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Abstract

Content-based image retrieval systems characterize images by means of relevant features,
such as color distribution and texture information, and then use such feature values to
determine those images which are most similar to a query image. However, this approach is
not adequate when images have a complex, not homogeneous, structure, in which case using
global features leads to inaccurate content descriptions. In this paper we present Windsurf,
an image retrieval system that implements a new approach to content-based image search.
Windsurf applies the wavelet transform to extract color and texture features from an image,
and then partitions the image into a set of “homogeneous” regions, each described by a set
of local features. Similarity between images is then assessed by first computing similarity
scores between regions and then combining the results at the image level. Remarkably,
Windsurf image similarity model only requires that the overall similarity score between
two images is a monotonic function of the similarity scores of matching regions. From the
query processing point of view, we introduce a novel index-based algorithm that can make
use of any distance-based access method to retrieve the k best-matching images for a given
query. It turns out that this is the first correct algorithm for region-based image similarity
queries. Experimental results on a medium-size image data-set demonstrate the effectiveness
and the efficiency of our approach.

1 Introduction

The advent of multimedia age poses a number of new challenges to database researchers. In
particular, digital image libraries require effective and efficient automated retrieval based on the
“semantic” content of images. The boost of graphics capabilities in modern computer systems
and the growing of Internet have further contributed to the increased availability of digital
images. A classical method to characterize the content of images is to have human experts
manually annotating each image with a textual description, so that text-based information
retrieval techniques can be applied [Sal88]. However, this approach is clearly impracticable in
case of very large image databases and its effectiveness is highly dependent on the subjective
opinions of the experts, who are also likely to supply different descriptions for a same image
[OS95].

Consequently, the approach taken by modern content-based image retrieval (CBIR) systems
is to define a set of relevant properties (features) able to effectively characterize the content
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of images and then to use these features for retrieval purposes [GR95]. Such features should
be “simple enough” to allow the design of automatic extraction algorithms, yet “meaningful
enough” to capture the image content. To this end, recent studies have highlighted the fact that
global features, like color and texture, indeed possess a rich semantic value, and as such they
are used by several CBIR systems [FEF+94, SO95, PPS96, SC96]. Under this view each image
is typically represented by a high-dimensional feature vector, whose dimensionality depends on
the number and on the type of extracted features, and similarity between images is assessed by
defining a suitable distance function on the resulting feature space [Fal96].

It is a fact that CBIR systems that rely on global features cannot support queries like,
say, “Find all the images containing a small red region under a big blue region” that refer to
local properties of the images. Thus, the need to extract not only global but also local features
has emerged, and a number of region-based image retrieval systems, that fragment each image
into a set of homogeneous regions, have been presented [SC96, CTB+99, NRS99]. In region-
based systems, similarity assessment between images is performed by associating regions in the
query image with those contained in database images and by taking into account similarity
between associated regions. To this end, features are extracted for each region and a distance
function is used to compare regions’ descriptors. Existing systems, however, either consider a
scenario, which is beyond the scope of the present work, where also spatial constraints are taken
into account [BDV99], or use näıve heuristic matching algorithms which are not guaranteed to
return the correct results. As an example, suppose that a user looks for images containing two
tigers. In this case the query image will contain (at least) two regions, each representing a tiger.
If a database (DB) image contains a single “tiger” region, clearly it is not correct to associate
both query regions to the single tiger region of the DB image. However, as we will argument in
Section 2, this can easily happen with current region-based systems.

In the following we will focus our attention on the processing of k nearest neighbors (best-
matches) queries, where the user asks for the k images in the DB which are most similar,
according to the similarity measure implemented by the CBIR system, to the query image.
Range queries, where the user has to specify a minimum similarity threshold α that images have
to exceed in order to be part of the result, are not well suited for the scenario we envision. In
fact, since the user has no a priori knowledge on the distribution of similarities between images,
he/she has no way to guess the “right” value for α. Indeed, a high α value can easily lead to an
empty result, whereas slightly decreasing α could result in an overwhelming number of returned
images. This situation is further complicated in region-based retrieval, where more than one
threshold could be required (see Section 2.1).

In this paper we present the Windsurf system (Wavelet-based indexing of images using
region fragmentation), a new region-based image retrieval system. Windsurf applies the
wavelet transform to extract color and texture features from an image, and then clusters wavelet
coefficients so as to obtain a set of “homogeneous” regions, each characterized by its own local
features. After providing a correct definition of image similarity under the region-based retrieval
model, we introduce a novel index-based algorithm, called AWS

0 , suitable for any distance-based
access method, to obtain the k best-matching images for a given query. It turns out that this
is the first correct algorithm for region-based image similarity queries. Experimental results on
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a medium-size image data-set demonstrate the effectiveness and the efficiency of our approach,
as also compared to alternative retrieval strategies.

