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Abstract. Recent technological advancements have created unprecedented 

opportunities for location-based advertising. In this work, we investigate algorithms 

for location-based sponsored search, assuming a grid structure, where the number of 

queries per cell is known in advance. Advertisers have different valuations for 

different cells, and, optionally, daily budget constraints. When no budget constraints 

exist, we first show how auctions in conventional sponsored search can be properly 

modified to incorporate location information, and then we discuss the possible use of 

combinatorial auctions. In the case where budget constraints are present, we 

distinguish between two cases: advertisers may be indifferent to the price per click, 

or they may not be willing to pay more than their valuation. For the first case, we 

utilize a novel probabilistic framework that is inspired by recent progress in resource 

allocation markets. Under strong competition, a Nash equilibrium always exists.  

The second case is harder, as the utility functions have a complex form: we show 

however that a Nash equilibrium exists under certain conditions. In the general case, 

we can bound a player’s most profitable deviation using concave relaxations of the 

utilities. 

Keywords: Location-based advertising, Sponsored search, Game theory. 
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1. INTRODUCTION 

The adoption by millions of users of powerful mobile devices with GPS functionality and the 

development in metropolitan areas of fast wireless 3G/4G networks have recently created 

unprecedented opportunities for location-based advertising [Dhar and Varshney 2011, Bruner 

and Kumar 2007]. Advertisers can utilize users’ positional information to send advertising 

material to relevant consumers, which has in turn created an exciting market for a number of 

companies such as Google AdMob Ads and Millennial Media. 

Location-based advertising, especially in its mobile form, is poised for tremendous growth 

because of its special characteristics [Banerjee and Dholakia 2008]. First, it enables 

personalization: a mobile device is associated with the identity of the user so the advertising 

material can be individually tailored. For example, users can state their preferences, or even 

specify the kind of advertising messages they are interested in. Second, it is context-aware, e.g., 

the advertising messages can take into account the time and location. Third, mobile devices are 

portable and allow instant access: users carry their device most of the time, and advertisers can 

target interesting consumers any time of the day. Finally, mobile advertising can be interactive 

since it is possible to engage the user in discussions with the advertiser; this can also serve as a 

means of market research. As a result of the aforementioned reasons, marketers can reach their 

audience of interest in a much more targeted, personal and interactive manner, and thus 

increase their advertising campaign’s success. 

On the other hand, currently the most profitable and thriving business model for online 

advertising is sponsored search advertising; Google’s total revenue alone in fiscal year 2012 was 

over $50 billion mainly due to advertising1. Sponsored search consists of three parties [Jansen 

and Mullen 2008]: (i) users pose keyword queries with the goal of receiving relevant material; (ii) 

advertisers aim at promoting their product or service through a properly designed ad, and target 

relevant users by declaring to the search engine a set of keywords that capture their interest; (iii) 

the search engine mediates between users and advertisers, and facilitates their interaction. As 

several advertisers may match a given user query, an auction is run by the search engine every 

time a user poses a query to determine the winners as well as the price per click. Concretely, each 

advertiser declares to the engine a priori its bid for a given keyword, so the auction assigns ad 

slots to advertisers based on their bids. 

In this work, we investigate location-based sponsored search advertising, assuming a grid 

structure, where the number of queries per cell is estimated based on query logs. To incorporate 

the location component, we consider that advertisers have different valuations for different cells. 

Similar to [Feldman and Muthukrishnan 2008], we distinguish between 3 cases depending on the 

advertisers’ constraints: (1) bids-case: advertisers declare a maximum amount of money that they 

are willing to pay per click (bid), but are not bounded by budget constraints, (2) budgets-case-

case: the advertisers have a maximum daily budget, but are indifferent to the price per click, and 

(3) bids-and-budgets-case: the advertisers have both a maximum daily budget and a maximum 

bid. We investigate the Nash equilibria in all cases, using game theoretical tools. Concretely, the 

main contributions of the paper can be summarized as follows:  

— In the bids-case, we first show how the generalized second-price (GSP) auction [Edelman et al. 

2007; Varian 2007] can be properly modified into a location-based GSP procedure (LB-GSP) to 

incorporate location information. To ensure the search engine revenue is never compromised, 

we introduce a combinatorial location-based format (LB-COMB-GSP) based on the 

combinatorial GSP auction [Ghosh et al. 2007], which groups grid cells into bundles and then 

sells the bundles. 

— In the budgets-case, we introduce a novel probabilistic framework inspired by resource 

allocation markets [Feldman et al. 2009]: the number of ads allocated to an advertiser is 

proportional to its budget. A Nash equilibrium always exists as long as there are at least two 

advertisers (or zero) interested in a cell. 

— In the bids-and-budgets-case, we use a price-setting mechanism based on [Feldman and 

Muthukrishnan 2008] to determine the price in each cell. We prove the existence of Nash 

equilibria for sufficiently small or large budgets. Although we do not have results for the 

                                                           
1 See http://investor.google.com/financial/2012/tables.html. 

http://investor.google.com/financial/2012/tables.html
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general case, we bound a player’s most profitable deviation by considering concave relaxations 

of the utility functions, where it is easier to prove that a Nash equilibrium exists [Rosen 1965]. 

The rest of the paper is organized as follows. Section 2 surveys related work in sponsored 

search advertising. Section 3 provides a general model for location-based sponsored search. 

Sections 4-6 investigate the bids-case, budgets-case, and bids-and-budgets-case-case, 

respectively. Finally, Section 8 concludes the paper. 

2. RELATED WORK 

In sponsored search [Jansen and Mullen 2008], advertisers target relevant users by declaring to 

the search engine a list of keywords of interest. For each keyword, they additionally specify their 

cost per click (or bid) which is the maximum amount of money they are willing to spend to appear 

on the results page for a given keyword. Every time a user enters a query, a small number of 

paid (or, sponsored) links appears on top or to the right side of the organic search results. In 

order to determine the winning advertisers and the price they need to pay, an auction occurs in 

an automated fashion. In practice, large search engines also use a quality score (QS) for every 

advertiser to better rank them, but for simplicity we omit such measures here. 

We focus on a single keyword and assume that there are 𝐾 slots to be allocated among 𝑁 = 𝐾 

advertisers2. Slot 𝑗 has a click through rate  𝑐𝑗 ≥ 0, which denotes the probability that an ad 

placed in that slot is clicked. There is ample evidence in the literature that higher slots are 

associated with higher revenues. In practice, whether a user clicks on an ad or not depends on 

numerous factors, including the other ads [Kempe and Mahdian 2008; Ashkan and Clarke 2015], 

but we do not deal with ad externalities. Advertiser 𝑖 has a valuation 𝑣𝑖 per click, i.e., the 

expected amount of money it receives per click on the ad. Since 𝑐𝑗 clicks per time unit correspond 

to slot 𝑗, the total valuation of 𝑖 for slot 𝑗 is equal to 𝑤𝑖𝑗 =  𝑐𝑗 ∙ 𝑣𝑖. The sponsored search problem 

can be represented as a bipartite graph connecting the set of advertisers and the set of slots 

through edges with weight 𝑤𝑖𝑗. The objective is then to determine an assignment of advertisers to 

slots, i.e., a bijection from the set of advertisers to the set of slots, which maximizes the sum of 

valuations of all advertisers, i.e., the social welfare. Essentially, sponsored search is reduced to 

the assignment problem [Shapley and Shubik 1971]. Note that the bipartite model can also 

incorporate information asymmetries between advertisers and slots (see, e.g., [Dughmi et al. 

2014]). 

It is possible to extend this to decentralized environments by viewing our original assignment 

problem as a two-sided market problem and introducing a proper price 𝑝𝑗 ≥ 0 for each slot 𝑗. 

Given a set of prices, we assume that bidders have quasi-linear utilities. Thus, if advertiser 𝑖 
obtains slot 𝑗, its net utility (also called payoff) per click is 𝑣𝑖 − 𝑝𝑗, and its net utility per time unit 

is  𝑐𝑗 ∙ (𝑣𝑖 − 𝑝𝑗). Obviously, advertisers prefer the slots for which their utility is maximized. For 

any set of valuations, it is always possible to generate a proper set of prices so that each 

advertiser obtains (one of) its most preferred slots and no contention occurs [Shapley and Shubik 

1971]. These prices are called market-clearing; progressive auction mechanisms can determine 

them efficiently [Demange et al. 1986]. Interestingly, for any set of market-clearing prices, the 

induced assignment is socially optimal, i.e., it has the maximum total valuation of any 

assignment of advertisers to slots. 

As the advertiser valuations are private to them, the search engine relies on sponsored search 

auctions3 where advertisers declare their bids. The result of such an auction is an assignment 

rule that assigns advertisers to slots, and a payment rule that determines the price per click. One 

desirable property of any auction format is to incentivize advertisers to report their valuations 

truthfully. This means that no advertiser has an incentive to provide a bid that is different from 

its true valuation. Auctions that satisfy this property are called truthful or incentive-compatible. 

Furthermore, any auction has to be individually rational for all bidders, i.e., a bidder with value 

0 per click does not pay anything. 

                                                           
2 If the advertiser set has larger size, then we can add fictitious slots for which no advertiser is interested. If 

the slot set has larger size, then we add fictitious advertisers that are not interested in any slot. 
3 A comprehensive review of sponsored search auctions is provided in [Qin et al. 2015]. 
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A central question in the theory of auctions [Milgrom 2004; Krishna 2002; Easley and 

Kleinberg 2010] and mechanism design [Jackson 2003] is whether an auction format exists that 

(1) maximizes social welfare, (2) is truthful and (3) is individually rational. The Vickrey-Clarke-

Groves (VCG) auction [Vickrey 1961; Clarke 1971; Groves 1973] achieves these goals by assigning 

the highest slot to the advertiser with the highest bid, the second highest to the advertiser with 

the second highest bid, and so on. Regarding the payment rule, each advertiser pays the 

minimum amount equal to the externalities that it imposes on the others, i.e., the decreases in the 

valuations of other bidders because of its presence. The VCG auction is the unique mechanism 

that satisfies all three properties [Green and Laffont 1977]. Moreover, VCG prices form the 

unique set of market-clearing prices of minimum total sum in the corresponding market [Leonard 

1982; Demange 1983]. 

Currently, large commercial engines employ the generalized second-price auction (GSP) 

[Edelman et al. 2007; Varian 2007], which charges an advertiser the minimum amount required 

to maintain their ad’s position in the sponsored results. For instance, suppose that advertiser 

with rank 𝑖 bids 𝑏𝑖. In GSP, the price per click for advertiser 𝑖 is determined by the bid  𝑏𝑖+1 of 

advertiser with rank 𝑖 + 1, which is the minimum that the advertiser with rank 𝑖 would have to 

bid to maintain its rank. Note that in this pricing scheme, a bidder’s payment does not take into 

consideration its own bid. Despite its prevalence as the standard auction format, GSP is not 

truthful: advertisers have in general no incentive to declare their true valuations to the search 

engine [Edelman et al. 2007]. A notable exception is 𝐾 = 1; when only one slot is available, GSP 

is rendered into the truthful second-price auction, where the unique winner pays the second-

highest bid [Vickrey 1961].  Finally, note that  

The above discussion assumes that advertisers are willing to pay any price, provided that it is 

individually rational to do so. This corresponds to the case where they are not characterized by 

budget constraints. In practice, however, it is possible that advertisers are bounded by finite 

budgets (e.g., they are willing to pay up to a certain amount per time unit). We discuss this case 

later on.  

3. MODEL 

Assume N advertisers and K slots 1, …, K, where 1 is the top slot, 2 the second, and so on. There 

is ample evidence in the literature that higher slots are associated with higher revenues. We 

model this by associating each slot l with its click through rate 𝑐𝑙, 0≤𝑐𝑙≤1, which denotes the 

probability that an ad that is placed in that slot is clicked. Since higher slots are more valuable, 

we further assume that 𝑐𝑙>𝑐𝑙′ whenever l<l´. In fact, whether a user clicks on an ad or not 

depends on numerous factors including the other ads (ad externalities), but for the sake of 

simplicity we exclude them here; i.e., an ad located at slot l is clicked with probability 𝑐𝑙 

independent of the rest of the slots [Kempe and Mahdian 2008]. To keep the model simple, we 

also do not consider quality scores for advertisers. 

We assume that the space is partitioned with a grid of L cells. Advertisers value users 

according to their location in the grid. For instance, a typical advertiser would have high 

valuations for cells nearby and lower valuations for more distant cells. We denote with 𝑤𝑖,𝑗 the 

valuation of advertiser i per click inside cell j. Estimating the valuation is a difficult 

marketing/operational research problem, beyond the scope of our work. Advertiser i has 

maximum bids 𝑏𝑖,𝑗 for every cell j, which may or may not coincide with the true valuations 𝑤𝑖,𝑗 

(this is related to the truthfulness discussed in Section 2), and may be bounded by a maximum 

daily budget Bi. Advertisers are only aware of their own budget and valuations, which they 

declare to the search engine. We also assume that advertisers have additive utilities: their total 

utility over all cells is the sum of their utilities in each cell. We consider that advertisers are 

interested in exactly the same (unique) keyword; keyword interactions is an interesting research 

topic in its own right, and can be explored in future work. Finally, we assume an offline setting, 

where the expected number  𝑀𝑗 of queries per day in cell j is estimated based on statistics. The 

total expected number of queries per day in all cells is 𝑀 = ∑ 𝑀𝑗
𝐿
𝑗=1 . 

Note that the valuation of an advertiser for a given cell is fixed for all points inside the cell. 

The grid granularity involves an inherent trade-off between valuation expressivity and search 

engine revenue. On the one hand, small cells allow advertisers to better capture their areas of 
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interest, as opposed to coarse grid granularities that would force an advertiser to declare interest 

for the entire cell even if they were interested in just a small part. However, small cells may take 

a toll on the search engine’s revenue because the expected number of advertisers expressing 

interest in a given cell decreases as the grid granularity becomes finer. Determining the proper 

grid resolution can thus be a critical factor of success for location-based sponsored search. In 

Section 4.2, we discuss how combinatorial auctions can mitigate this problem. 

