ∈ CSTh, defined as:

utilj =
∑

sti∈CSTh,i6=j

len(stj ∩ sti)

MaxPh

(1)

where len(stj ∩ sti) is the length of the common (prefix)
path between stj and sti, whereas MaxPh is the maximum
path length within the dimension Dh. Utility measures the
amount of overlap between stj and all other sti’s, and aims
to score higher: a) longer (i.e., more specific) semantic tags
(since for such candidates the degree of overlap with the
other candidates is likely to be high), and/or b) candidates
occurring in a “dense” part of the candidate tree. On the
other hand, the frequency tends to be higher for more generic
semantic tags because it is more common to provide generic
annotations than specific ones.

Computing all the utilities by directly applying Equation 1
would require O(N2

h ·MaxPh) time, with Nh being the car-
dinality of CSTh. To reduce the computational overhead,
we present an equivalent, but more efficient (linear), algo-
rithm. For a semantic tag stj = n0/n1/ . . . /nk, whether
stj is a candidate or not, let us say that the count cntj
of stj is the number of candidates sti ∈ CSTh that con-
tain stj as a prefix (i.e., of which stj is an ancestor): cntj =
]candidate semantic tags sti of type n0/ . . . /nk/ . . . /np, p ≥
k.

Figure 4 (a) shows an example. For instance, the candi-
date a/b/d has frequency 5 (as given) and count 3, since
the number of candidates whose prefix is a/b/d is 3, i.e.,
a/b/d/g, a/b/d/h, and a/b/d itself.



stj freqj

a/b/d/g 3

a/b/d 5

a/b/d/h 2

a/b/e 4

a/c/f/i 2

stj freqj

a/b/d/g 3

a/b/d 5

a/b/d/h 2

a/b/e 4

a/c/f/i 2

a

b

d

g h
(5,-)

(3,-) (2,-)

[5]

[4]

[3]

[1][1]

c
[1]

i

e

(4,-)
[1]

(2,-)
[1]

f
[1]

(a)

(5,12-3)

(3,13-4) (2,13-4)

(4,10-4)

(2,8-4)

a

b

d

g h

c

i

e f

(b)

Figure 4: Candidate tree example (a). Blank circles denote candidate semantic tags (e.g., the one labelled d

corresponds to the candidate semantic tag a/b/d). Close to each candidate stj, the pair (freqj , utilj) is shown
(utilj is initially undefined), whereas count values [cnti] are shown for each node ni. The tree is completed
in (b) with the utility values of the candidates. For clarity of exposition, in this figure we do not normalize
utility values by MaxPh.

Theorem 1 The utility utilj of the candidate semantic tag
stj = n0/n1/ . . . /nk can be computed as:

utilj =

∑k

l=0
cntl − len(stj)

MaxPh

=

∑k

l=0
(cntl − 1)

MaxPh

(2)

where cntl is the count of the semantic tag n0/n1/ . . . /nl,
ancestor of stj.

Proof. By grouping together the contribution of all can-
didate semantic tags sti for which the value of len(stj ∩ sti)
is the same, Equation 1 can be rewritten as:

utilj =

∑k

l=0
(l + 1) · ovl+1

MaxPh

in which ovl+1 is the number of semantic tags that share
with stj a prefix path of length exactly equal to l+1. From
the definition of cntl it is also derived that:

cntl = 1 +
k∑

p=l

ovp+1

since every candidate sti for which len(stj ∩ sti) ≥ l + 1
contributes 1 to cntl, and the 1 term accounts for the fact
that cntl also counts stj itself. By substituting in Equation
2 it is obtained:

utilj =

∑k

l=0

∑k

p=l
ovp+1

MaxPh

=

∑k

l=0
(l + 1) · ovl+1

MaxPh

Figure 4 (b) completes the example of Figure 4 (a) show-
ing the utility values of all candidates. For instance, the
utility of the semantic tag a/b/d/g is ((5 + 4 + 3 + 1) −
len(a/b/d/g))/MaxPh = (13 − 4)/MaxPh = 9/MaxPh.
The same result is obtained from Eq. 1, which would com-
pute the utility as (len(a/b/d/g ∩ a/b/d) + len(a/b/d/g ∩
a/b/d/h)+len(a/b/d/g∩a/b/e)+len(a/b/d/h∩a/c/f/i)/MaxPh

= (3 + 3 + 2 + 1)/MaxPh = 9/MaxPh.
The utilities of all candidates in CSTh can be computed

in O(Nh ·MaxPh) time if counts are available. Counts are
incrementally obtained while generating the candidate tree
CTh, by adding 1 to the count of a semantic tag stl whenever
a new candidate stj of which stl is an ancestor is added to
CTh, as detailed in Algorithm 2.