The rest of the paper is organized as follows. In Section 2 we describe existing CBIR systems,
and outline their limits from the query processing point of view. Section 3 introduces the Wind-

surf system. In Section 4 we formalize the problem of computing similarity between images
as a generalized assignment problem and present a simple sequential algorithm (ERASE) for its
resolution. In Section 5 we describe the AWS

0 index-based algorithm. Experimental analysis of
the proposed solutions is in Section 6, where we consider both efficiency and effectiveness issues.
Section 7 concludes and suggests possible directions for future work.

2 Background

Many CBIR systems have been designed and developed over the last years. What can be called
the first generation of CBIR systems used global features to characterize the images content.
For example, QBIC [FEF+94], developed at the IBM Almaden Research Center, extracts from
each image a number of features, namely color, texture, and shape. Color is represented by
means of histograms that are compared using a distance function that also takes into account
the similarity between different colors (cross-talk). Texture is analyzed globally by extracting
information on coarseness, contrast, and direction. Similarity between images is computed using
a weighted Euclidean distance on the overall extracted vector.

Stricker and Orengo [SO95] propose a different approach to color similarity, where the first
three moments of the distribution of each color channel are considered. Thus, each image is
represented by a 9-dimensional feature vector, and a simple weighted Manhattan distance is
used to compare images.

The Photobook system developed by MIT Media Lab [PPS96] uses a stochastic model (Wold-
decomposition) to assess the similarity between images based on texture.

Techniques operating in the time-frequency domain, such as the wavelet transform [Dau92]
(see also Appendix A), have also been proposed to obtain a multi-resolution image represen-
tation. As an example, the WBIIS system [WWFW97] uses Daubechies’ wavelets [Dau92] to
derive a 768-dimensional vector of wavelet coefficients that preserve spatial image information.
Although this approach offers a better frequency location with respect to other algorithms, it
leads to poor results for queries where spatial location and scale of objects is not preserved
[NRS99].

All above described approaches (as well as many others not covered here) use global features
to represent image semantics, thus they are not adequate to support queries looking for images
with specific “objects” with particular color and/or texture (and possibly spatially arranged in
a particular way), “partial-match” queries (where only a part of the query image is specified),
and shift/scale-invariant queries, where the position and/or the dimension of the seeked objects
is not deemed relevant. Region-based image retrieval systems aim to overcome these limitations
by fragmenting an image into a set of “homogeneous” regions, which can then be described by
means of local features [SC96, CTB+99, NRS99]. Note that the concept of “homogeneity” is by
no means easy to define. For instance, if one considers each pixel separately, texture information
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is lost and only “color homogeneity” can be assessed. For a more complex example, consider
an image where a flag with red and blue vertical stripes appears. A human would certainly
recognize this as a homogeneous region, even if it contains pixels with rather different colors,
since he/she sees a repeated pattern.

VisualSEEk [SC96] is an example of region-based system that considers information from
both the spatial and the frequency domains in order to decompose each image into regions.
The similarity between two images is computed by taking into account color, location, size,
and relative positions of regions. Query processing, however, is carried out by using a simple
heuristic algorithm. First, for each region of the query image, a range query on color, location,
and size is issued with similarity thresholds provided by the user; then, a candidate set of images
is built, by taking into account only those images that have one region in all the result regions
sets; finally, the optimum match is computed on the set of candidate images. It is clear that the
use of similarity thresholds has no direct counterparts in a user’s mind, and cannot gaurantee
that the images most similar to the the query image are retrieved.

2.1 WALRUS

WALRUS (WAveLet-based Retrieval of User-specified Scenes) [NRS99] is a region-based image
retrieval system where the similarity measure between a pair of images is defined to be the
fraction of the area of the two images covered by matching regions of the two images.

WALRUS pre-processes an image in two steps. First, it generates a set of sliding windows
with different sizes and computes a “signature” (local feature vector) for each sliding window,
where a signature consists of all the coefficients from the lowest frequency band of the Haar
wavelet transform applied to the pixels in the window. The next step is to cluster the sliding
windows by computing the similarity between their signatures. Each cluster, thus, consists of
a set of windows with similar characteristics (i.e. color and texture), which together define a
region. Wavelet signatures of the windows in a cluster are then averaged to obtain the region
feature vector. To speed-up the retrieval, WALRUS indexes regions’ descriptors using an R*-tree
[BKSS90].