In the next Sections, we investigate 3 cases depending on the advertisers’ constraints. In the 

bids-only case, each advertiser i has finite bids 𝑏𝑖,𝑗 but is not bounded by a daily budget, i.e., 

𝐵𝑖=∞. In the budgets-only case, each advertiser i is bounded by a finite daily budget Bi but is 

indifferent to the price per click, i.e., 𝑏𝑖,𝑗=∞. Finally, in the bids-and-budgets case, each advertiser 

i has a finite daily budget 𝐵𝑖 and finite bids 𝑏𝑖,𝑗. Table I illustrates common symbols used 

throughout the paper. 

Finally, we define a few important terms. 

Definition 1. Let S be a subset of Rn. S is called convex if for any x, y ∈ S and any λ ∈ [0, 1], the 

point λx +(1 − λ)y is also in S. 

Definition 2. Let f: S→R be a function defined on a convex subset S of Rn. We call the function 

f concave (resp., convex), if for any x, y ∈ S and any λ ∈ [0, 1], we have that  f(λx +(1 − λ)y) ≥ λf(x) 

+ (1 − λ)f(y) (resp., f(λx +(1 − λ)y) ≤ λf(x) + (1 − λ)f(y)). 

Definition 3. Let f: S→R be a function defined on a convex subset S of Rn. We call the function 

f quasi-concave (resp., quasi-convex), if for any x, y ∈ S and any λ ∈ [0, 1], we have that  f(λx +(1 − 

λ)y) ≥ min{f(x), f(y)} (resp., f(λx +(1 − λ)y) ≤ max{f(x), f(y)}). A function that is both quasi-concave 

and quasi-convex is called quasi-linear. 

Definition 4. Let f: S→R be a function defined on a convex subset S of Rn. The upper concave 

envelope of 𝑓, denoted 𝑓̃, is defined as the smallest (point-wise) concave function such that 𝑓(x) ≥ 

𝑓(x) for every x ∈ S. 

 
TABLE I. FREQUENT SYMBOLS 

Symbol Meaning 

N, L, K Number of advertisers, grid cells, and ad slots 

𝐵𝑖 Total daily budget of advertiser i 

𝐵𝑖,𝑗 
Part of total budget Bi of advertiser i that is 

allocated into cell j 

𝑤𝑖,𝑗 Valuation per click of advertiser i for cell j 

𝑏𝑖,𝑗 
Maximum bid per click of advertiser i for cell j 

(can be the same or different from wi,j) 

𝑀𝑗 Expected number of queries per day for cell j 

M Total expected number of queries per day 

𝑐𝑙 
Probability an ad located at slot l will get 

clicked 

𝑈𝑖,𝑗 / 𝑈𝑖 
Total daily utility of advertiser i from cell j / 

from all cells 

𝐶𝑖 
Set of cells where advertiser i has the highest 

valuation per click 

𝑈̃𝑖,𝑗 Upper concave envelope of 𝑈𝑖,𝑗 

𝑈𝑖,𝑗
𝑟𝑒𝑙/𝑈𝑖

𝑟𝑒𝑙 Relaxation of 𝑈𝑖,𝑗 / 𝑈𝑖 

𝑝𝑗 Price per click in cell j (for case 3) 

𝑠𝑗 
Permutation of advertisers in cell j such that 

𝑤𝑠𝑗(𝑖),𝑗 is decreasing in i 

𝑤𝑗
(2)

 
Second-highest valuation per click in cell j (for 

case 3) 

𝑆𝑖,𝑗
𝑘  

 ∑ 𝐵𝑖,𝑗
𝑖−1
𝑖´=0 + ∑ 𝐵𝑖,𝑗

𝑘−1
𝑖´=𝑖+1  (for k=i, 𝑆𝑖,𝑗

𝑖 = ∑ 𝐵𝑖,𝑗
𝑖−1
𝑖´=0 ) (for 

case 3) 

4. BIDS-CASE 

Section 4.1 discusses the adaptation of conventional sponsored search to account for location 

information. Section 4.2 presents an alternative approach that builds upon the theory of 

combinatorial auctions. 
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4.1 Location-based GSP Auction 

In sponsored search advertising, whenever the search engine receives a query from a cell, it runs 

an auction where each advertiser bids an amount of money equal to its valuation per click for 

that particular cell. Assuming M queries per day, this would imply that a total of M auctions take 

place, one for every query, in order to determine the K winners that will fill the slots, as well as 

the prices per click that they have to pay. However, since the result of an auction is the same for 

a given cell, no matter how many queries are issued inside that cell, L auctions would suffice. 

Indeed, the actual number of queries per cell does not matter for the auction; cells with high 

workload will simply involve more auctions compared to cells with lower traffic. Any auction 

format, such as the GSP or the VCG (see Section 2), can be utilized. These two auctions have 

been extensively studied in the literature; as mentioned earlier truthfully reporting the bids 

constitutes a Nash equilibrium for the VCG auction, but is in general not an equilibrium for the 

GSP procedure. 

Given the prevalence of the GSP auction in the industry, we next focus on the GSP 

framework. First we discuss the complexity of deciding the winners and the price they need to 

pay. For a given cell, we need to determine the first K + 1 out of N advertisers with the highest 

bid, which costs O(N) for K ≪ N. Computing the prices for the K winners takes O(K) operations. 

Finally, since we need to repeat this process for al L cells, the total complexity can be bounded by 

O(L· (N + K)) = O(L·N), for small K. Regarding the metrics for the GSP auction, it is 

straightforward to generalize the metrics of Section 2 in the location-based framework. For 

instance, if advertiser i has the lth highest bid 𝑏𝑙
(𝑗)

 in cell j, 1≤l≤K, i will be allocated to slot l for a 

price 𝑏𝑙+1
(𝑗)

 per click, where 𝑏𝑙+1
(𝑗)

 is the (l+1)th highest bid in j (or 0 if i=K=N). Then, the expected 

payoff per query for advertiser i in cell j is 𝑐𝑙(𝑤𝑖,𝑗 − 𝑏𝑙+1
(𝑗)

), and its expected payoff per day for cell j is 

𝑀𝑗𝑐𝑙(𝑤𝑖,𝑗 − 𝑏𝑙+1
(𝑗)

). Since we assumed additive utilities, an advertiser’s total expected utility per day 

is the sum of the expected utilities per day per cell. 

4.2 Location-based Combinatorial GSP Auction 

The previous approach suffers from a significant drawback, demonstrated in Figure 1a. Consider 

4 advertisers 1, 2, 3, 4, and 4 cells c1, c2, c3, c4. The bids per click for the four advertisers are 

shown in a vector form: the first element corresponds to advertiser 1, the second to advertiser 2, 

etc. Assume there is only one slot per query for any cell, i.e., K=1, and only one query per cell. If 

the GSP protocol is employed, then advertiser 1 wins the slot for cell c1 and pays 0.1 per click (the 

second highest bid); advertiser 2 wins c2 and pays 0.2; advertiser 3 wins c3 and pays 0.2; and 

advertiser 4 wins c4 and pays 0.3 per click. The cumulative profit for the search engine will then 

be 0.1+0.2+0.2+0.3 = 0.8; this is significantly lower than the sum of the highest bids per cell, 

which is equal to 4. The reason for this discrepancy is that in every cell there is only one 

advertiser with high bid, while the rest of the advertisers bid low.  

(1,0.1,0,0) (0.2,1,0,0)

(0,0,1,0.2) (0,0,0.3,1)

c1

c3

c2

c4

Bundle A1

Bundle A2

 

 

(1,0.1) (0.3,0.5)

c1 c2

(1,0.5) (0.3,0.4)

c1 c2

Advertiser 

2

misreports

 
            (a) Motivation.  (b) GNS is non-truthful. 

Fig. 1. Combinatorial GSP auction. 

 

In general, it may well be the case that for some cells, there are only few advertisers with non-

negligible bids. In that case, the standard GSP procedure can seriously compromise the search 

engine’s revenue, since it may lead to low prices per click. To alleviate this problem, the search 

engine can instead utilize a combinatorial auction to allocate cell slots to advertisers. To 

illustrate the idea, consider first that there is only one slot per query, i.e., K=1. While standard 

auctions assign a query to the winning advertiser, a combinatorial auction assigns bundles of 
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cells and their associated queries to advertisers. A bundle is defined as a set of cells whose 

queries are sold together as a single unit. Due to the additive valuations, the valuation of any 

advertiser for a bundle is equal to the sum of its valuations for all queries in the bundle. 

For instance, imagine that the search engine creates two bundles A1 and A2; the former for 

cells c1 and c2, and the latter for cells c3 and c4. Since we assumed additive utilities, the valuation 

of advertiser 1 for A1 is 1.2 while the valuation of advertiser 2 is 1.1 (advertisers 3 and 4 have 0 

valuations for bundle A1); the GSP protocol will then assign A1 to advertiser 1 for a price of 1.1. 

Thus, the profit for the search engine for cells c1, c2 increases from 0.1+0.2=0.3 to 1.1. Similar 

arguments can be made for the bundle A2 of cells c3 and c4 that increases the search engine’s 

profit from 0.2+0.3 = 0.5 to 1.2 (with advertiser 3 the winner for A2). 

A search engine is naturally interested in an optimal bundling, i.e., a partitioning of the cell 

slots into bundles that maximizes its revenue. Interestingly, finding an optimal bundling is 

strongly NP-hard, which can be proved by reduction from the 3-partition problem [Ghosh et al. 

2007]. However, the same authors provide an approximate algorithm which yields revenue at 

least as high as half the optimal one. Algorithm 1 properly adjusts their algorithm, which we 

term LB-COMB-GSP. We assume temporarily that advertisers bid truthfully, i.e., 𝑏𝑖,𝑗 = 𝑤𝑖,𝑗; we 

discuss truthfulness later. 

ALGORITHM 1. Combinatorial Location-based Algorithm for Bundling Cell Queries 

Input: N advertisers and their valuations for L cells, number of queries Mj per cell j per day.  

Output: Bundles of cell queries.  

for each advertiser i do 

        𝑊𝑖 = ∑ 𝑤𝑖,𝑗𝑗∈𝐶𝑖
𝑀𝑗; 

end 

Renumber advertisers so that 𝑊1 ≥ ⋯ ≥ 𝑊𝑁; 

𝑟1 = ∑ 𝑤𝑗
(2)

𝑀𝑗𝑗∈𝐶1
+ ∑ 𝑊2𝑖+1

⌊𝑁 2⁄ ⌋
𝑖=1 ; 

𝑟2 = ∑ 𝑊2𝑖
⌊𝑁 2⁄ ⌋
𝑖=1 ; 

if 𝑟1 ≥ 𝑟2 then  

        ∀𝑐𝑒𝑙𝑙 𝑗 ∈ 𝐶1, sell its 𝑀𝑗 queries separately from other cells; 

        for i = 1 to ⌊𝑁 2⁄ ⌋ do 

                bundle together queries for cells in C2i and C2i+1; 

else 

        for i = 1 to ⌊𝑁 2⁄ ⌋ do 

                bundle together queries for cells in C2i-1 and C2i; 
 

LB-COMB-GSP views the combined 𝑀𝑗 queries in cell j rather than individual queries as an item 

to be sold. In particular, it first decomposes the space of cells into N subsets 𝐶1, … , 𝐶𝑁, where 𝐶𝑖 is 

the set of cells where advertiser i, 1≤i≤N, has the highest valuation per click. The highest total 

valuation 𝑊𝑖 for subset 𝐶𝑖 will then depend by definition on advertiser i’s valuations for cells in 𝐶𝑖, 

i.e., 𝑊𝑖 = ∑ 𝑤𝑖,𝑗𝑗∈𝐶𝑖
𝑀𝑗. Without loss of generality, we assume that 𝑊1 ≥ ⋯ ≥ 𝑊𝑁 . Next, the 

algorithm attempts to bundle consecutive subsets of the decomposition; these have either the 

form (C2i, C2i+1) or (C2i-1, C2i) (even-indexed or odd-indexed first, respectively). The reason why 

this operation is so important is that by bundling together (C2i, C2i+1) (or, (C2i-1, C2i)), the search 

engine can guarantee a minimal profit of W2i+1 (or, W2i). Indeed, when bundling (C2i, C2i+1) 

together, the highest advertiser has a valuation for that bundle of at least W2i (since advertiser 2i 

has a valuation of no less than W2i) and the second-highest advertiser a valuation of at least W2i+1 

(since advertiser 2i+1 has a valuation of no less than W2i+1); but then selling the bundle with the 

GSP pricing will result in a price of at least W2i+1. Similar reasoning can be applied to bundles of 

the form (C2i-1, C2i). One caveat concerns the subset C1, when the bundles are of the form (C2i, 

C2i+1). In that case, C1 is not bundled with any other subset, so its queries are sold separately 

according to the GSP format: a query in cell 𝑗 ∈ 𝐶1 will then be sold for 𝑤𝑗
(2)

, i.e., the second-

highest valuation per click for cell j. To decide on the bundling form, LB-COMB-GSP computes 

the quantities 𝑟1 = ∑ 𝑤𝑗
(2)

𝑀𝑗𝑗∈𝐶1
+ ∑ 𝑊2𝑖+1

⌊𝑁 2⁄ ⌋
𝑖=1  and 𝑟2 = ∑ 𝑊2𝑖

⌊𝑁 2⁄ ⌋
𝑖=1 . If the former is greater, it sells 

queries in C1 separately and creates bundles of the form (C2i, C2i+1); otherwise, it sells bundles of 

the form (C2i-1, C2i). Based on the aforementioned observation, this operation guarantees search 
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engine revenue of at least max{𝑟1, 𝑟2}. On the other hand, 𝑟1 + 𝑟2 is the highest possible revenue 

that the search engine can achieve (corresponding to the ideal case where the highest advertiser 

pays its full valuation). The optimal bundling can then guarantee revenue at least as high as 

𝑟1 + 𝑟2. Moreover, since max{𝑟1, 𝑟2} ≥
𝑟1+𝑟2

2
, this means that LB-COMB-GSP guarantees revenue 

that is at least as high as half the optimal one. The algorithm has a time complexity of O(L·N2), 

since it creates ⌊𝑁 2⁄ ⌋ bundles and the GSP auction in each bundle costs O(L·N) as we discussed 

above. 