3.2 The Ostia Keyword Search Algorithm
The traditional image keyword search (KWS) approach

is described in Figure 5 (a): Given a set of keywords K,

Algorithm 2 Ostia: Optimal Set of Semantic Tags for Q

Input: CST : candidate semantic tags, m: integer
Output: ST : top-m predicted semantic tags for Q
1: for all Dh do
2: CTh ← ∅;
3: while ∃ a candidate semantic tag stj ∈ CSTh do
4: addCandidateTagToTree((stj, freqj), CTh);
5: for all ni ∈ stj = n0/n1/ . . . /nk do
6: if ni is a newly added node in CTh then
7: cnti ← 1
8: else cnti ← cnti + 1;

9: computeUtilities(CTh); . utilities of candidates
10: computeWeights(CTh, CSTh); . weights of cand.’s
11: STh ← Top(CSTh,m);

. optimal set of semantic tags for dimension Dh

12: return ST ← Top(
⋃M

h=1
STh,m).

the set of relevant images, RI, i.e., those images sharing at
least one keyword with K, is determined. Images in RI are
then ranked and the top-ki ones returned. In this paper, we
assume a simple ranking schema based on how many key-
words of K an image has. Alternative ranking approaches
(e.g., TF*IDF, number of edges, size normalization) can be
applied [17, 21].

Algorithm Ostia-KWS, illustrated in Figure 5 (b) and de-
tailed in Algorithm 3, approaches the image keyword search
problem by exploiting the ability of the Ostia annotator in
predicting high-quality semantic tags, with the purpose of
improving the overall quality of the results.

More in detail, Ostia-KWS first applies Ostia to the query
keywords K, thus obtaining a set ST of top-m semantic
tags for K. The set RI of relevant images is then defined as
consisting of those images that are annotated with at least
one of the semantic tags in ST . Finally, images in RI are
ranked and the best ki ones returned. For homogeneity with
KWS, even for Ostia-KWS a simple ranking schema based on
counting the number of semantic tags stj ∈ ST associated
to each image is applied.

4. EXPERIMENTAL RESULTS
We have implemented Ostia, Ostia-KWS and KWS algo-

rithms within our Scenique system, which makes use of the
Windsurf library5 for low-level feature management (e.g.,
image segmentation and support for k-NN queries, see [3]

5Windsurf: http://www-db.deis.unibo.it/Windsurf/
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Figure 5: Illustration of KWS (a) and Ostia-KWS
(b) search algorithm.

Algorithm 3 Ostia-based Keyword Search (Ostia-KWS)

Input: K: query, DB: image database, e, p,m, ki: integer
Output: I: top-ki most relevant images for K
1: RI ← ∅;
2: ST ← OstiaOptimal(OstiaCandidate(K,DB, e, p),m);

. compute the set of optimal semantic tags
3: for all stj ∈ ST do
4: RI ← RI ∪ {Ii : stj ∈ STi};

. compute the set of relevant images

5: rankImages(RI); . rank relevant images
6: return I ← Top(RI, ki). . most relevant images

for more details). For experiments, we used real datasets of
about 10,000 and 100,000 images extracted from the CoPhIR
collection [5].6 For the dimensions, we imported portions of
open-access ontologies from Swoogle,7 for a total of 15 di-
mensions.
Experiment 1: The aim of our first experiment is to

measure the accuracy of Ostia in terms of classical precision
(i.e., % of relevant predicted semantic tags) and recall (i.e.,
% of relevant predicted term with respect to those in the
ground truth) metrics. The workload consisted of 50 ran-
domly chosen images to be annotated. Each of such images
was also assigned a set of semantic tags (3, on the average)
by a set of volunteers so as to obtain a ground truth to
evaluate the effectiveness of Ostia. The experiment was per-
formed in the worst-case scenario, where each image Ii ∈ DB
has no semantic tag at all, i.e., STi = ∅.
Figure 6 shows a visual result of Ostia for the picture Q912

with associated keywords K912 = {photo, shangai}. As we
can observe, the predicted semantic tags (pointed by arrows
in the figure), are all relevant for the image. Note that none
of them contains keywords in K912.
Figure 7 shows the annotation accuracy of Ostia in terms

of precision and recall when varying the number of predicted
semantic tags m for the dataset of 10,000 and 100,000 im-
ages. It can be observed that Ostia reaches higher levels of
precision for the larger dataset: This is expected because,
with more images in the database, it is easier to find im-
ages that are similar to the query from both the points of
view of low-level features and keywords. The precision of

6The smaller dataset was obtained by sampling 10,000 im-
ages from the larger one.
7Swoogle: http://swoogle.umbc.edu/

Figure 6: A visual example of Ostia in action.
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Figure 7: Annotation precision (a) and recall (b) vs.
no. of predicted semantic tags.

