
PAtterns for Next-generation DAtabase systems:
preliminary results of the PANDA project�

Ilaria Bartolini1, Elisa Bertino2, Barbara Catania3, Paolo Ciaccia1, Matteo
Golfarelli1, Marco Patella1, and Stefano Rizzi1

1 DEIS, Univ. of Bologna, Italy
2 Dept. of Computer Science, Univ. of Milan, Italy

3 Dept. of Computer and Information Science, Univ. of Genoa, Italy

Abstract. Nowadays, the vast volume of collected digital data obliges us
to employ processing methods like pattern recognition and data mining
in order to reduce the complexity of data management. The output of
these techniques are knowledge artifacts, heterogeneous in both structure
and semantics. We claim that the concept of pattern is a good candidate
for generic representation of these novel information types. The PANDA
project is aimed at studying the main issues related to pattern handling.
In this paper we present the preliminary results obtained: we outline
the architecture of Pattern-Base Management Systems, we provide the
foundations of the logical framework, and we present the preliminary
issues related to processing queries on patterns.

1 Introduction and motivation

The increasing opportunity of quickly collecting and cheaply storing large vol-
umes of data, and the need for extracting concise information to be efficiently
manipulated and intuitively analysed have determined in the last decade the
spreading of data warehousing systems. On the other hand, the limited anal-
ysis power of OLAP interfaces represents an obstacle when huge quantity of
data are involved, and non-standard analysis techniques are requested. Hence,
sophisticated data processing tools (based for instance on data mining, pat-
tern recognition, and knowledge extraction techniques) were devised in order
to reduce, as far as possible, the user intervention in the process of extracting
interesting knowledge artifacts (e.g., clusters, association rules, time series) from
raw data [7]. We claim that the term pattern is a good candidate to generally
denote these novel information types, characterized by a high degree of diversity
and complexity. DBMSs are not powerful and flexible enough to handle this new
kind of knowledge, therefore a specific management system capable of modeling
and storing patterns is required. We will call PBMS (Pattern-Base Management
System) such a system, that is characterized by the following properties:

– Abstraction. Within a PBMS, patterns are made first-class citizens thus pro-
viding the user with a meaningful abstraction of raw data to be directly
analyzed and manipulated.

� This work was supported by the PANDA IST Thematic Network.



– Efficiency. Introducing an architectural separation between the PBMS and
the DBMS improves the efficiency of both traditional transactions on the
DBMS and advanced processing on patterns.

– Flexible Querying. The PBMS provides an expressive language for querying
the pattern-base in order to retrieve and compare patterns.

In this context, the purposes of the PANDA (PAtterns for Next-generation
DAtabase systems [1]) project of the European Community are: (1) to lay the
foundations for pattern modeling; (2) to investigate the main issues involved in
managing and querying a pattern-base; and (3) to outline the requirements for
building a PBMS. Differently from other proposals, usually dealing with asso-
ciation rules [8, 9, 12] or string patterns [13], no predefined pattern types are
considered in PANDA.

In this paper we present the preliminary results of the PANDA project: start-
ing from the concept of PBMS, we provide the logical foundations of a general
framework based on the notions of pattern types and pattern classes, then we
introduce the main issues in querying patterns.

2 A management system for patterns

Raw data are recorded from various sources in the real world, often by collecting
measurements from various instruments or devices (e.g., cellular phones, envi-
ronment measurements, monitoring of computer systems, etc.). The determining
property of raw data is the vastness of their volume; moreover, a significant de-
gree of heterogeneity may be present.

Data in such huge volumes do not constitute knowledge per se, i.e. little
useful information can be deduced simply by their observation, so they hardly
can be directly exploited by human beings. Thus, more elaborate techniques are
required in order to extract the hidden knowledge and make these data valuable
for end-users. The common characteristic of these techniques is that large por-
tions of the available data are abstracted and effectively represented by a small
number of knowledge-carrying representatives, which we call patterns. Hence, in
general, one pattern is related to many data items; on the other hand, several
patterns (possibly of different types) can be associated to the same data item
(e.g., due to the application of different algorithms). Patterns can be regarded
as artifacts which effectively describe subsets of raw data (they are compact) by
isolating and emphasizing some interesting properties (they are rich in seman-
tics).

Differently from other existing proposals [8, 13], we claim that differences in
the raw data and in the extraction algorithms induce a strong heterogeneity in
the pattern structures that requires an ad-hoc management system to be effi-
ciently handled. A Pattern-Base Management System is thus defined as follows.