The LB-COMB-GSP algorithm for one slot has two desirable properties. First, its revenue is 

at least half the optimal revenue, as we just showed; second, its efficiency is at least half the 

maximum efficiency. Furthermore, it can be easily generalized to multiple slots, provided the 

click-through rate decreases geometrically from higher to lower slots [Ghosh et al. 2007]. 

Unfortunately, even in the simple case of K=1, LB-COMB-GSP is not truthful, as we show in 

Figure 1b. In this example, there are 2 advertisers, 2 cells (c1, c2), and just 1 query per cell. 

Advertiser 1 has a valuation vector (1,0.1), while advertiser 2 has a valuation vector (0.3,0.5). If 

both advertisers bid truthfully, c1 and c2 are bundled, and advertiser 1 wins them for a price of 

0.1+0.5 = 0.6. But if advertiser 2 changes its bid to (0.5,0.4), the queries for c1 and c2 are sold 

separately: advertiser 1 wins the query for c1 for a price of 0.5, and advertiser 2 wins the query 

for c2 for a price of 0.3. Since advertiser 2 gets a higher payoff by misreporting, LB-COMB-GSP is 

not truthful, even for a single slot. This is in sharp contrast with GSP, which is truthful for the 

case K=1 (see Section 2). One may then wonder whether it is possible to design truthful 

combinatorial auctions with good approximation ratios on the efficiency. It turns out this is a 

hard question, well beyond the scope of this work. For the sake of completeness, we just mention 

that a polynomial in the number of advertisers and items algorithm exists when valuations are 

submodular (as our additive utilities) with approximation ratio 𝑂(√𝑚), where m the number of 

items [Dobzinski et al. 2005]. This is arguably a poor ratio. Moreover, it is impossible to do better 

in polynomial time under certain conditions [Dobzinski 2011]. 

5. BUDGETS-CASE 

Each advertiser i declares a maximum daily budget Bi, as well as its valuations per click 𝑤𝑖,𝑗 

for each cell j. As opposed to the bids-case, where 𝑏𝑖,𝑗 is the maximum amount that i is willing to 

pay per click, the payments per click are now bounded only by Bi, and the cell bids are only used 

to determine the relative importance of cells. For simplicity, we initially consider a single slot 

(K=1) with probability of being clicked c1=1, and deal with several slots later. Moreover, although 

an advertiser does not necessarily declare its true valuations, i.e., it may be that 𝑏𝑖,𝑗 ≠ 𝑤𝑖,𝑗, we 

will assume for simplicity of exposition that 𝑏𝑖,𝑗 = 𝑤𝑖,𝑗. At the end of the Section, we discuss 

truthfulness in more detail. Since budget constraints are now involved, it is convenient to assume 

a Fisher market rather than a quasi-linear model [Brainard and Scarf 2000]. In the latter, the 

price an advertiser pays is subtracted from the utility; in the former, money does not bear any 

intrinsic value and advertisers are willing to burn their entire budget. 

In the absence of budget constraints, our goal was to design auctions for selecting the winners 

and determining the price. Although it is possible to extend conventional GSP to deal with 

budget constraints, we propose a different framework, where no auction takes place. Instead our 

goal is to assign to every advertiser a probability that their ad will be displayed in any given cell, 

whenever a user in that cell issues a relevant query. 

5.1 A Proportional Framework 

Our proportional framework computes for each cell the probability that any advertiser will be 

chosen as a response to a user query. In conventional sponsored search with only one slot, the 

optimal solution to this problem displays an advertiser with a probability that is proportional to 

its budget [Feldman and Muthukrishnan 2008; Kelly 1997; Johari and Tsitsiklis 2004]. Thus, the 

advertiser with the highest budget has the highest probability of being displayed, which is equal 

to its budget divided over the sum of all budgets; and so on for the rest of the advertisers. This 

rule is called proportional sharing, and, intuitively, it guarantees fairness. 

In location-based sponsored search, on the other hand, advertisers declare a total daily budget 

for all cells, but do not specify how this budget should be allocated among the various cells. If an 



Location-based Sponsored Search Advertising 

9 

 

allocation were known for every advertiser, then we could simply apply the proportional sharing 

rule: in a given cell, an advertiser is advertised with a probability proportional to its budget for 

this specific cell. But then a natural question arises: how should every advertiser allocate its 

budget? 

To answer this question, we will resort to the proportional-share allocation market by [Feldman 

et al. 2009]. Concretely, assume a budget allocation for advertiser i such that it assigns 𝐵𝑖,𝑗≥0 to cell 

j and the sum of its allocations over all cells does not exceed 𝐵𝑖. We say i’s budget allocation 

𝑩𝒊 = (𝐵𝑖,1, … , 𝐵𝑖,𝐿) is valid if ∑ 𝐵𝑖,𝑗
𝐿
𝑗=1 = 𝐵𝑖 and 𝐵𝑖,𝑗 ≥ 0. The probability that i will be displayed in cell 

j is  
𝐵𝑖,𝑗

∑ 𝐵𝑘,𝑗𝑘
 (assuming ∑ 𝐵𝑘,𝑗𝑘 ≠ 0; when ∑ 𝐵𝑘,𝑗𝑘 = 0, the utility may be discontinuous, as we show 

later), where ∑ 𝐵𝑘,𝑗𝑘  is the sum of budgets that have been allocated to cell j by all advertisers. The 

utility for advertiser i in cell j is then 𝑈𝑖,𝑗= 𝑤𝑖,𝑗𝑀𝑗

𝐵𝑖,𝑗

∑ 𝐵𝑘,𝑗𝑘
 (assuming ∑ 𝐵𝑘,𝑗𝑘 ≠ 0), since it gets a 

value 𝑤𝑖,𝑗 for every query in j when displayed with a probability 
𝐵𝑖,𝑗

∑ 𝐵𝑘,𝑗𝑘
, and there are 𝑀𝑗 queries in 

total in cell j. We have assumed additive utilities, so i’s total utility 𝑈𝑖 is the sum of its utilities 𝑈𝑖,𝑗  

over all cells: 𝑈𝑖 = ∑ 𝑈𝑖,𝑗𝑗 = ∑ 𝑤𝑖,𝑗𝑀𝑗

𝐵𝑖,𝑗

∑ 𝐵𝑘,𝑗𝑘
𝑗  (again, assuming ∑ 𝐵𝑘,𝑗𝑘 ≠ 0, ∀𝑗). Note that the payoff of 

advertiser i is equal to its utility, because of the Fisher market model assumption (money bears no 

intrinsic value to the advertiser). Moreover, the utility functions 𝑈𝑖 and 𝑈𝑖,𝑗 are concave in 

advertiser i’s arguments. 

Regarding the form of the utility function, we observe that the utility of any advertiser i in any 

cell j only depends on the budget allocations in that particular cell c, 

i.e., 𝑈𝑖,𝑗 = 𝑈𝑖,𝑗(𝐵1,𝑗, … , 𝐵𝑖,𝑗 , … , 𝐵𝑁,𝑗) for any 1iN, 1jL. The total utility is then function of all 

budget allocations, i.e.,𝑈𝑖 = 𝑈𝑖(𝑩𝟏, … , 𝑩𝒊, … , 𝑩𝑵) for any 1iN. 

In order to obtain a proper budget allocation, we will utilize the notion of Nash equilibrium. 

The strategy space for advertiser i is the convex, bounded and closed set {(𝐵𝑖,1, … , 𝐵𝑖,𝐿) | 𝐵𝑖,𝑗 ≥ 0 

and ∑ 𝐵𝑖,𝑗
𝐿
𝑗=1 = 𝐵𝑖}, i.e., an L-simplex. A Nash equilibrium then corresponds to the stable state 

where no advertiser has an incentive to deviate from their strategy given that the other 

advertisers stick to their strategy as well. Stated equivalently, every advertiser plays a best 

response strategy to the rest of the advertisers. Formally, a set of valid strategies 𝑩𝟏
∗ , …,𝑩𝑵

∗  

(where Bi = (𝐵𝑖,1, … , 𝐵𝑖,𝐿)) form a Nash equilibrium if for any other valid strategy Bi, 1≤i≤N, we 

have: 

𝑈𝑖(𝑩𝟏
∗ , …, 𝑩𝒊

∗, …𝑩𝑵
∗ ,)≥𝑈𝑖(𝑩𝟏

∗ , …, 𝑩𝒊, …, 𝑩𝑵
∗ ). 

It turns out that the above game does not always accept a Nash equilibrium. To see why, 

consider two advertisers 1 and 2 with budgets B1, B2 > 0, and two cells c1 and c2 with expected 

number of queries per day M1, M2 > 0. Advertiser 1 is interested in both cells, whereas advertiser 2 

is only interested in c1. For player 2, the best strategy would obviously be to allocate its entire 

budget B2 to c1 to gain the maximum possible proportion of ads. For advertiser 1, on the other hand, 

the best strategy would be to allocate a tiny amount  > 0 to c2 (and win all advertising 

opportunities in 2) and spend the rest B1 –  on cell 1 (and maximize its share in cell 1 as well). 

Unfortunately, there is no optimal value for , since it must be (1) positive to ensure 1 gets all ads 

in c2, and (2) as small as possible so that advertiser 1 wins the largest possible share in c1. Such  

does not exist. 

The root of the non-existence of a Nash Equilibrium4 in the examples above lies in the 

discontinuity of the utility functions at point 0. It turns out, however, that a sufficient (but not 

necessary) condition for existence of a Nash equilibrium is the game to be strongly competitive 

[Feldman et al. 2009], i.e., for a given cell there are at least two advertisers with positive 

valuations. Moreover, the equilibrium has good efficiency properties. This condition is in general 

expected to hold in a big market with several participants, such as the market for sponsored 

search advertising. In the rare case that the condition does not hold, we can still guarantee a 

                                                           
4 More accurately, the non-existence of Nash equilibria in the examples is due to the fact that the utility 

functions are not upper semi-continuous at 0 [Kakutani 1941]. 
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Nash equilibrium by enforcing a minimum price per click that advertisers need to pay (reserve 

price) [Feldman et al. 2009] 5. 

The next issue concerns the computation of the Nash equilibrium. We first describe the 

optimization problem that an advertiser faces. Consider advertiser i with budget 𝑩𝒊 =
(𝐵𝑖,1, … , 𝐵𝑖,𝐿). Now, assume the other advertisers have their budgets fixed and equal to 𝑩−𝒊 =

(𝑩𝟏, … , 𝑩𝒊−𝟏, 𝑩𝒊+𝟏, … , 𝑩𝑵). To find an optimal 𝑩𝒊, advertiser i must solve the problem OPT: 

𝑂𝑃𝑇: max
𝑩𝒊

𝑈𝑖(𝑩𝒊; 𝑩−𝒊) 

𝑠. 𝑡. 𝐵𝑖,𝑗 ≥ 0∀𝑗 ∈ {1, … , 𝐿} 𝑎𝑛𝑑 ∑ 𝐵𝑖,𝑗

𝐿

𝑗=1
= 𝐵𝑖 . 

In the above 𝑈𝑖(𝑩𝒊; 𝑩−𝒊): 𝑹𝐿 → 𝑹 is a function of only 𝑩𝒊, considering 𝑩−𝒊 fixed; on the other 

hand 𝑈𝑖(𝑩𝒊, 𝑩−𝒊) ∶ 𝑹𝐿⋅𝑁 → 𝑹  denotes the function of all arguments (𝑩𝟏, … , 𝑩𝒊, … , 𝑩𝑵). Now assume 

that the game is strongly competitive so that a Nash equilibrium exists. We can then make the 

following observation. In cells j for which all advertisers have valuations equal to 0, all 

advertisers will have valuations 𝑈𝑖,𝑗 = 0 no matter what the budget allocations on these cells. 

This function is trivially continuously differentiable. On the other hand, consider a cell j where at 

least one advertiser has positive valuation. Then, at equilibrium the sum of budgets ∑ 𝐵𝑘,𝑗𝑘  on 

that cell must be strictly positive, i.e., ∑ 𝐵𝑘,𝑗𝑘 > 0. Otherwise, we can use similar reasoning as in 

the above example to show that an advertiser would have an incentive to allocate a tiny budget to 

j to win all ads, thus contradicting that is an equilibrium. But then the functions 𝑈𝑖,𝑗= 

𝑤𝑖,𝑗𝑀𝑗

𝐵𝑖,𝑗

∑ 𝐵𝑘,𝑗𝑘
, 1 ≤ 𝑖 ≤ 𝑁, are defined at equilibrium, and it is easy to see they are continuously 

differentiable. Moreover, at equilibrium  𝑈𝑖 = ∑ 𝑈𝑖,𝑗𝑗  is also continuously differentiable as the sum 

of continuously differentiable functions. Also, everywhere near the equilibrium  𝑈𝑖 will be 

continuously differentiable. 

So, consider in OPT that 𝑩−𝒊 = 𝑩−𝒊
∗ , i.e., players other than i play the Nash equilibrium 

allocations. Then by the definition of a Nash equilibrium 𝑩𝒊 = 𝑩𝒊
∗ will be a solution to OPT. Since 

(1) 𝑈𝑖 is continuously differentiable at (𝑩𝒊
∗, 𝑩−𝒊

∗ ) and (2) the constraints are affine functions, by the 

Karush-Kuhn-Tucker (KKT) conditions [Bertsekas 2009] there exist a real constant 𝜆 and non-

negative constants 𝜇𝑗 ≥ 0, 1 ≤ 𝑗 ≤ 𝐿, that satisfy the two conditions: 

𝜕𝑈𝑖(𝑩𝒊; 𝑩−𝒊
∗ )

𝜕𝐵𝑖,𝑗

|
𝑩𝒊=𝑩𝒊

∗

= 𝜆 − 𝜇𝑗   and   𝜇𝑗𝐵𝑖,𝑗 = 0, 1 ≤ 𝑗 ≤ 𝐿 

Consider all cells for which advertiser i has a non-zero allocation at equilibrium, i.e., 𝐵𝑖,𝑗
∗ > 0. 