In order to submit a query to WALRUS, a user has to specify a query image and two
similarity thresholds, ε and ξ. After extracting regions from the query image, WALRUS uses
the index to find all regions in the DB that are similar enough to a query region, that is, regions
whose signatures are within ε distance from the signature of the query region. Then, similarity
between images is assessed by adding up the sizes of matched regions, as obtained from the
index serach step, and the result of the query consists of the images for which the similarity
with the query image is not lower than the ξ threshold.

From the query processing point of view, the main limitation of WALRUS is that it requires
the specification of two similarity thresholds. The choice of the two parameters is not very
meaningful, since the user has no clear way to determine what a difference between threshold
values actually represents. As already argued in Section 1, we believe that range queries are not
suitable for effecive image retrieval.
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2.2 Blobworld

Blobworld [CTB+99] is a system that determines coherent image regions that roughly correspond
to objects. Blobworld models an image as a set of regions (blobs) which are homogeneous with
respect to color and texture. Each blob is described by its color distribution and by its mean
texture descriptors, obtaining a 220-D feature vector (218-bins color histogram and 2 texture
descriptors). Querying is then based on the features of some (typically, one or two) regions of
interest, rather than on a description of the whole image.

In the image pre-processing phase, Blobword first extracts pixel features, then it groups
similar pixels into blob regions, and finally determines the feature vectors of the blobs. In
detail, the pixels distribution is modeled in a 8-D space (L*a*b* descriptors for color, anisotropy,
orientation, and contrast for texture, and spatial position of the pixel) using a mixture of two
to five Gaussians. To fit the mixture of Gaussians model to the pixel data, the Expectation-
Maximization (EM) algorithm is used, whereas the number of Gaussians that best suits the real
number of groups contained in the image is determined by means of the Minimum Descriptor
Length principle [BCGM98]. Once a model is selected, the system performs a spatial grouping
of connected pixels belonging to the same cluster.

At query time, the user composes a query by submitting to the system an image of interest
and selecting some of the blobs in the image (an “atomic query” is composed by a single blob,
whereas a “compound query” is specified by two or more blobs). When dealing with a compound
query, which is the most common case, each blob in the query image is associated to its “best”
blob in the DB image under consideration (a quadratic, L2-like, distance function between the
feature vectors is used to this purpose). Then, the overall score is computed by using (weighted)
fuzzy-logic operators (conjunctions, disjunction, and negation) applied to the scores of matched
blobs. Finally, images are ranked according to their overall score and the k best matches are
returned.

In order to speed-up query processing, Blobworld can also use an R-tree-like structure to
index the color descriptors of the blob feature vectors [TCH00] (no texture information is taken
into account when an index is used). For each blob in the query image, a predetermined number
(in the order of the hundreds) of “best matches” is retrieved by using the index. Note that the
use of an index can lead to miss the correct best images, since there is no guarantee that such
images will be included within those returned by the index itself, as it will be shown in Section
5. Among all the images containing regions obtained in the index-retrieval step, the “true”,
above described, matching algorithm is then used to obtain the result images. However, since
best matches for query blobs are computed by ignoring matches for other blobs, it could be the
case that a single blob in a DB image is associated to two distinct query blobs (remind the “two
tigers” example in Section 1).

3 The Windsurf system

Windsurf (W avelet-Based Indexing of Images U sing Region F ragmentation) is a region-based
image retrieval system that uses the Discrete Wavelet Transform (DWT) [Dau92] and a k-means
clustering algorithm to segment an image into regions. Each region is represented by means of
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a set of features and the similarity between regions is measured using a specific metric function
on such features. Image pre-processing consists of the three steps shown in Figure 1, namely:

DWT The image is analyzed in the time-frequency domain using a 2-D DWT.

Clustering The image is fragmented into a set of regions using a k-means clustering algorithm
that groups together similar wavelet coefficients (clustering features).

Feature Indexing Regions obtained from the clustering phase are represented by means of a
set of similarity features.

Figure 1: Steps of the Windsurf image indexing process.

3.1 DWT

Windsurf views an image as a 2-D signal to be analyzed by means of a 2-D DWT in the
time-frequency domain. More in detail, we use Haar wavelets from the WAILI software li-
brary [UVJ+97] and represent images in the HSV color space, because in this space each color
component is perceptually independent and uniform [Smi97].