Definition 1 (PBMS). A Pattern-Base Management System (PBMS) is a
system for handling (storing/processing/retrieving) patterns defined over raw
data in order to efficiently support pattern matching and to exploit pattern-related

2



Fig. 1. The PBMS architecture

operations generating intensional information. The set of patterns managed by
a PBMS is called pattern-base.

The reference architecture for a PBMS is depicted in Figure 1. On the bottom
layer, a set of devices produce data, which are then organized and stored within
databases or files to be typically, but not necessarily, managed by a DBMS.
Knowledge discovery algorithms are applied over these data and generate pat-
terns to be fed into the PBMS.

Within the PBMS, we distinguish three different layers. The pattern layer
is populated with patterns. Patterns with similar structural characteristics have
the same type (either built-in or user-defined) that is described in the type layer.
The class layer holds definitions of pattern classes, i.e., collections of semantically
related patterns. Classes play the role of collections in the object-oriented context
and are the key concept in the definition of a pattern query language.

Besides using the DBMS, end-users may directly interact with the PBMS:
to this end, the PBMS adopts ad-hoc techniques not only for representing and
storing patterns, but also for posing and processing queries and for efficiently
retrieving patterns.

3



3 The logical modeling framework

In this section we formalize our proposal of a logical framework by characterizing
pattern types, their instances, and the classes which collect them.

3.1 Pattern types

Though our approach is parametric on the typing system adopted, the examples
provided in this paper we will be based on a specific, very common typing system
similar to those adopted in OODBMSs. Assuming there is a set of base types and
a set of type constructors, the set T of types includes all the base types together
with all the types recursively defined by applying a type constructor to one or
more other types. Types are applied to attributes.

A pattern type represents the intensional form of patterns, giving a formal
description of their structure and relationship with source data. Thus, pattern
types play the same role than abstract data types in the object-oriented model.

Definition 2 (Pattern type). A pattern type pt is a quintuple pt = (n, ss, ds,
ms, f) where n is the name of the pattern type; ss, ds, and ms (called respectively
structure schema, source schema, and measure schema) are types in T ; f is a
formula, written in a given language, which refers to attributes appearing in the
source and in the structure schemas.

This definition is intended to satisfy three basic requirements: generality (i.e.
all the specific requirements posed in different application domains for different
kinds of patterns should be met), extensibility (i.e. it should be possible to accom-
modate new kinds of patterns introduced by novel and challenging applications)
and reusability (i.e. the reuse of what has already been defined is encouraged).
In particular, the first component of a pattern type has an obvious meaning; the
remaining four have the following roles:

– The structure schema ss defines the pattern space by describing the structure
of the patterns instances of the pattern type. The achievable complexity of
the pattern space (hence, the flexibility of pattern representation) depends
on the expressivity of the typing system. Note that, by extending the set
of base types with pattern types, it is possible to recursively define complex
types; for istance, a clustering is a set of clusters, thus the structure schema
of a clustering pattern type is defined in terms of cluster pattern types.

– The source schema ds defines the related source space by describing the
dataset from which patterns, instances of the pattern type being defined,
are constructed. Characterizing the source schema is fundamental for every
operation which involves both the pattern space and the source space (e.g.,
when applying some technique to extract patterns from raw data or when
checking for the validity of a pattern on a dataset).

– The measure schema ms describes the measures which quantify the quality
of the source data representation achieved by the pattern, thus enabling the
user to evaluate how accurate and significant for a given application each

4



pattern is. Besides, the different semantics of the measure component with
reference to the structure can be exploited in order to define more effective
functions for evaluating the distance between two patterns [6].

– The formula f describes the relationship between the source space and the
pattern space, thus carrying the semantics of the pattern. Inside f , attributes
are interpreted as free variables ranging over the components of either the
source or the pattern space. Note that, though in some particular domains
f may exactly express the inter-space relationship (at most, by allowing all
raw data related to the pattern to be enumerated), in most cases it will
describe it only approximatively.

Though our approach to pattern modeling is parametric on the language
adopted for formulas, the achievable semantics for patterns strongly depends
on its expressivity. For the examples reported in this paper, we use a constraint
calculus based on a polynomial constraint theory which seems suitable for several
classes of patterns [10].