Then, the second condition implies that 𝜇𝑗 = 0 for these cells and thus 
𝜕𝑈𝑖(𝑩𝒊;𝑩−𝒊

∗ )

𝜕𝐵𝑖,𝑗
|

𝑩𝒊=𝑩𝒊
∗

= 𝜆. The 

term 
𝜕𝑈𝑖(𝑩𝒊;𝑩−𝒊

∗ )

𝜕𝐵𝑖,𝑗
 corresponds to what we call the marginal utility of advertiser i for cell j. Thus, we 

just showed that at equilibrium the marginal utilities of advertiser i for all cells with 𝐵𝑖,𝑗
∗ > 0 are 

the same. Regarding cells with  𝐵𝑖,𝑗
∗ = 0, the second condition yields 𝜇𝑗 ≠ 0, and since 𝜇𝑗  is non-

negative it will be 𝜇𝑗 > 0 for these cells. Consequently, by the first condition, the marginal utility 

at these cells will be lower than 𝜆, i.e., the marginal utility at cells with positive budget 

allocation. 

In the original game with the discontinuous utilities it may occur that some advertiser 𝑖 has 

positive valuation for a context 𝑗 and ∑ 𝐵𝑘,𝑗𝑘 = 0. In that case, the marginal utility of 𝑖 for 𝑗 is 

infinite, since any allocation 𝜀 > 0 means that 𝑖 can win all ads in 𝑗. We call such contexts 

irregular, to distinguish them from contexts where marginal utilities are bounded. Unfortunately, 

irregular contexts complicate the update rules of our methods, which are largely based on the 

marginal utilities. Indeed, an infinite marginal utility implies that any “tiny” 𝜀 > 0 from a regular 

to an irregular context yields higher total utility.  

To tackle this issue, we introduce a continuous approximation of the original utilities based on 

the notion of perturbation. Specifically, assume a fictitious advertiser (the new number of 

                                                           
5 One potential challenge with reserve prices is that they may render our framework computationally 

intractable: an advertiser has the choice to either allocate zero, or the reserve price, or more than the 

reserve price in any cell, which may in turn lead to an exponential number of combinations. 
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advertisers becomes 𝑁 + 1) that allocates a very small and fixed amount 𝜀 > 0 in each context. We 

call the new game an 𝜀-perturbation of the original game. As shown in Figure 2b, the new game 

is everywhere continuous; indeed, there is now always a budget of at least 𝜀 in every context, so it 

is not possible for the denominator in the marginal utilities to be equal to 0, i.e., ∑ 𝐵𝑘,𝑗𝑘 > 0 for 

every context 𝑗. Moreover, any advertiser will always have bounded marginal utilities for all 

contexts. For 𝜀 = 0, the 𝜀-perturbation coincides with the original game. For 𝜀 > 0, the 𝜀-

perturbation accepts a pure Nash equilibrium by Rosen’s theorem [Rosen 1965]. As long as the 

game is strongly competitive, this equilibrium will tend to the equilibrium of the original game as 

𝜀 → 0 [Feldman et al. 2009]. 

An immediate question is how to compute the aforementioned equilibrium, which is 

guaranteed to exist in strongly competitive games. One approach would be to numerically solve 

the KKT conditions. However, this is a very cumbersome task, further complicated by the fact 

that the utility functions are not continuous at 0. For this reason, we use alternative approaches 

that implement various classes of distributed dynamics. The idea behind distributed dynamics is 

that if the current budget allocation is not in equilibrium, then at least one player gains by 

deviating. So, instead of trying to calculate the equilibrium numerically, we simulate the fact 

that in each iteration every player will update its individual budget allocation to increase its 

total utility [Feldman et al. 2009].  

5.2 Multiple Slots and Truthfulness 

We can generalize the above discussion in the case of several slots, by assuming for simplicity 

that a given advertiser may appear with non-zero probability in more than one slot (as opposed to 

the bids-case). This assumption is necessary for a straightforward and simple generalization. 

Indeed, the idea is that every advertiser allocates part of its budget into all slots in every cell. 

The utility that advertiser i extracts from being advertised at slot l in cell j is 𝑤𝑖,𝑗𝑐𝑙𝑀𝑗

𝐵𝑖,𝑗,𝑙

∑ 𝐵𝑘,𝑗,𝑙𝑘
, 

where Bi,j,l the amount of money that i allocates in slot l of cell j. Similar to before, we can assume 

additive utilities, so that the total utility of advertiser i the sum of its utilities over all slots and 

over all cells. Using the above techniques, we can then find budget allocations that constitute a 

Nash equilibrium. 

The above generalization has the problem that the assignment of slots to advertisers may not 

be a bijection anymore. Indeed, if advertiser 𝑖 is assigned more than 𝑀𝑗 slots in total for context 𝑗, 

then by the pigeonhole principle there will be a query (out of all 𝑀𝑗 queries of context 𝑗) where 𝑖 is 

assigned two slots. This, in turn, violates the general assumption of the sponsored search model 

that one advertiser is assigned to at most one slot for any given query.  If users click on ads 

independently and we ignore the ad externalities, then it should not make a difference whether 

an advertiser appears just once or several times on the ad list. In general, however, this may not 

be the case. 

One way to address this issue is to add a constraint that a user can never get allocated more 

than  𝑀𝑗 slots in total for context 𝑗. In slot 𝑙 of context 𝑗, advertiser 𝑖 appears 
𝐵𝑖,𝑗,𝑙

∑ 𝐵𝑘,𝑗,𝑙𝑘
𝑀𝑗 times; thus, 

in all slots it appears ∑
𝐵𝑖,𝑗,𝑙

∑ 𝐵𝑘,𝑗,𝑙𝑘

𝐾
𝑙=1 𝑀𝑗 times. Since we do not want this number to exceed 𝑀𝑗, we will 

have ∑
𝐵𝑖,𝑗,𝑙

∑ 𝐵𝑘,𝑗,𝑙𝑘

𝐾
𝑙=1 𝑀𝑗 ≤ 𝑀𝑗, or equivalently, ∑

𝐵𝑖,𝑗,𝑙

∑ 𝐵𝑘,𝑗,𝑙𝑘

𝐾
𝑙=1 ≤ 1. By adding one such constraint per user-

context pair (𝑖, 𝑗), we can make sure that the resulting solution will correspond to a bijection. 

Unfortunately, this constraint is not linear, which makes the problem significantly harder. This 

can be investigated in future work. 

Finally, with a proper example we can show that our proportional framework is not truthful, 

even for 1 slot (K=1). Assume 3 advertisers 1, 2, 3 with budgets B1=B2=B3=100, and 2 cells c1, c2 

with M1=M2=100. All advertisers have a valuation equal to 10 per click for both cells, with one 

exception: advertiser 1 has valuation 6 per click for c1. Observe that advertisers 2 and 3 are 

symmetric, so there must be an equilibrium where they have identical allocations and utilities. 

Now, if all advertisers declare their valuations truthfully, we can compute that in the Nash 

equilibrium advertiser 1 approximately allocates 71.2 in c1 and 28.8 in c2 for a total utility of 

1051.5. (In equilibrium, each of the other 2 advertisers approximately allocates 45.8 in c1 and 

54.2 in c2 for a total utility of 1343.2). If, however, 1 chooses to misreport its valuation for c2, and 
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pretend it has a 10 valuation for c2, then in the Nash equilibrium all advertisers’ bids and 

budgets are identical, so advertiser 1 allocates 50 in c1 and 50 in c2 for a total utility of 1066.7, 

which is better than reporting truthfully. (Each of the other 2 advertisers also allocates 50 in c1 

and 50 in c2 for a total utility of 1333.3). Note, however, that in order to manipulate the bids, an 

advertiser needs to have information that is private to the other players, such as their budget 

and bids. In practice this information is very hard to obtain, which may well be one of the reasons 

why GSP is also used so widely, even though in theory it is not truthful. 

6. BIDS-AND-BUDGETS-CASE 

In the bids-and-budgets-case, advertiser i declares a maximum daily budget Bi, but contrary to 

the budgets-case, i is now not willing to exceed a declared bid 𝑏𝑖,𝑗 per click in cell j. Similar to 

Section 5, we assume 𝑏𝑖,𝑗 = 𝑤𝑖,𝑗, and we discuss non-truthfulness later. We only deal with the case 

of a single slot, i.e., K=1 with c1=1, and we assume again that money bears no intrinsic value to 

the advertisers (Fisher market model). The case of several slots is more complex, and can be 

investigated in future work. 

6.1 The Price-Setting Mechanism 

Before dealing with the location-based setting, we first explore how conventional sponsored 

search addresses the case where both budgets and maximum bids per click are declared. In 

particular, we will attempt to highlight how this setting is inherently more complex than the 

budgets-case. We focus on cell j with 𝑀𝑗 queries per day and budget allocations in it 𝐵1,𝑗, … , 𝐵𝑁,𝑗. 

First, assume that every advertiser receives a share of the total ads proportional to its budget. 

Then, the price per click would be equal to 𝑝𝑗 = (𝐵1,𝑗 + ⋯ + 𝐵𝑁,𝑗)/ 𝑀𝑗. As long as this quantity is not 

greater than all valuations per click 𝑤1,𝑗 , … , 𝑤𝑁,𝑗, no problem occurs. But if an advertiser i exists 

with 𝑤𝑖,𝑗 < 𝑝𝑗, this advertiser would not be willing to pay as much as 𝑝𝑗 per click, so the 

proportional allocation framework of Section 5 cannot be directly applied. To alleviate this 

problem, we need to derive a price 𝑝𝑗
∗ such that all advertisers who can afford that price have 

sufficient budgets to purchase all the advertising opportunities. 

Algorithm 5 presents the price-setting mechanism [Feldman et al. 2008; Feldman and 

Muthukrishnan 2008] that determines that price 𝑝𝑗
∗ in cell j. It is essentially a price-descending 

mechanism: the price keeps falling until 𝑝𝑗
∗ is reached. Moreover, it is truthful. We state it w.l.o.g. 

in the simple case where the bids are decreasingly ordered, i.e., 𝑤1,𝑗 > 𝑤2,𝑗 > ⋯ > 𝑤𝑁,𝑗 > 0; in the 

general case, we can define for every cell a permutation 𝑠𝑗: {1, … , 𝑁} → {1, … , 𝑁} that reorders the 

bids in j in decreasing order, i.e., 𝑤𝑠𝑗(1),𝑗 > 𝑤𝑠𝑗(2),𝑗 > ⋯ > 𝑤𝑠𝑗(𝑁),𝑗 > 0. 

ALGORITHM 5. Price-Setting Mechanism in Cell j for One Slot. 

Input: N advertisers, their budget allocations in cell j and their valuations for cell j. Number of queries Mj 

in cell j per day. 

Output: Price per click.  

Assume w.l.o.g. that 𝑤1,𝑗 > 𝑤2,𝑗 > ⋯ > 𝑤𝑁,𝑗 > 0; 

𝑘∗ ← min𝑘  𝑤𝑘+1,𝑗 ≤
∑ 𝐵𝑖,𝑗

𝑘
𝑖=1

𝑀𝑗
; 

𝑝𝑗
∗ ← min {

∑ 𝐵𝑖,𝑗
𝑘∗

𝑖=1

𝑀𝑗
, 𝑤𝑘∗,𝑗}; 

for i = 1 to 𝑘∗ − 1 do 

        allocate 
𝐵𝑖,𝑗

𝑝𝑗
∗  ads to advertiser i; 

allocate 𝑀𝑗 − ∑ 𝐵𝑖,𝑗
𝑘∗

𝑖=1 /𝑝𝑗
∗ ads to advertiser i; 

for i > k do 

        allocate 0 ads to advertiser i; 
 

Recall that in the budgets-case, the price per query in cell j would be  𝑝𝑗 =
∑ 𝐵𝑖,𝑗

𝑁
𝑖=1

𝑀𝑗
. 

Obviously, 𝑝𝑗 is linear in its arguments 𝐵𝑖,𝑗 (1≤i≤N) and continuous. On the other hand, the price-

setting mechanism of Algorithm 5 yields prices that are clearly more complex. First, the price  𝑝𝑗 

for cell j is an argument of only the budget allocations for that cell 𝐵1,𝑗 , … , 𝐵𝑁,𝑗. However, it does 
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not have the simple linear form as in the case of only budgets. To demonstrate the price function, 

consider a setting with 2 advertisers 1 and 2 with maximum bids 𝑤1,𝑗 and 𝑤2,𝑗 (with 𝑤1,𝑗 > 𝑤2,𝑗), 

and cell j with 𝑀𝑗  queries per day. Figure 2 depicts how the price varies according to the 

budgets 𝐵1,𝑗 and 𝐵2,𝑗 that the advertisers allocate in cell j.  

 

B1,j

B2,j

Mjw2,j

Mjw2,j Mjw1,j

pj=w1,jpj=w2,j pj=B1,j/Mj

pj=(B1,j+B2,j)/Mj

0

IIIIIIIV

Subspace 1

(k*=1)

Subspace 2

(k*=2)

 

Fig. 2. Price pj in cell j in the case of 2 advertisers with w1,j>w2,j. 

 

In particular, if 𝐵1,𝑗 ≥ 𝑀𝑗𝑤2,𝑗, then k*=1 (Subspace 1) and the price is determined as the 

minimum of 𝐵1,𝑗/𝑀𝑗 and 𝑤1,𝑗. Concretely, when 𝐵1,𝑗 ≥ 𝑀𝑗𝑤1,𝑗 then the price is equal to 𝑤1,𝑗 (region 

I), and when 𝐵1,𝑗 < 𝑀𝑗𝑤1,𝑗, the price is equal to 𝐵1,𝑗/𝑀𝑗 (region II). On the other hand, when 𝐵1,𝑗 <

𝑀𝑗𝑤2,𝑗, then k*=2 (Subspace 2) and the price is the minimum of 𝑤2,𝑗 and (𝐵1,𝑗 + 𝐵2,𝑗)/𝑀𝑗; for 𝐵1,𝑗 +

𝐵2,𝑗 ≥ 𝑀𝑗𝑤2,𝑗 the price is 𝑤2,𝑗 (region III), while for 𝐵1,𝑗 + 𝐵2,𝑗 > 𝑀𝑗𝑤2,𝑗, the price is (𝐵1,𝑗 + 𝐵2,𝑗)/𝑀𝑗 

(region IV). Note that inside a region, the price can be either constant or linear. Moreover, the 

price function for the price-setting mechanism is bounded: it achieves a minimum value of 0 at 

the origin (0, 0), and it can never get larger than 𝑤1,𝑗. On the contrary, the price per click in the 

budgets-case 𝑝𝑗 = (𝐵1,𝑗 + ⋯ + 𝐵𝑁,𝑗)/ 𝑀𝑗 is unbounded: it can get arbitrarily large as the budgets 

that the advertisers allocate grow larger. 