Ostia is high for low values of m (about 85% when m = 1)
and is maintained even for higher m values, by guarantee-
ing, at the same time, a good level of recall (around 70% for
m ∈ [6, 12]).

Experiment 2: In this second experiment, our goal is
to compare KWS and Ostia-KWS in terms of retrieval pre-
cision. The experiment was performed after automatically
annotating only 100 images with m = 3 semantic tags per
image. Results are averaged over 10 keyword queries, each
with either 1 or 2 keywords.
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As Figure 8 makes it evident, the precision of Ostia-KWS
is consistently higher than that obtainable from KWS. This
behavior is essentially due to the good quality of Ostia anno-
tations (see Figure 7), which increases the probability that
an image annotated with one of the semantic tags obtained
from Ostia-KWS is also relevant to the keyword query.

5. RELATED WORK
The annotation process can be completely manual (this is

the case for social Web services like Yahoo’s Flickr) or take
the advantage from some background knowledge, including
the file name, the title, and the surrounding text. Systems
that fit this scenario include the image search extensions of
Google and Yahoo, which take into account the Web context



of images to infer their relevance. On the other hand, ap-
proaches to automatic image annotation are typically based
on machine learning techniques, that are used to train a
set of concept classifiers [13, 7]. The limit of this approach
is that it requires a new classifier to be built from scratch
whenever a new class/concept is needed. On the other hand,
Ostia does not require a learning phase, thus concepts can be
freely added. Among solutions which uses both visual fea-
tures and text annotations without pre-defined classes, [11]
exploits the query visual features and its geotags to derive a
set of similar images in the database from which, by means
of a frequency-based procedure, geographically relevant tags
are predicted. A similar approach is followed in [1], even if
not restricted to the geographical case. [7] adds the use of
Wordnet to prune uncorrelated tags. However, all these ap-
proaches predict free tags only, rather than concepts in a
taxonomy as Ostia does.
Image annotations aims to enable keyword-based search

techniques to be applied to image collections. In this con-
text, traditionally an image constitutes one unit of informa-
tion and is considered a result of a query if it contains a
subset of the query’s keywords (this is the case for Yahoo’s
Flickr and the image search extensions of Google and Ya-
hoo). Recently, keyword search over structured and semi-
structured data has been extensively investigated, since it
allows data to be retrieved in a simple way and without the
knowledge of the data schema and complex structured lan-
guages, such as SQL [6, 14]. The research results include
retrieval and ranking approaches [17, 21], which exploit the
structure of the data in order to provide relevant objects,
and the interpretation of input keywords in order to deal
with the ambiguity problem of keyword search [9, 19, 8].
With respect to image retrieval systems in literature, which
are based on free tags, our approach maintains the advan-
tage offered by the query paradigm of keyword search and
tackles the keywords disambiguation problem by means of
the notion of semantic tags.

6. CONCLUSIONS
In this paper we introduced a novel approach for keyword

search on image collections based on multi-dimensional se-
mantic tags. The core of the approach is the Ostia algorithm
that takes the advantages of both visual features and key-
words in order to predict for an image a high-quality set
of concepts, here called semantic tags, taken from “light-
weight” ontologies. Ostia can work in a focused way, i.e.,
predicting semantics tags only for a subset of user-specified
dimensions. Further, it can work in an incremental way, i.e.,
by predicting semantic tags for an image with semantic tags
(e.g., because a new dimension has been added). Unlike
traditional keyword search, the Ostia-KWS algorithm first
predicts the top-m semantic tags for the input keywords
and then derives from such semantic tags the most relevant
images. Preliminary results on real data demonstrate that
our approach can be highly effective.
Future work will deal with the problem of exploiting the

hierarchical nature of dimensions and of Wordnet concepts
to improve the search of correct synonyms for a given key-
word, and of reasoning on the correlation of predicted se-
mantic tags. Further, we plan to investigate alternative
ranking schemas and to study the correlation between the
number of keywords in a query and that of semantic tags
to predict for them. Finally, since semantic tags naturally

lead to a hierarchical clustering of query results, we intend
to inspect effective alternatives for the presentation of the
results [12, 21].
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