Example 1. Given a domain D of values and a set of transactions, each including
a subset of D, an association rule takes the form A → B where A ⊂ D, B ⊂ D,
A ∩ B = ∅. A is often called the head of the rule, while B is its body [7]. An
example of a pattern type for modeling association rules over strings representing
products is the following:

n : AssociationRule

ss : TUPLE(head: SET(STRING), body: SET(STRING))

ds : BAG(transaction: SET(STRING))

ms : TUPLE(confidence: REAL, support: REAL)

f : ∀x(x ∈ head ∨ x ∈ body ⇒ x ∈ transaction)

The structure schema is a tuple modeling the head and the body. The source
schema specifies that association rules are constructed from a bag of transactions,
each defined as a set of products. The measure schema includes two common
measures used to assess the relevance of a rule: its confidence (what percentage
of the transactions including the head also include the body) and its support
(what percentage of the whole set of transactions include both the head and the
body). Finally, the formula of the constraint calculus represents (exactly, in this
case) the pattern/dataset relationship by associating each rule with the set of
transactions which support it.

3.2 Patterns

Definition 3 (Pattern). Let pt = (n, ss, ds,ms, f) be a pattern type. A pattern
p instance of pt is a quintuple p = (pid, s, d, m, e) where pid (pattern identifier)
is a unique identifier for p; s (structure) is a value for type ss; d (source) is a
dataset whose type conforms to type ds; m (measure) is a value for type ms; e
is an expression denoting the region of the source space related to pattern p.

5



According to this definition, a pattern is characterized by (1) a pattern iden-
tifier (which plays the same role of OIDs in the object model), (2) a structure
that positions the pattern within the pattern space defined by its pattern type,
(3) a source that identifies the specific dataset the pattern relates to, (4) a mea-
sure that estimates the quality of the raw data representation achieved by the
pattern, (5) an expression which relates the pattern to the source data. A pat-
tern instance of a complex pattern type is said to be a complex pattern, and the
patterns it includes are called its components.

Example 2. Consider again pattern type AssociationRule defined in Example 1,
and suppose that raw data include a relational database containing a table
sales which stores data related to the sales transactions in a sport shop: sales
(transactionId, article, quantity). Using an extended SQL syntax to denote the
dataset, an example of an instance of AssociationRule is:

pid : 512
s : (head = {‘Boots’}, body = {‘Socks’, ’Hat’})
d : ‘SELECT SETOF(article) AS transaction

FROM sales GROUP BY transactionId’

m : (confidence = 0.75, support = 0.55)
e : {transaction : ∀x(x ∈ {‘Boots’, ‘Socks’, ’Hat’} ⇒ x ∈ transaction)}

In the expression, transaction ranges over the source space; the values given to
head and body within the structure are used to bind variables head and body in
the formula of pattern type AssociationRule.

3.3 Classes

A class is a set of semantically related patterns; it is defined for a given pattern
type and contains only patterns of that type.

Definition 4 (Class). A class c is a triple c=(cid,pt,pc) where cid is a unique
identifier for c, pt is a pattern type, and pc is a collection of patterns of type pt.

Example 3. The Apriori algorithm described in [2] could be used to generate as-
sociation rules from the dataset presented in Example 2. The generated patterns
could be inserted in a class called SaleRules for pattern type AssociationRule de-
fined in Example 1. The collection of patterns associated with the class can be
later extended to include also rules generated from a different dataset, repre-
senting for instance the sales transactions recorded in a different store.

4 Querying Issues

Apart from the issues related to the physical storage of patterns, important
challenges are posed when considering how a pattern base can be queried.1

1 Note that, under the proposed architecture, pattern generation is a PBMS data
manipulation operation, differently from other tightly coupled approaches [8, 9, 12],
where pattern generation is a query language issue.

6



Besides pattern retrieval operations, cross-over operations [9], between pat-
terns and raw data, have to be supported. Under the proposed architecture, they
can be implemented similarly to the drill-through operation in data warehousing
systems [5], rewriting parts of the queries taking into account the pattern source.

A basic operation between patterns is that of comparison: two patterns of
the same type can be compared to compute a score s, s ∈ [0, 1], assessing their
mutual similarity. The similarity between two patterns is computed as a func-
tion of the similarity between both the structure and the measure components:
sim(p1, p2) = f(simstruct(p1.s, p2.s), simmeas(p1.m, p2.m)) where p.s and p.m
denote the structure and the measure for pattern p, respectively. If the two pat-
terns have the same structure, then simstruct(p1.s, p2.s) = 1 and the similarity
measure naturally corresponds to a comparison of the patterns’ measures, e.g. by
aggregating differences between each measure [6]. In the general case, however,
the patterns to be compared have different structures, thus a preliminary step
is needed to reconcile the two structures to make them comparable.