The above example captures some important properties of the price. The price setting 

mechanism decomposes the budget space into N subspaces (one for each of the N possible k*), and 

then further divides that region into two regions: the price is constant inside one and linear in 

the other. In the example of Figure 2, subspace 1 for k*=1 comprises of regions I and II, while 

subspace 2 (for k*=2) comprises of regions III and IV.  

LEMMA 1. The price function 𝑝𝑗(𝐵1,𝑗 , … , 𝐵𝑁,𝑗) is continuous in (𝐵1,𝑗 , … , 𝐵𝑁,𝑗). 

PROOF. We assume w.l.o.g. that 𝑤1,𝑗 > 𝑤2,𝑗 > ⋯ > 𝑤𝑁,𝑗 > 0. For a region that corresponds to a 

given k*, the price function is given by the minimum of the two continuous functions 
∑ 𝐵𝑖,𝑗

𝑘∗

𝑖=1

𝑀𝑗
 

and 𝑤𝑘∗,𝑗, so it is continuous. So, any potential discontinuity would occur on the boundary as we 

move from k* to k*+1 (or from k* to k*−1). The N boundaries are given by the N equalities 𝑤𝑘+1,𝑗 =
∑ 𝐵𝑖,𝑗

𝑘
𝑖=1

𝑀𝑗
, k=1, …, N. Consider any boundary 𝑤𝑘+1.𝑗 =

∑ 𝐵𝑖,𝑗
𝑘
𝑖=1

𝑀𝑗
. On the boundary, we 

have 𝑝𝑘=min{
∑ 𝐵𝑖,𝑗

𝑘
𝑖=1

𝑀𝑗
, 𝑤𝑘,𝑗}. But 𝑤𝑘,𝑗 > 𝑤𝑘+1,𝑗 =

∑ 𝐵𝑖,𝑗
𝑘
𝑖=1

𝑀𝑗
, so 𝑝𝑘 =

∑ 𝐵𝑖,𝑗
𝑘
𝑖=1

𝑀𝑗
. Let’s now consider any point 

in the vicinity of the boundary (sufficiently close to the boundary). There are two cases, either 
∑ 𝐵𝑖,𝑗

𝑘
𝑖=1

𝑀𝑗
< 𝑤𝑘+1,𝑗, or 

∑ 𝐵𝑖,𝑗
𝑘
𝑖=1

𝑀𝑗
> 𝑤𝑘+1,𝑗. If 𝑤𝑘+1,𝑗 <

∑ 𝐵𝑖,𝑗
𝑘
𝑖=1

𝑀𝑗
, then these points belong to the same region 

as the boundary points and thus continuity is ensured from the discussion above. If 𝑤𝑘+1,𝑗 >
∑ 𝐵𝑖,𝑗

𝑘
𝑖=1

𝑀𝑗
, then it holds that 𝑤𝑘+2,𝑗 <

∑ 𝐵𝑖,𝑗
𝑘
𝑖=1

𝑀𝑗
, given that bids are in decreasing order and we consider 

sufficiently close points. But since𝐵𝑖,𝑗>0, this also implies that 𝑤𝑘+2,𝑗 <
∑ 𝐵𝑖,𝑗

𝑘+1
𝑖=1

𝑀𝑗
. Hence those points 
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will belong to the region defined by k*=k+1. The price for these points is min{
∑ 𝐵𝑖,𝑗

𝑘+1
𝑖=1

𝑀𝑗
, 𝑤𝑘+1,𝑗}. Now, 

as we approach any point in the boundary it will be that 
∑ 𝐵𝑖,𝑗

𝑘
𝑖=1

𝑀𝑗
→ 𝑤𝑘+1,𝑗, so min{

∑ 𝐵𝑖,𝑗
𝑘+1
𝑖=1

𝑀𝑗
, 𝑤𝑘+1,𝑗}→

𝑤𝑘+1,𝑗, since the function min{
∑ 𝐵𝑖,𝑗

𝑘+1
𝑖=1

𝑀𝑗
, 𝑤𝑘+1,𝑗} is continuous and Bk+1,j≥0. So, no matter how we 

approach the points in the boundary, the price will tend to k+1, which is the value at any point at 

the boundary so the price function is continuous at the boundary points as well.  

Next, we discuss the utilities. For a given allocation, denote 𝑧𝑖,𝑗 the number of ads (i.e., number 

of queries) that advertiser i gets in cell j. Then, its utility from cell j is 𝑤𝑖,𝑗𝑧𝑖,𝑗; its total utility from 

all cells simply is 𝑈𝑖 = ∑ 𝑤𝑖,𝑗𝑧𝑖,𝑗𝑗 . We can compute 𝑧𝑖,𝑗 directly from the price-setting mechanism, 

assuming that 𝑤1,𝑗 > 𝑤2,𝑗 > ⋯ > 𝑤𝑁,𝑗 > 0. If 𝑤2,𝑗 ≤ 𝐵1,𝑗/𝑀𝑗, then 𝑘𝑗
∗=1 and the price 𝑝𝑗

∗ is min{𝐵1,𝑗/

𝑀𝑗,𝑤1,𝑗}. On the other hand, if 𝑤2,𝑗 > 𝐵1,𝑗/𝑀𝑗 we continue by checking whether 𝑤3,𝑗 ≤ (𝐵1,𝑗 +

𝐵2,𝑗)/𝑀𝑗. If the latter is true, then 𝑘𝑗
∗=2 and the price 𝑝𝑗

∗ = min{(𝐵1,𝑗 + 𝐵2,𝑗)/𝑀𝑗, 𝑤2,𝑗}. If it is false, 

we proceed in exactly the same way, until we come up with the proper 𝑘𝑗
∗, and subsequently 

compute the price 𝑝𝑗
∗. 

How does the above utility function compare to the simpler utility function 𝑈𝑖,𝑗 = 𝑤𝑖,𝑗𝑀𝑗

𝐵𝑖,𝑗

∑ 𝐵𝑘,𝑗𝑘
 of 

the budgets-case? Clearly, the latter function is concave in 𝐵𝑖,𝑗, gets a minimum value of 0 

for 𝐵𝑖,𝑗=0, and asymptotically converges to 𝑤𝑖,𝑗𝑀𝑗 as 𝐵𝑖,𝑗 tends to infinity. In other words, the 

advertiser will get all ads in cell j as its budget gets infinitely large, given that the other 

advertisers’ budgets for this cell are fixed. But can we state something similar for the utility 

function in the more complex setting when both budgets and maximum bids per click are 

declared? We begin by showing the monotonicity of 𝑈𝑖,𝑗. 

LEMMA 2. 𝑈𝑖,𝑗(𝐵𝑖,𝑗) is monotonically increasing in 𝐵𝑖,𝑗. 

PROOF. Consider that the budget allocations for cell 𝑐𝑗 are fixed by all advertisers except for i. 

Let 𝑏1 > 𝑏2 ≥ 0. We will prove that 𝑈𝑖,𝑗(𝑏1) ≥ 𝑈𝑖,𝑗(𝑏2). We distinguish between the following cases: 

1. If 𝑈𝑖,𝑗(𝑏2)=0, then it follows immediately that 𝑈𝑖,𝑗(𝑏1) ≥ 𝑈𝑖,𝑗(𝑏2), since the utility is always non-

negative. 

2. If 𝑈𝑖,𝑗(𝑏2)>0, then it can be that a) k*=i, or b) k*>i. We examine both cases. 

—2(a). After i increases its bid to 𝑏1, k* will remain equal to i, since it must still hold 

that 𝑤𝑘∗+1,𝑗 ≤
∑ 𝐵𝑖′,𝑗

𝑘∗

𝑖′=1

𝑀𝑗
, and moreover all 𝐵𝑖,𝑗 for i´<i are unchanged, so k* cannot become 

smaller. But then the new price 𝑝∗ = min {
∑ 𝐵𝑖,𝑗

𝑘∗

𝑖=1

𝑀𝑗
, 𝑤𝑘∗,𝑗} will be at least as high as the previous 

price, so the number of queries that i wins 𝑀𝑗 −
∑ 𝐵𝑖,𝑗

𝑘∗−1
𝑖=1

𝑝∗  will be at least as high as what it got 

when its bid was lower. 

— 2(b). There are 2 cases about the new k* when bidder i increases its bid to b1: the new 𝑘̃∗ 

is (a) still greater than i, or (b) becomes equal to i. In case (a), the share of queries that i wins will 

be 
𝑏1

∑ 𝐵𝑖,𝑗
𝑘̃∗

𝑖′=1

≥
𝑏1

∑ 𝐵𝑖,𝑗
𝑘∗

𝑖′=1

. Moreover, because the function 
𝐵𝑖,𝑗

∑ 𝐵𝑖,𝑗
𝑘∗

𝑖′=1

 is monotonically increasing in 𝐵𝑖,𝑗, we 

will have that  
𝑏1

∑ 𝐵𝑖,𝑗
𝑘∗

𝑖′=1

>
𝑏2

∑ 𝐵𝑖,𝑗
𝑘∗

𝑖′=1

, so when bidding 𝑏1 >  𝑏2 user i will get a larger share of queries. 

In case (b), the new share of queries that i wins is 1−
∑ 𝐵𝑖′,𝑗

𝑖−1
𝑖′=1

min{∑ 𝐵𝑖′,𝑗
𝑖
𝑖′=1

,𝑏𝑖}
. If min {

∑ 𝐵𝑖′,𝑗
𝑖
𝑖′=1

𝑀𝑗
, 𝑤𝑖,𝑗} =

∑ 𝐵𝑖′,𝑗
𝑖
𝑖′=1

𝑀𝑗
, 

then the share of queries that i wins is 1−
∑ 𝐵𝑖′,𝑗

𝑖−1
𝑖′=1

∑ 𝐵𝑖′,𝑗
𝑖
𝑖′=1

 = 
𝐵𝑖,𝑗

∑ 𝐵𝑖′,𝑗
𝑖
𝑖′=1

>
𝐵𝑖,𝑗

∑ 𝐵𝑖′,𝑗
𝑘∗

𝑖′=1

. The last expression is 

monotonically increasing in 𝐵𝑖,𝑗, so the advertiser ends up with a higher share when bidding 

more. If min {
∑ 𝐵𝑖′,𝑗

𝑖
𝑖′=1

𝑀𝑗
, 𝑤𝑖,𝑗} = 𝑤𝑖,𝑗, 1−

∑ 𝐵𝑖′,𝑗
𝑖−1
𝑖′=1

min{∑ 𝐵𝑖′,𝑗
𝑖
𝑖′=1

,𝑤𝑖}
>1−

∑ 𝐵𝑖′,𝑗
𝑖−1
𝑖′=1

∑ 𝐵𝑖′,𝑗
𝑖
𝑖′=1

, so by using the same argument as 

above we conclude that i will win a higher percentage of queries.  
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As we show later, 𝑈𝑖,𝑗 is not concave in 𝐵𝑖,𝑗. But since it is monotonically increasing in 𝐵𝑖,𝑗, it 

must also be quasi-concave in 𝐵𝑖,𝑗. It turns out, however, that when 𝑈𝑖,𝑗 are quasi-concave, but not 

concave in 𝐵𝑖,𝑗, then their sum 𝑈𝑖 = ∑ 𝑈𝑖,𝑗
𝐿
𝑗=1  is not quasi-concave in (𝐵𝑖,1, … , 𝐵𝑖,𝐿) [Debreu and 

Koopmans 1982]. This is a worrisome result, in the sense that standard existence theorems for 

Nash equilibria usually assume concave or, at least, quasi-concave utility functions. For 

sufficiently small or large budgets, we can however prove that a Nash equilibrium exists. Note 

that for every cell j, 𝑠𝑗 denotes the permutation 𝑠𝑗: {1, … , 𝑁} → {1, … , 𝑁} that reorders the bids in 

cell j in decreasing order, i.e., 𝑤𝑠𝑗(1),𝑗 > 𝑤𝑠𝑗(2),𝑗 > ⋯ > 𝑤𝑠𝑗(𝑁),𝑗 > 0.  

PROPOSITION 1. Assume ∑ 𝐵𝑖
𝑁
𝑖=1 ≤ 𝑀𝑗𝑤𝑁,𝑗 for every cell j, and that there is strong competition. 

Then a Nash equilibrium exists, and coincides with the Nash equilibrium of the budgets-case. 

PROOF. Since 𝐵𝑖,𝑗 ≤ 𝐵𝑖  for any cell j, we have that ∑ 𝐵𝑖,𝑗
𝑁
𝑖=1 ≤ ∑ 𝐵𝑖

𝑁
𝑖=1 ≤ 𝑀𝑗𝑤𝑁,𝑗. Since 

∑ 𝐵𝑠𝑗(𝑖),𝑗
𝑁−1
𝑖=1 ≤ ∑ 𝐵𝑖,𝑗

𝑁
𝑖=1  (given that 𝐵𝑖,𝑗 non-negative), we then have 

∑ 𝐵𝑠𝑗(𝑖),𝑗
𝑁−1
𝑖=1

𝑀𝑗
≤ 𝑤𝑠𝑗(𝑁),𝑗. Similarly 

and using the definition of 𝑠𝑗, we can prove that 
∑ 𝐵𝑠𝑗(𝑖),𝑗

𝑖∗

𝑖=1

𝑀𝑗
≤ 𝑤𝑠𝑗(𝑖∗+1),𝑗 for any𝑖∗ ∈ {1, . . . , 𝑁 − 1}. But 

then in any cell it holds that k*=N, and the price 𝑝𝑗
∗ = min {

∑ 𝐵𝑖,𝑗
𝑁
𝑖=1

𝑀𝑗
, 𝑤𝑁,𝑗} =

∑ 𝐵𝑖,𝑗
𝑁
𝑖=1

𝑀𝑗
, since ∑ 𝐵𝑖,𝑗

𝑁
𝑖=1 ≤

𝑀𝑗𝑤𝑁,𝑗. So, the price setting mechanism will allocate to every advertiser a percentage of 

advertising opportunities proportional to the budget that they allocate in every cell. But this is 

identical to the proportional framework of Section 5, and it thus always admits a Nash 

equilibrium if there is strong competition.  