The j-th wavelet coefficient of sub-band B (B ∈ B = {LL,LH,HL,HH}, where L stands
for “low” and H for “high”) and DWT level l is a 3-D vector, i.e.:

wl;B
j = (wl;B

0j
, wl;B

1j
, wl;B

2j
) (1)

where each component refers to a color channel c (c ∈ {0, 1, 2}). The energy of wl;B
j on the c

and d channels is then defined as:

el;Bcdj
= wl;B

cj
· wl;B

dj
(2)

When c = d, el;Bccj is called the channel energy of channel c, whereas when c �= d, el;Bcdj
is termed

the cross-correlation energy between channels c and d. The energy vector

el;Bj =
(
el;B00j

, el;B01j
, el;B02j

, el;B11j
, el;B12j

, el;B22j

)
(3)

captures both color and texture information through channel and cross-correlation energies,
respectively. This is similar to the approach described in [Smi97] and is known to be one of the
more robust methods for the representation of texture features [CK93, VSLV].
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3.2 Clustering

The aim of the clustering phase is to fragment an image into a set of regions by grouping
together image pixels that are similar in color and texture features. To this end, we apply a
clustering algorithm to the wavelet coefficients (clustering features) obtained by the DWT step.
In particular, we apply a k-means algorithm with a “validity function” which is a variant of the
one proposed for the fuzzy k-means algorithm [XB91] (see below).

Given a set X = {x1, . . . , xN} of N points (wavelet coefficients, in our case) to be clustered,
the k-means algorithm starts with a set of k randomly-chosen centroids, {µ1, . . . , µk}, and then
assigns each point xj to its closest centroid µi. After this, the algorithm iterates by recomputing
centroids and reassigning the points, until either a stable state or a limit to the number of
iterations are reached. It can be proved that k-means algorithm leads to minimize the function

J =
k∑

i=1

∑
xj∈Ci

δ(xj , µi)2 (4)

where δ(xj , µi) is the distance between xj and its closest centroid µi. Obviously, both the final
value of J and the result of the algorithm depend on the value of k and on the choice of the
distance function δ(). As for δ() we use the Mahalanobis distance applied to the 3-D wavelet
coefficients of the LL sub-band of the 3-rd DWT level, that is, xj ≡ w3;LL

j . This choice is due
to the results of extensive experimental evaluation, which demonstrated that best, most stable,
clusters are obtained by taking into account only low frequency descriptors. The Mahalanobis
distance between points w3;LL

i and w3;LL
j is given by:

δ(w3;LL
i , w3;LL

j )2 = (w3;LL
i − w3;LL

j )T ×
(
C3;LL

)−1 × (w3;LL
i − w3;LL

j ) (5)

where C3;LL =
{
cov3;LL

c,d

}
is the covariance matrix of the points, that is:

cov3;LL
c,d =

1
N


 N∑

j=1

w3;LL
cj

w3;LL
dj

−
N∑
j=1

w3;LL
cj

·
N∑
j=1

w3;LL
dj


 (6)

By using the Mahalanobis distance two desirable effects are obtained: First, vectors are auto-
matically normalized (depending on the diagonal elements of the covariance matrix); second,
the distance function also considers cross-correlation energies, thus texture characteristics, due
to the off-diagonal elements of C3;LL.

Since different values of the k parameter can lead to different results, we iterate the k-means
algorithm with k ∈ [2, 10], and then select the “optimal” k value as the one minimizing the
validity function V , defined as:

V =
J ′

N · δ2
min

+
k′∑
i=1

1
1 + |Ci|

(7)

where k′ represents the number of “good” clusters, i.e. clusters that are not too small, J ′ is as
in Equation 4, but now it only takes into account good clusters, δmin = mini�=j{δ(µi, µj)} is the
minimum distance between cluster centroids, and |Ci| is the cardinality of cluster Ci. The first
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term of Equation 7 represents the goal function J ′ divided by δ2
min, i.e. clusters well separated

provide better solutions, whereas the second term represents a penalty factor for small clusters.
As an example, Figure 2 shows the results of the k-means algorithm applied to the image on the
left, when k = 2, k = 10, and k = 4, respectively, the latter being the optimal solution according
to the V validity function.

(a) (b) (c) (d)

Figure 2: (a) The input image. Clusters obtained for: (b) k = 2; (c) k = 10; (d) k = 4 (optimal
solution). In the clustered images, points having the same color belong to the same cluster.