Particularly challenging is the comparison between complex patterns; in this
case, the measure of the complex pattern may include values defined as expres-
sions of the component patterns. The similarity score s between two complex
patterns of the same type is computed starting from the similarity between com-
ponent patterns, then the obtained scores are aggregated, using an aggregation
logic, to determine the overall similarity [6]. The aggregation logic may be very
simple, just an expression combining numerical values, or a more complex one,
if constraints and/or transformation costs are to be considered. For example, a
suitable “matching” between components patterns might be needed: this is the
case for region-based image retrieval systems, where each image (the complex
pattern) is composed by several regions (base patterns) and the similarity at the
image level is computed by combining the similarity of matched regions [3]. The
aggregation logic can also involve some transformations, each with an associated
cost, and the overall similarity score is obtained as the maximum score obtained
by applying all the possible transformations to the component patterns. Con-
sider for example a comparison between time series, modeled as complex patterns
whose structure is a list of patterns representing data samples and the structure
of each sample includes the sample instant and the sample value. In this case,
the aggregation logic should be aware of the order of succession of samples; thus
a simple logic that matches each sample of one series with the closer sample of
the other is not correct and more complex aggregation logics, such as a Dynamic
Time Warping algorithm [11], are needed. Possible transformations include time
scaling, vertical shifting, amplitude scaling, linear drifting, stuttering, and so on.

Efficient evaluation of general aggregation algorithms, however, seems to be
a formidable challenge, since the application of transformations and aggregation
logics could significantly alter the complexity of matching. In the simpler case,
assessment of similarity can be performed by exploiting an index structure, like
the M-tree [4], provided that similarity between component patterns is com-
puted by way of a metric distance. Moreover, to speed-up the matching, one can
consider the use of approximate strategies.

7



5 Conclusions and future work

In this paper we presented a general framework for manipulating patterns de-
scribing large volumes of data. The framework relies on a specific management
system (PBMS) for storing and querying patterns, modeled according to an
ad-hoc data model, general enough to cover a broad range of real-world cases.
Besides, we discussed the preliminary issues related to pattern query processing.

Though the fundamentals of pattern modeling have been addressed, several
important issues still need be investigated. Future research includes both theo-
retical aspects as well as implementation-specific issues. The theoretical aspects
include: (1) defining a pattern manipulation language, including pattern genera-
tion operations; (2) studying the possibility of posing constraints on patterns; (3)
defining the common operations on patterns; (4) evaluating and comparing the
expressivity of different languages to formulate expression templates; (4) devis-
ing a flexible query language for retrieving and comparing patterns. Concerning
pattern generation, we believe that extensions of already proposed operators can
be used to this purpose [9, 12]. Implementation issues involve primarily the con-
struction of ad-hoc storage management and query processing modules for the
efficient management of patterns.

References

1. The PANDA Project. http://dke.cti.gr/panda/, 2002.
2. R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proc.

20th VLDB, 1994.
3. I. Bartolini, P. Ciaccia, and P. Patella. A sound algorithm for region-based image

retrieval using an index. In Proc. QPMIDS’00, pages 930–934, Greenwich, UK,
2000.

4. P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient access method for
similarity search in metric spaces. In Proc. 23rd VLDB, pages 426–435, Athens,
Greece, 1997.

5. Y. Cui and J. Widom. Lineage tracing in a data warehousing system. In Proc.
16th Int. Conf. on Data Engineering, San Diego, CA, 2000.

6. V. Ganti, R. Ramakrishnan, J. Gehrke, and W.-Y. Loh. A framework for measuring
distances in data characteristics. PODS, 1999.

7. J. Han and M. Kamber. Data mining: concepts and techniques. Academic Press,
2001.

8. T. Imielinski and H. Mannila. A Database Perspective on Knowledge Discovery.
Communications of the ACM, 39(11):58–64, 1996.

9. T. Imielinski and A. Virmani. MSQL: A Query Language for Database Mining.
Data Mining and Knowledge Discovery, 3:373–408, 1999.

10. P. Kanellakis, G. Kuper, and P. Revesz. Constraint query languages. Journal of
Computer and System Sciences, 51(1):25–52, 1995.

11. E. Keogh. Exact indexing of dynamic time warping. In Proc. 28th VLDB 2002,
pages 406–417, Hong Kong, 2002.

12. R. Meo, G. Psaila, and S. Ceri. A new sql-like operator for mining association
rules. In Proc. 22nd VLDB Conf., Bombay, India, 1996.

13. L. De Raedt. A Perspective on Inductive Databases. SIGKDD Explorations, 4(2),
2002.

8