PROPOSITION 2. Assume 𝐵𝑖 ≥ ∑ 𝑀𝑗𝑤𝑗
(2)

𝑗∈𝐶𝑖
 for every advertiser i, and that there is strong 

competition. Then a set of Nash equilibria always exists. Moreover, the GSP auction of the bids-

case yields a Nash equilibrium. 

PROOF. For any advertiser i, consider the set of cells 𝐶𝑖 where i has the highest valuation per 

click among all advertisers, i.e., 𝐶𝑖 = {j|𝑤𝑖,𝑗=max1≤i´≤N{𝑤𝑖′,𝑗}} (for some advertisers this set may be 

empty). For advertiser i, we then define the following budget allocation strategy: allocate 0 to cell 

𝑗 if 𝑗 ∈ 𝐶𝑖, else allocate an amount of money equal to or greater than 𝑀𝑗𝑤𝑗
(2)

, where 𝑤𝑗
(2)

> 0 the 

second highest valuation per click in cell j (it is positive because of the strong competition 

assumption). This is always possible since 𝐵𝑖 ≥ ∑ 𝑀𝑗𝑤𝑗
(2)

𝑗∈𝐶𝑖
, for every advertiser i. We now show 

that the above sets of budget allocations correspond to Nash equilibria. Indeed, with the previous 

budget allocation every advertiser i wins all ads for the cells that belong to 𝐶𝑖. Obviously, i cannot 

gain a higher utility by changing its budget allocation for cells 𝑗 ∈ 𝐶𝑖. On the other hand, even if i 

allocates a positive budget in cells 𝑗 ∉ 𝐶𝑖, it will still gain 0 advertising opportunities, since the 

first advertiser has adequate budget and valuation to buy all ads in that cell. In the case where i 

allocates exactly 𝑀𝑗𝑤𝑗
(2)

 in cells 𝑗 ∈ 𝐶𝑖, then in the resulting Nash equilibrium in every cell the 

advertiser with the highest valuation per click pays a price per click equal to the valuation per 

click of the second highest advertiser, and wins all ads for that cell. But what we have just 

described is the GSP procedure. Stated equivalently, the GSP auction yields a Nash equilibrium. 
 

6.2 Relaxation of the Utility Function and Nash Equilibria 

We observed how the bids-and-budgets-case encompasses the simpler bids-case and budgets-

case for sufficiently small or large budgets, respectively. Since both bids-case and budgets-case 

are non-truthful, the bids-and-budgets-case is also not truthful in general. Furthermore, when 

only one advertiser has a positive valuation for a cell j, then using the same line of arguments as 

in Section 5 we can see that its utility function is discontinuous at 0, and the game accepts no 

Nash equilibrium. It is however possible to slightly modify the game in a way that makes the 

discontinuity at 0 disappear, similar to [Johari and Tsitsiklis 2004; Feldman et al. 2009]. In this 

direction, we will introduce a fictitious advertiser with i=0 with two properties. First, 0 allocates 

a fixed tiny budget 𝐵𝜀 > 0 in every cell, i.e., 𝐵0,𝑗 = 𝐵𝜀, for every cell j. Second, 0 has an arbitrarily 
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large valuation per click for every cell, i.e., 𝑤0,𝑗 = 𝑤𝑚𝑎𝑥 for every cell j. We call the perturbed game 

with the additional player 𝐺𝜀. The arbitrarily large valuation per click for every cell implies that 

advertiser 0 will have the highest valuation per click in every cell, and will thus be able to pay 

any price that the price mechanism sets. On the other hand, we set 𝐵𝜀  to be very small so that 

player 0 has a negligible impact. Essentially, the introduction of player 0 removes the 

discontinuity at point 0. From now on, we will only consider the new game 𝐺𝜀 instead of the 

original setting. 

In the general case, we cannot answer whether game 𝐺𝜀 always accepts a Nash equilibrium 

since each advertiser’s utility function is not quasi-concave. Nevertheless, we can find a budget 

allocation such that the maximum utility that an advertiser can gain by deviating is known. 

Since 𝑈𝑖 is a difficult function that we cannot directly deal with, we will instead consider a suitable 

relaxation 𝑈𝑖 of 𝑈𝑖 in 𝐺𝜀, where we can show that a Nash equilibrium always exists. In this 

direction, we will first construct for every advertiser i the upper-concave envelope of 𝑈𝑖,𝑗(𝐵𝑖,𝑗; 𝑩−𝒊,𝒋) 

considering that the budgets of the rest of the advertisers in cell j are fixed (𝑩−𝒊,𝒋 is the vector of 

budget allocations in cell j of all advertisers but i). Formally, we will be looking for the 

infimum 𝑈𝑖,𝑗 over all functions that are concave and are greater than or equal to 𝑈𝑖,𝑗 for any 𝐵𝑖,𝑗. 

But first, we describe in more detail the form of utility functions 𝑈𝑖,𝑗 in 𝐺𝜀. 

6.2.1. Form of utility function 𝑈𝑖,𝑗(𝐵𝑖,𝑗). We focus on advertiser i and cell j, 1≤i≤N and 1≤j≤L. (Our 

analysis takes into consideration the fictitious player 0, but recall that its budget allocation is 

fixed.) Assume the rest of the advertisers’ budgets for cell j are fixed and equal to 𝐵0,𝑗 =

𝐵𝜀 , 𝐵1,𝑗 , … , 𝐵𝑖−1,𝑗 , 𝐵𝑖+1,𝑗, … , 𝐵𝑁,𝑗. Also, w.l.o.g. assume that 𝑤1,𝑗 > 𝑤2,𝑗 > ⋯ > 𝑤𝑁,𝑗 > 0. We are 

interested in the first advertiser k* such that 𝑤𝑘∗+1,𝑗 ≤
∑ 𝐵𝑖,𝑗

𝑘∗

𝑖=0

𝑀𝑗
 as 𝐵𝑖,𝑗 varies; this corresponds to the 

advertiser of the price-setting mechanism (Algorithm 5).  

Let k*=k0 when 𝐵𝑖,𝑗 = 0. 

The case when k0<i. Independently of the budget of i, the price setting mechanism allocates no 

advertising opportunities to them, because advertisers 1, …, k0 have sufficient budget to buy all 

ads at a price that is higher than what i can afford; thus 𝑈𝑖,𝑗 ≡ 0 and, subsequently, 𝑈𝑖,𝑗 = 𝑈𝑖,𝑗 = 0, 

for all Bi,j≥0. 

The case when k0=i. The utility function 𝑈𝑖,𝑗 consists of a concave part, followed by a constant 

part. Indeed, the price starts increasing as 𝐵𝑖,𝑗 increases from 0 until it reaches a value 𝑤𝑖,𝑗 =

𝑤𝑘0,𝑗 for a budget 𝐵𝑖,𝑗that satisfies 𝑤𝑖,𝑗 =
∑ 𝐵𝑖´,𝑗

𝑖−1
𝑖´=0 +𝐵𝑖,𝑗

𝑀𝑗
. No matter how much advertiser i increases 

its budget thereafter this will have no effect on the ads it wins. The form of 𝑈𝑖,𝑗 is similar to 

region 𝑅𝑖 in Figure 3. Since 𝑈𝑖,𝑗 is already concave, its upper concave envelope trivially coincides 

with it, i.e., 𝑈𝑖,𝑗 = 𝑈𝑖,𝑗, for all Bi,j≥0. 

The case when k0>i. The utility function 𝑈𝑖,𝑗  has a complex form. Figures 3 and 4 depict two 

possible types of 𝑈𝑖,𝑗 that we use in our analysis. In particular, we can form the i−k0+1 regions 𝑅𝑘, 

i≤k≤k0, such that the first advertiser in region 𝑅𝑘 with the property that 𝑤𝑘+1,𝑗 ≤
∑ 𝐵𝑖,𝑗

𝑘
𝑖=0

𝑀𝑗
 is k. In 

particular, when 𝐵𝑖,𝑗=0 then k*=k0 and we obtain the leftmost region 𝑅𝑘0; as 𝐵𝑖,𝑗 grows larger k* 

eventually becomes i and remains so thereafter. Now, define 𝑆𝑖,𝑗
𝑘 = ∑ 𝐵𝑖´,𝑗

𝑖−1
𝑖´=0 + ∑ 𝐵𝑖´,𝑗

𝑘−1
𝑖´=𝑖+1  (for k=i 

this expression gives 𝑆𝑖,𝑗
𝑖 = ∑ 𝐵𝑖´,𝑗

𝑖−1
𝑖´=0 ). For i<k<k0, we can identify 3 points of interest for region 𝑅𝑘. 

Point P1 corresponds to the budget 𝐵𝑖,𝑗 = 𝐵1 = 𝑤𝑘+1,𝑗𝑀𝑗 − 𝑆𝑖,𝑗
𝑘 −𝐵𝑘,𝑗 (the value of 𝐵1 can be easily 

derived from the price-setting mechanism) where the k* of the price-setting mechanism changes 

from k+1 to k. Point P2 corresponds to the budget 𝐵𝑖,𝑗 = 𝐵2 = 𝑤𝑘,𝑗𝑀𝑗 − 𝑆𝑖,𝑗
𝑘 −𝐵𝑘,𝑗 where the price of 

the price-setting mechanism when k*=k, changes from 
∑ 𝐵𝑖,𝑗

𝑘∗

𝑖=1

𝑀𝑗
 to 𝑤𝑘∗,𝑗. Point P3 corresponds to the 

budget 𝐵𝑖,𝑗 = 𝐵3 = 𝑤𝑘,𝑗𝑀𝑗 − 𝑆𝑖,𝑗
𝑘  where the k* of the price-setting mechanism changes from k to k-1.  
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Fig. 3. Example 1 of 𝑈𝑖,𝑗 and 𝑈̃𝑖,𝑗  when k0>i. Fig. 4. Example 2 of 𝑈𝑖,𝑗 and 𝑈̃𝑖,𝑗  when k0>i. 

We will now describe regions 𝑅𝑘, for i≤k≤k0.  

The case when k=i. Region 𝑅𝑖 (rightmost region in Figures 3 and 4) consists of a concave part 

which corresponds to the utility 

function𝑈𝑖,𝑗(𝐵𝑖,𝑗) = 𝑤𝑖,𝑗𝑀𝑗

𝐵𝑖,𝑗

∑ 𝐵𝑖´,𝑗
𝑖
𝑖´=0

for𝐵𝑖,𝑗 ∈ [𝑤𝑖+1,𝑗𝑀𝑗 − ∑ 𝐵𝑖´,𝑗
𝑖−1
𝑖´=0 , 𝑤𝑖,𝑗𝑀𝑗 − ∑ 𝐵𝑖´,𝑗

𝑖−1
𝑖´=0 ], followed by a 

constant part for 𝐵𝑖,𝑗 ≥ 𝑤𝑖,𝑗𝑀𝑗 − ∑ 𝐵𝑖´,𝑗
𝑖−1
𝑖´=0  (the constant part corresponds to the maximum possible 

advertising opportunities that advertiser i may get).  

The case when i<k<k0. Region 𝑅𝑘, i<k≤k0, consists of the concave part 𝑤𝑖,𝑗𝑀𝑗

𝐵𝑖,𝑗

∑ 𝐵𝑖´,𝑗
𝑘
𝑖´=0

 for 𝐵𝑖,𝑗 ∈

[𝑤𝑘+1,𝑗𝑀𝑗 − 𝑆𝑖,𝑗
𝑘 −𝐵𝑘,𝑗 , 𝑤𝑘,𝑗𝑀𝑗 − 𝑆𝑖,𝑗

𝑘 −𝐵𝑘,𝑗], followed by the linear part 𝑤𝑖,𝑗

𝐵𝑖,𝑗

𝑤𝑘,𝑗
 for𝐵𝑖,𝑗 ∈ [𝑤𝑘,𝑗𝑀𝑗 −

𝑆𝑖,𝑗
𝑘 −𝐵𝑘,𝑗 , 𝑤𝑘,𝑗𝑀𝑗 − 𝑆𝑖,𝑗

𝑘 ]. 𝑈𝑖,𝑗  is differentiable everywhere except for the points where its form 

changes from concave to linear, or linear to concave (points P1, P2, and P3 in Figures 3 and 4). 

The case when k=k0>i. There are two possibilities for region 𝑅𝑘0. (1) It consists of the concave 

part of the concave part 𝑤𝑖,𝑗𝑀𝑗

𝐵𝑖,𝑗

∑ 𝐵𝑖´,𝑗
𝑘0
𝑖´=0

 for 𝐵𝑖,𝑗 ∈ [0, 𝑤𝑘0,𝑗𝑀𝑗 − 𝑆𝑖,𝑗
𝑘0

− 𝐵𝑘0,𝑗], followed by the linear part 

𝑤𝑖,𝑗

𝐵𝑖,𝑗

𝑤𝑘0,𝑗

 for𝐵𝑖,𝑗 ∈ [𝑤𝑘0,𝑗𝑀𝑗 − 𝑆𝑖,𝑗
𝑘0

− 𝐵𝑘0,𝑗 , 𝑤𝑘0,𝑗𝑀𝑗 − 𝑆𝑖,𝑗
𝑘0

], as in Figure 3. (2) It consists of only the 

linear part 𝑤𝑖,𝑗

𝐵𝑖,𝑗

𝑤𝑘0,𝑗

 for 𝐵𝑖,𝑗 ∈ [𝑤𝑘0,𝑗𝑀𝑗 − 𝑆𝑖,𝑗
𝑘0

− 𝐵𝑘0,𝑗, 𝑤𝑘0,𝑗𝑀𝑗 − 𝑆𝑖,𝑗
𝑘0

], as in Figure 4. 