As a final issue, consider the particular case where the optimal solution is to have k = 1,
which corresponds to images consisting of a uniform pattern, for which no segmentation is
appropriate. Since the validity function V is not defined for k = 1, we resort to an analysis of
the covariance matrix C3;LL. This can be geometrically represented as a 3-D ellipsoid, where each
axis has a direction given by a matrix eigenvector and a length determined by its corresponding
eigenvalue. Intuitively, when all the eigenvalues are small, then the wavelet coefficients have a
small variance, and this can be used as an evidence that the image represents a homogeneous
pattern. Since the trace of a matrix equals the sum of its eigenvalues, by just looking at the
trace TC3;LL of C3;LL we can therefore deal with images for which the clustering algorithm should
not be applied at all. In practice, if TC3;LL is smaller than a given threshold value β, then
the image is considered as a homogeneous pattern. In our tests we found that β = 1000 is an
appopriate threshold value. As an example, consider the image in Figure 3 (a), whose covariance
matrix is given in Figure 3 (b). It is clear that the image is a homogeneous pattern, and our
perception is confirmed by the analysis of the trace of the covariance matrix whose value is
TC3;LL = 5.17 + 357.91 + 237.00 = 600.08 < 1000.

C3;LL =




5.17 16.10 −3.90
16.10 357.91 −152.56
−3.90 −152.56 237.00




(a) (b)

Figure 3: A homogeneous image (a) and its covariance matrix C3;LL (b).

3.3 Feature Indexing

Regions obtained from the clustering phase are described using a set of similarity features, which
are then used for image retrieval. In detail, when comparing regions, we consider information
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on size and color-texture as provided by all the frequency sub-bands of the 3-rd DWT level. To
this end, the similarity features for a region Rs,i of image Is are defined as a 37-D vector, whose
components are:

Size The number of pixels in the region, size(Rs,i).

Centroid The 12-D centroid of Rs,i, µRs,i = (µLL
Rs,i

, µLH
Rs,i

, µHL
Rs,i

, µHH
Rs,i

), where each µB
Rs,i

is a 3-D
point representing the average value for each of the 3 color channels in the B sub-band.

Covariance matrices This is a 24-D vector, denoted C3
Rs,i

, containing the elements of the 4

3 × 3 covariance matrices, C3;B
Rs,i

, of the points in Rs,i. Since the covariance matrices are
symmetric, only 6 values for each matrix need to be stored.

4 Image Similarity

The image similarity model of Windsurf defines the similarity between two images as a function
of the similarities among “matched” regions, as Figure 4 suggests.

Figure 4: Similarity between images is assessed by taking into account similarity between
matched regions.

To completeley characterize the image similarity model, we have therefore first to specify
how similarities among regions are determined, and then how such region-based similarities are
combined together.

4.1 Region Similarity

The similarity between two regions, Rq,i (represented by the feature vector [µRq,i , C3
Rq,i

, size(Rq,i)])
of a query image Iq and Rs,j (with feature vector [µRs,j , C3

Rs,j
, size(Rs,j)]) of a DB image Is, is

computed by Windsurf as:

rsim(Rq,i, Rs,j) = h(d(Rq,i, Rs,j)) (8)

where d() is a distance function, and h() is a so-called correspondence function [CPZ98] that
maps distance values to similarity scores. The function h : �+

0 → [0, 1] has to satisfy the two
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following properties:

h(0) = 1

d1 ≤ d2 ⇒ h(d1) ≥ h(d2) ∀d1, d2 ∈ �+
0

In all our experiments we use h(d) = e−d/σd , where σd is the standard deviation of the distances
computed over a sample of DB regions. The distance d(Rq,i, Rs,j) between regions Rq,i and Rs,j

is a weighted sum, taken over the four frequency sub-bands, of the distances between color-
texture descriptors, plus an additional term that takes into account the difference between the
relative size of the two regions:

d(Rq,i, Rs,j)2 =
∑
B∈B

γB · dB(Rq,i, Rs,j)2 +


 2

size(Rq,i)
size(Iq) + size(Rs,j)

size(Is)


 ·

(
size(Rq,i)
size(Iq)

− size(Rs,j)
size(Is)

)2

(9)

In our experiments we equally weigh the frequency coefficients, i.e. γB = 1 ∀B ∈ B. The second
term in Equation 9 takes into account the difference in size between the regions by multiplying
it by a coefficient that favors matches between large regions.