6.2.2. Derivatives of utility function 𝑈𝑖,𝑗(𝐵𝑖,𝑗) when k
0
>i. 𝑈𝑖,𝑗  is differentiable everywhere except for the 

points where its form changes from concave to linear, linear to concave, and concave to constant 

(e.g., points P2, P1, P3, and P4 in Figures 3 and 4).  

In particular, for region 𝑅𝑖, i.e., when k=i, the derivative in (𝑤𝑖+1,𝑗𝑀𝑗 − ∑ 𝐵𝑖,𝑗
𝑖−1
𝑖´=0 , 𝑤𝑖,𝑗𝑀𝑗 −

∑ 𝐵𝑖,𝑗
𝑖−1
𝑖´=0  is 𝑤𝑖,𝑗𝑀𝑗

∑ 𝐵𝑖,𝑗
𝑖−1
𝑖´=0

(∑ 𝐵𝑖,𝑗
𝑖
𝑖´=0 )2

, while it is 0 for 𝐵𝑖,𝑗 ≥ 𝑤𝑖,𝑗𝑀𝑗 − ∑ 𝐵𝑖,𝑗
𝑖−1
𝑖´=0 . For region Rk, with i<k<k0, the 

derivative in (𝑤𝑘+1,𝑗𝑀𝑗 − 𝑆𝑖,𝑗
𝑘 −𝐵𝑘,𝑗 , 𝑤𝑘,𝑗𝑀𝑗 − 𝑆𝑖,𝑗

𝑘 −𝐵𝑘,𝑗) is 𝑤𝑖,𝑗𝑀𝑗

𝑆𝑖,𝑗
𝑘 +𝐵𝑘,𝑗

(𝑆𝑖,𝑗
𝑘 +𝐵𝑘,𝑗+𝐵𝑖,𝑗)2, while the derivative in 

(𝑤𝑘,𝑗𝑀𝑗 − 𝑆𝑖,𝑗
𝑘 −𝐵𝑘,𝑗 , 𝑤𝑘,𝑗𝑀𝑗 − 𝑆𝑖,𝑗

𝑘 ) is 
𝑤𝑖,𝑗

𝑤𝑘,𝑗
. Although 𝑈𝑖,𝑗 is not differentiable at the transition points, 

the left 𝜕−𝑈𝑖,𝑗 and right 𝜕+𝑈𝑖,𝑗 derivatives obviously exist. We now state the following two results. 

LEMMA 3. 𝜕−𝑈𝑖,𝑗(𝑤𝑘+1,𝑗𝑀𝑗 − 𝑆𝑖,𝑗
𝑘 − 𝐵𝑘,𝑗) > 𝜕+𝑈𝑖,𝑗(𝑤𝑘+1,𝑗𝑀𝑗 − 𝑆𝑖,𝑗

𝑘 − 𝐵𝑘,𝑗), for i≤k<k0. 

PROOF. From the discussion above, we can easily derive that 𝜕−𝑈𝑖,𝑗(𝑤𝑘+1,𝑗𝑀𝑗 − 𝑆𝑘,𝑗 −

𝐵𝑘,𝑗)=
𝑤𝑖,𝑗

𝑤𝑘+1,𝑗
and 𝜕+𝑈𝑖,𝑗(𝑤𝑘+1,𝑗𝑀𝑗 − 𝑆𝑖,𝑗

𝑘 − 𝐵𝑘,𝑗)=𝑤𝑖,𝑗𝑀𝑗

𝑆𝑖,𝑗
𝑘 +𝐵𝑘,𝑗

(𝑤𝑘+1,𝑗𝑀𝑗)2=𝑤𝑖,𝑗

𝑆𝑖,𝑗
𝑘 +𝐵𝑘,𝑗

𝑤𝑘+1,𝑗
2 𝑀𝑗

. So, we need to prove 

that 
𝑤𝑖,𝑗

𝑤𝑘+1,𝑗
> 𝑤𝑖,𝑗

𝑆𝑖,𝑗
𝑘 +𝐵𝑘,𝑗

𝑤𝑘+1,𝑗
2 𝑀𝑗

, or, equivalently,𝑤𝑘+1,𝑗𝑀𝑗 > 𝑆𝑖,𝑗
𝑘 + 𝐵𝑘,𝑗, which is true, since the point with 
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𝐵1 = 𝑤𝑘+1,𝑗𝑀𝑗 − 𝑆𝑖,𝑗
𝑘 − 𝐵𝑘,𝑗 (point P1 in Figures 3 and 4) satisfies B1>0. Note that it cannot 

be 𝑤𝑘+1,𝑗𝑀𝑗 = 𝑆𝑖,𝑗
𝑘 + 𝐵𝑘,𝑗 because we assumed that k<k0 so B1>0.  

LEMMA 4. 𝜕−𝑈𝑖,𝑗(𝑤𝑘,𝑗𝑀𝑗 − 𝑆𝑖,𝑗
𝑘 − 𝐵𝑘,𝑗) < 𝜕+𝑈𝑖,𝑗(𝑤𝑘,𝑗𝑀𝑗 − 𝑆𝑖,𝑗

𝑘 − 𝐵𝑘,𝑗), for i<k<k0. 

PROOF. We have that 𝜕−𝑈𝑖,𝑗(𝑤𝑘 , 𝑗𝑀𝑗 − 𝑆𝑖,𝑗
𝑘 − 𝐵𝑘,𝑗) = 𝑤𝑖,𝑗𝑀𝑗

𝑆𝑖,𝑗
𝑘 +𝐵𝑘.𝑗

(𝑤𝑘,𝑗𝑀𝑗)2 = 𝑤𝑖,𝑗

𝑆𝑖,𝑗
𝑘 +𝐵𝑘,𝑗

𝑤𝑘,𝑗
2 𝑀𝑗

, 

and𝜕+𝑈𝑖,𝑗(𝑤𝑘,𝑗𝑀𝑗 − 𝑆𝑖,𝑗
𝑘 − 𝐵𝑘,𝑗) =

𝑤𝑖,𝑗

𝑤𝑘,𝑗
. So, we need to prove that 𝑤𝑖,𝑗

𝑆𝑖,𝑗
𝑘 +𝐵𝑘,𝑗

𝑤𝑘,𝑗
2 𝑀𝑗

<
𝑤𝑖,𝑗

𝑤𝑘,𝑗
, or, equivalently, 

𝑤𝑘,𝑗 >
𝑆𝑖,𝑗

𝑘 +𝐵𝑘,𝑗

𝑀𝑗
. But in Lemma 3 we proved that 𝑤𝑘+1,𝑗 >

𝑆𝑖,𝑗
𝑘 +𝐵𝑘,𝑗

𝑀𝑗
. Since 𝑤𝑘,𝑗 > 𝑤𝑘+1,𝑗, the inequality 

we want to prove follows immediately.  

Lemma 3 implies that whenever we make a transition from the linear to the concave part 

(e.g., point P1 in Figures 3 and 4) the first derivative decreases, and concavity is maintained. In 

contrast, Lemma 4 suggests that when we move from the concave to the linear part (e.g., point P2 

in Figures 3 and 4), the first derivative increases, violating concavity. 

6.2.3. Constructing the upper-concave envelope 𝑈̃𝑖,𝑗 when k
0
>i. Based on the observation that the 

transition points are the reason why 𝑈𝑖,𝑗 is not concave, we now show how to construct the upper-

concave envelope 𝑈𝑖,𝑗. 

The case when i<k<k0. First, consider region 𝑅𝑘, i<k<k0. The idea is to draw a line 𝜀𝑡𝑎𝑛𝑔 from 

P3 to the point P to the right of P3 in the concave part of region 𝑅𝑘 so that the line 𝜀𝑡𝑎𝑛𝑔 is tangent 

to the curve 𝑤𝑖,𝑗𝑀𝑗

𝐵𝑖,𝑗

∑ 𝐵𝑖´,𝑗
𝑘
𝑖´=0

. Given on our previous discussion, the derivative at P 

is 𝑤𝑖,𝑗𝑀𝑗

𝑆𝑖,𝑗
𝑘 +𝐵𝑘,𝑗

(𝑆𝑖,𝑗
𝑘 +𝐵𝑘,𝑗+𝐵)2. On the other hand, the slope of 𝜀𝑡𝑎𝑛𝑔 is 

𝑈𝑖,𝑗(𝐵3)−𝑈𝑖,𝑗(𝐵)

𝐵3−𝐵
= 𝑤𝑖,𝑗

𝐵3
𝑤𝑘,𝑗

−𝑀𝑗
𝐵

𝑆𝑖,𝑗
𝑘 +𝐵𝑘,𝑗+𝐵

𝐵3−𝐵
. 

Thus, we are looking for a B such that 𝑤𝑖,𝑗𝑀𝑗

𝑆𝑖,𝑗
𝑘 +𝐵𝑘,𝑗

(𝑆𝑖,𝑗
𝑘 +𝐵𝑘,𝑗+𝐵)2 = 𝑤𝑖,𝑗

𝐵3
𝑤𝑘,𝑗

−𝑀𝑗
𝐵

𝑆𝑖,𝑗
𝑘 +𝐵𝑘,𝑗+𝐵

𝐵3−𝐵
. But 𝐵3 = 𝑤𝑘,𝑗𝑀𝑗 −

𝑆𝑖,𝑗
𝑘 , so, after some algebraic manipulations, the previous equation becomes: 

𝑆𝑖,𝑗
𝑘 𝐵2 − 2(𝑀𝑗𝑤𝑘,𝑗 − 𝑆𝑖,𝑗

𝑘 )(𝑆𝑖,𝑗
𝑘 + 𝐵𝑘,𝑗)𝐵 − (𝑀𝑗𝑤𝑘,𝑗 − 𝑆𝑖,𝑗

𝑘 )(𝑆𝑖,𝑗
𝑘 + 𝐵𝑘,𝑗)(𝑆𝑖,𝑗

𝑘 + 𝐵𝑘,𝑗 − 𝑀𝑗𝑤𝑘,𝑗) = 0 (∗) 

Equation (∗) is a quadratic equation, which accepts the two solutions:  

𝐵 =

(𝑀𝑗𝑤𝑘,𝑗 − 𝑆𝑖,𝑗
𝑘 )(𝑆𝑖,𝑗

𝑘 + 𝐵𝑘,𝑗) ± √(𝑀𝑗𝑤𝑘,𝑗 − 𝑆𝑖,𝑗
𝑘 )(𝑆𝑖,𝑗

𝑘 + 𝐵𝑘,𝑗)𝑆𝑖,𝑗
𝑘 𝑀𝑗𝑤𝑘,𝑗

𝑆𝑖,𝑗
𝑘 . 

First, note that 𝑤𝑘,𝑗𝑀𝑗 > 𝑆𝑖,𝑗
𝑘  (since B3>0), so the solutions are real numbers. Second, we keep 

the solution with the minus because it is lower than 𝐵2 = 𝑤𝑘,𝑗𝑀𝑗 − 𝑆𝑖,𝑗
𝑘 −𝐵𝑘,𝑗. Indeed, after 

performing some algebraic manipulations we get: 

 
(𝑀𝑗𝑤𝑘,𝑗−𝑆𝑖,𝑗

𝑘 )(𝑆𝑖,𝑗
𝑘 +𝐵𝑘,𝑗)−√(𝑀𝑗𝑤𝑘,𝑗−𝑆𝑖,𝑗

𝑘 )(𝑆𝑖,𝑗
𝑘 +𝐵𝑘,𝑗)𝑆𝑖,𝑗

𝑘 𝑀𝑗𝑤𝑘,𝑗

𝑆𝑖,𝑗
𝑘 < 𝑀𝑗𝑤𝑘,𝑗 − 𝑆𝑖,𝑗

𝑘 − 𝐵𝑘,𝑗. The last expression is 

equivalent to 𝑀𝑗𝑤𝑘,𝑗 > 𝑆𝑖,𝑗
𝑘 + 𝐵𝑘,𝑗, which is true. Note that the solution with the plus corresponds to 

the point to the left of P3, so that the line from P3 to that point is tangent to the curve 𝑤𝑖,𝑗𝑀𝑗

𝐵𝑖,𝑗

∑ 𝐵𝑖´,𝑗
𝑘
𝑖´=0

.  

Note that there are 2 cases. If point P is greater than 𝐵1 (see Figure 3), then we draw the line 

segment from P to P3. Else (see Figure 4), we draw the line segment from P1 to P3. To summarize, 

we always take the line segment from 𝑃′ to P3, where the x-coordinate B' of P' satisfies 𝐵′ =
max{𝐵, 𝐵1}. 

Finally, we form 𝑈𝑖,𝑗 in region𝑅𝑘 as follows: For 𝐵𝑖,𝑗 ∈ [𝐵1 , 𝐵′] (which may be a singleton set 

if 𝐵′ = 𝐵1) we set 𝑈𝑖,𝑗 = 𝑈𝑖,𝑗. And for 𝐵𝑖,𝑗 ∈ [𝐵′ , 𝐵3], we set 𝑈𝑖,𝑗 to be equal to the line segment P'-P3. 

We now show that the slope of the line segment P'-P3 is greater than the right derivative at P3 

in both aforementioned cases. To prove this, note first that the slope of the line segment can 

never be lower than the derivative at P: if B'=B they are obviously equal; else, B'=B1>B and the 

slope of P3-P1 is greater than that of P3-P. So, to prove the claim it suffices to show that the 
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derivative at P is greater than the right derivative at P3. Indeed, the derivative at P 

is 𝑤𝑖,𝑗𝑀𝑗

𝑆𝑖,𝑗
𝑘 +𝐵𝑘,𝑗

(𝑆𝑖,𝑗
𝑘 +𝐵𝑘,𝑗+𝐵)

2, while the right derivative at P3 is 𝑤𝑖,𝑗𝑀𝑗

𝑆𝑖,𝑗
𝑘

(𝑤𝑘,𝑗𝑀𝑗)
2. But then 𝑤𝑖,𝑗𝑀𝑗

𝑆𝑖,𝑗
𝑘 +𝐵𝑘,𝑗

(𝑆𝑖,𝑗
𝑘 +𝐵𝑘,𝑗+𝐵)

2 >

𝑤𝑖,𝑗𝑀𝑗

𝑆𝑖,𝑗
𝑘

(𝑆𝑖,𝑗
𝑘 +𝐵𝑘,𝑗+𝐵)

2 > 𝑤𝑖,𝑗𝑀𝑗

𝑆𝑖,𝑗
𝑘

(𝑆𝑖,𝑗
𝑘 +𝐵𝑘,𝑗+(𝑀𝑗𝑤𝑘,𝑗−𝑆𝑖,𝑗

𝑘 −𝐵𝑘,𝑗))2 = 𝑤𝑖,𝑗𝑀𝑗

𝑆𝑖,𝑗
𝑘

(𝑀𝑗𝑤𝑘,𝑗)2, which proves our claim. 

To conclude the case of i<k<k0, we show that the slope of the segment P'-P3 is lower than the 

left derivative at P'. (1) if P'=P>P1, then the slope of the segment is equal to the right derivative 

at P, which is equal to the left derivative. (2) If P'=P1, then first observe that the slope of the 

segment P'-P3 is lower than the slope of the line segment P2-P3. Indeed, consider a moving point 

P0 in the segment P2-P1. As P0 moves from P1 to P2, the slope of P3-P0 decreases until P0 reaches 

point P; from thereafter, it starts increasing again. But since in case (2) P<P1=P', it must be that 

the slope of P'-P3 is lower than the slope of P2-P3. Moreover, from Lemma 3 the left derivative at 

P1 is higher than the slope of P2-P3, which together with the previous observation proves our 

claim. 

The case when k=k0>i. (1) If region 𝑅𝑘0 only consist of a linear part, then in region 𝑅𝑘0, we set 

𝑈𝑖,𝑗 to be the same as 𝑈𝑖,𝑗 (2) If it consists of both a concave and a linear part, we proceed exactly 

as in the case i<k<k0, but set 𝐵′as 𝐵′ = max{𝐵, 0}. 

The case when k=i. In region 𝑅𝑖, we set 𝑈𝑖,𝑗 to be the same as 𝑈𝑖,𝑗. 

We can now prove the following: 

PROPOSITION 3. The function 𝑈𝑖,𝑗(𝐵𝑖,𝑗; 𝑩−𝒊,𝒋) that we constructed for k0>i is an upper-concave 

envelope of 𝑈𝑖,𝑗(𝐵𝑖,𝑗; 𝑩−𝒊,𝒋). 

PROOF. The utility function 𝑈𝑖,𝑗 is continuous everywhere, and the left and right derivatives 

exist for all 𝐵𝑖,𝑗≥0 and are monotonically non-increasing in the allocated budget 𝐵𝑖,𝑗. Furthermore, 

the left derivative at any 𝐵𝑖,𝑗≥0 is equal to or greater than the right derivative. But then 𝑈𝑖,𝑗 will 

be concave in terms of 𝐵𝑖,𝑗 [Gordon 2001]. Moreover,  𝑈𝑖,𝑗 ≥ 𝑈𝑖,𝑗 for every 𝐵𝑖,𝑗 ≥ 0. Finally, by 

construction 𝑈𝑖,𝑗 either coincides with 𝑈𝑖,𝑗, or consists of line segments that connect the endpoints 

of consecutive parts where 𝑈𝑖,𝑗 coincides with 𝑈𝑖,𝑗. Now, assume 𝑈𝑖,𝑗 is not an upper-concave 

envelope, then there will be a function 𝑈𝑖,𝑗
𝑢𝑝

 with 𝑈𝑖,𝑗
𝑢𝑝(𝐵) < 𝑈𝑖,𝑗(𝐵) for some B≥0. Obviously, that B 

cannot correspond to the parts of 𝑈𝑖,𝑗 that coincide with 𝑈𝑖,𝑗. Thus, it must correspond to a point in 

the interior of the line segments that connect the parts that coincide. But a real-valued function 

is concave if it never lies beneath the line that connects any two points in the function [Bertsekas 

2009], which leads to a contradiction. Thus, 𝑈𝑖,𝑗 is an upper-concave envelope of 𝑈𝑖,𝑗.  

6.2.4. Defining relaxations of 𝑈𝑖,𝑗 and 𝑈𝑖. In the above construction, we considered budgets 𝑩−𝒊,𝒋 fixed 

and obtained the upper-concave envelope of 𝑈𝑖,𝑗(𝐵𝑖,𝑗; 𝑩−𝒊,𝒋). Consider now a set of non-negative 

allocations 𝐵1,𝑗 , … , 𝐵𝑖,𝑗, … , 𝐵𝑁,𝑗 in cell j, and define 

𝑈𝑖,𝑗
𝑟𝑒𝑙(𝐵1,𝑗 , … , 𝐵𝑖,𝑗 , … , 𝐵𝑁,𝑗) = 𝑈𝑖,𝑗(𝐵𝑖,𝑗; 𝑩−𝒊,𝒋).  

The new function has two useful properties. First, by its own definition for any fixed value 

of 𝑩−𝑖 it is concave in 𝐵𝑖,𝑗.  Second, it is continuous in 𝐵1,𝑗 , … , 𝐵𝑖,𝑗, … , 𝐵𝑁,𝑗. To understand why this is 

true, note that for two points (𝐵1,𝑗, … , 𝐵𝑖,𝑗 , … , 𝐵𝑁,𝑗) and 𝐵′1,𝑗 , … , 𝐵′𝑖,𝑗 , … , 𝐵′𝑁,𝑗 that are arbitrarily 

close, the transition points of 𝑈𝑖,𝑗(𝐵𝑖,𝑗; 𝑩−𝒊,𝒋) and 𝑈𝑖,𝑗(𝐵′𝑖,𝑗; 𝑩′−𝒊,𝒋) must be arbitrarily close as well. 

This is a consequence of the fact that transitions are continuous, as we showed in Lemma 1. Now, 

recall that we constructed the upper-concave envelope through a finite number of continuous 

operations on function 𝑈𝑖,𝑗(𝐵𝑖,𝑗; 𝑩−𝒊,𝒋) and the transition points. But then, since 𝑈𝑖,𝑗(𝐵𝑖,𝑗; 𝑩−𝒊,𝒋) and 

the transition points are continuous, so is 𝑈𝑖,𝑗
𝑟𝑒𝑙(𝐵1,𝑗, … , 𝐵𝑖,𝑗 , … , 𝐵𝑁,𝑗). 

Finally, we define for any set of valid budget allocations (𝑩𝟏, … , 𝑩𝑵) the relaxation of 𝑈𝑖 =
∑ 𝑈𝑖,𝑗

𝐿
𝑗=1  as: 

𝑈𝑖
𝑟𝑒𝑙(𝑩𝟏, … , 𝑩𝑵) = ∑ 𝑈𝑖,𝑗

𝑟𝑒𝑙(𝐵1,𝑗 , … , 𝐵𝑖,𝑗 , … , 𝐵𝑁,𝑗)
𝐿

𝑗=1
. 
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The new function is continuous (𝑩𝟏, … , 𝑩𝑵) in as a sum of continuous functions. Moreover, it is 

concave in Bi for any fixed value of 𝑩−𝑖 as a sum of functions that are concave in Bi for any fixed 

value of 𝑩−𝑖. 

6.2.5. Bounding the maximum deviation in game 𝐺𝜀. Now, let 𝐺̃𝜀 be the new game when the utility 

functions are replaced by their relaxations 𝑈𝑖
𝑟𝑒𝑙(𝑩𝟏, … , 𝑩𝑵). 

PROPOSITION 4. The game 𝐺̃𝜀 always accepts a Nash equilibrium. 

PROOF. The utility functions 𝑈𝑖
𝑟𝑒𝑙(𝑩𝑖; 𝑩−𝑖), 1≤i≤N, possess two properties: (1) each 𝑈𝑖

𝑟𝑒𝑙(𝑩𝑖; 𝑩−𝑖) 

is continuous in (𝑩𝑖 ; 𝑩−𝑖), and (2) each 𝑈𝑖
𝑟𝑒𝑙(𝑩𝑖; 𝑩−𝑖) is concave in 𝑩𝑖 for any fixed value of 𝑩−𝑖. 

Moreover, the strategy space of every advertiser is convex, closed and bounded. Consequently, 

based on Rosen’s theorem [Rosen 1965] we can immediately derive that a Nash equilibrium 

exists.  

Let 𝑩̃ = (𝑩̃1, … , 𝑩̃𝑁) be a Nash equilibrium of game 𝐺̃𝜀. Note that 𝑩̃ may not be an equilibrium 

of game 𝐺𝜀. This means that there may be players in game 𝐺𝜀 who have an incentive to deviate if 

the strategy vector 𝑩̃ is chosen. However, the following lemma shows that we can bound the 

maximum utility that a player can gain by deviating. 

PROPOSITION 5. Let the strategy vector 𝑩̃ be a Nash equilibrium of game 𝐺̃𝜀. Then the 

maximum utility that player i can gain by deviating from 𝑩̃ in game 𝐺𝜀 is 𝑈𝑖
𝑟𝑒𝑙(𝑩̃𝑖; 𝑩̃−𝑖) −

𝑈𝑖(𝑩̃𝑖; 𝑩̃−𝑖). 

PROOF. Assume that advertisers play according to the strategy vector 𝑩̃ in game 𝐺𝜀. 

Furthermore, assume that there as a deviation strategy 𝑩𝑖 for player i that will result in a utility 

gain higher than𝑈𝑖
𝑟𝑒𝑙(𝑩̃𝑖; 𝑩̃−𝑖) − 𝑈𝑖(𝑩̃𝑖; 𝑩̃−𝑖), i.e.,𝑈𝑖(𝑩𝑖 ; 𝑩̃−𝑖) − 𝑈𝑖(𝑩̃𝑖; 𝑩̃−𝑖) > 𝑈𝑖

𝑟𝑒𝑙(𝑩̃𝑖; 𝑩̃−𝑖) −

𝑈𝑖(𝑩̃𝑖; 𝑩̃−𝑖), or equivalently, 𝑈𝑖(𝑩𝑖; 𝑩̃−𝑖) > 𝑈𝑖
𝑟𝑒𝑙(𝑩̃𝑖; 𝑩̃−𝑖). But since𝑈𝑖

𝑟𝑒𝑙 ≥ 𝑈𝑖, we will have 

that𝑈𝑖
𝑟𝑒𝑙(𝑩𝑖; 𝑩̃−𝑖) ≥ 𝑈𝑖(𝑩𝑖; 𝑩̃−𝑖) > 𝑈𝑖

𝑟𝑒𝑙(𝑩̃𝑖; 𝑩̃−𝑖). But then player i has an incentive to deviate to 

strategy 𝑩𝑖  in game 𝐺̃𝜀, thus contradicting the assumption that 𝑩̃ is a Nash equilibrium of 

game 𝐺̃𝜀.  

Essentially, according to the above result, we can find a set of budget allocations such that we 

can know exactly the maximum utility that an advertiser may gain by deviating. An immediate 

consequence of Proposition 5 is that if the maximum profitable deviation from 𝑩̃ in game 𝐺𝜀 is 0 

for all advertisers, then 𝑩̃ is also a Nash equilibrium of game 𝐺𝜀. 

Regarding the computation of the equilibrium in  𝐺̃𝜀, we can use the local greedy adjustment 

method of Section 5, albeit with one caveat. Because utilities are not everywhere differentiable, 

marginal utility can be either left or right, depending on whether they are defined in terms of the 

left or the right partial derivative discussed before. In particular, in every round we identify the 

cell 𝑐ℎ with the highest right marginal utility and the cell 𝑐𝑙 with the lowest left marginal utility. 

If the right marginal utility of cell 𝑐ℎ is greater than the left marginal utility of cell 𝑐𝑙, with the 

lowest left marginal utility, we then move a fixed small amount of money 𝛿 from 𝑐𝑙 to 𝑐ℎ. Given 

that all 𝑈𝑖
𝑟𝑒𝑙 is concave and continuous, the method always converges to an equilibrium within a 

ratio that depends on 𝛿. 

An important line of future work is to investigate the conditions under which the perturbed 

game 𝐺𝜀 has an equilibrium. Now, assume for a given set of advertisers’ bids and budgets, 𝐺𝜀 has 

an equilibrium for every 𝜀 > 0. We can then consider a sequence of 𝜀 → 0, and take the sequence 

of corresponding equilibria. Since the strategy space is compact, the sequence of equilibria has an 

infinite subsequence that converges to a limit point [Gordon 2001]. Unfortunately, this does not 

imply that the original game without the fictitious advertiser accepts the limit point as an 

equilibrium. The reason is that the utilities in 𝐺𝜀 are continuous everywhere, while the utilities 

in the original game are not continuous at 0. In the budgets-case, we discussed how strong 

competition helps us circumvent this problem. It would be interesting to investigate in future 

work whether strong competition guarantees the existence of a Nash equilibrium when both bids 

and budgets are present. 
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7. CONCLUSION 

In this work, we investigate location-based sponsored search advertising, assuming a grid 

structure with cells and an offline setting where the number of queries per cell is known in 

advance. Advertisers have different valuations for different cells, and they optionally have daily 

budget constraints. We explored 3 cases: (1) bids-case, (2) budgets-case, and (3) bids-and-budgets-

case, and analyzed the Nash Equilibrium in the corresponding markets using game theoretical 

tools.  

There are several directions for future research. Important issues for the budget-case include 

the extension of our techniques to the case of multiple slots, and the design of truthful 

procedures. It would also be interesting to deal with the more challenging online setting, where 

the expected number of queries per context and time unit is not available in advance. Finally, we 

would like to deploy the methods on a real search engine, or conduct extensive simulations using 

real valuation data, in order to gain a better insight into their real world performance. 
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