The distance dB(Rq,i, Rs,j) between two regions on the frequency sub-band B is computed
by using the Bhattacharyya metric:

dB(Rq,i, Rs,j)2 =
1
2
ln




∣∣∣∣C
3;B
Rq,i

+C3;B
Rs,j

2

∣∣∣∣∣∣∣C3;B
Rq,i

∣∣∣ 1
2 ·

∣∣∣C3;B
Rs,j

∣∣∣ 1
2


+

+
1
8


(µB

Rq,i
− µB

Rs,j

)T
×
(
C3;B
Rq,i

+ C3;B
Rs,j

2

)−1

×
(
µB
Rq,i

− µB
Rs,j

) (10)

where |A| is the determinant of matrix A. Equation 10 is composed of two terms. The second
term is the Mahalanobis distance between regions centroids, where an averaged covariance matrix
is used. The first term is used to compare the covariance matrices of the two regions. Note that
if the two regions have the same centroid, the second term of Equation 10 vanishes, whereas
the first term measures how similar the two 3-D ellipsoids are (this is the case of regions with
similar colors but different texture, see Figure 5).

When computing Equation 10, we also correctly take into account those particular cases
arising from singular covariance matrices. Such situations originate, for instance, from uniform
images (e.g. a totally black image), where the covariance matrix is null (details are here omitted
for brevity).

4.2 Combining Region-based Similarities

The basic idea of any region-based image retrieval system is that the similarity between two
images depends on the similarities among component regions. What makes Windsurf different
from other systems, such as those described in Section 2, is that its similarity model can correctly
define the “best matches” for a query image by taking into account all the information available
from regions’ similarities. For this we first need to define what a matching is.
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Rs,j

Rq,i

q,iR
µ

Rs,j

µ=

Figure 5: Two regions with different shape and equal centroids.

Definition 4.1 (Matching) Given a query image Iq, divided into a set of regions Rq ={
Rq,1, . . . , Rq,nq

}
, and a DB image Is, divided into a set of regions Rs = {Rs,1, . . . , Rs,ms},

a matching between Iq and Is is an injective function Γs : Rq → Rs ∪ {⊥} that assigns to each
region Rq,i of the query image either a region of Is or the “null match” ⊥.

Note that any matching satisfies, by definition, the two following constraints:

1. A region of Iq cannot match with two different regions of Is (Figure 6 (a)).

2. Two different regions of Iq cannot match with the same region of Is (Figure 6 (b)).

R R

R

Q

q,i s,j

s,k

S

(a)

R R

R

Q S

q,i

q,l

s,j

(b)

Figure 6: A region of Iq cannot match with two regions of Is (a) and two regions of Iq cannot
match with the same region of Is (b).

Given a matching Γs, the corresponding similarity between Iq and Is is computed by means
of the IMsim combining function:

IMsim(rsim(Rq,1,Γs(Rq,1)), . . . , rsim(Rq,nq ,Γs(Rq,nq))) (11)

where it is assumed that rsim(Rq,i,⊥) = 0 in case a match for Rq,i is not defined.
The only requirement we put on the IMsim function is that it has to be a monotonic non-

decreasing function, i.e. si ≤ s′i =⇒ IMsim(s1, . . . , si, . . . , sn) ≤ IMsim(s1, . . . , s′i, . . . , sn).
This is intuitive, since better matches between regions are expected to increase the overall
similarity score between corresponding images. Moreover, for the sake of simplicity, in the
following we will assume that IMsim is a symmetric function of its arguments.
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Clearly, any different matching leads, according to Eq. 11, to a different value for the simi-
larity of Iq and Is. It is natural to define the “true” image similarity by only considering optimal
matchings.

Definition 4.2 (Optimal matching) A matching that maximizes Equation 11 is called an
optimal matching between Iq and Is, and will be denoted as Γ

opt
s .

Definition 4.3 (Image similarity) The similarity between Iq and Is is defined as the value
of IMsim computed from an optimal matching, i.e.:

Isim(Iq, Is) = max
Γs

{IMsim(rsim(Rq,1,Γs(Rq,1)), . . . , rsim(Rq,nq ,Γs(Rq,nq)))}

= IMsim(rsim(Rq,1,Γopt
s (Rq,1)), . . . , rsim(Rq,nq ,Γ

opt
s (Rq,nq))) (12)

The following is a simple property of optimal matchings, which holds for any combining function
IMsim.

Property 4.1 (Maximal and complete matchings) Let nq be the number of regions of Iq

and ms the number of regions of Is. If rsim(Rq,i, Rs,j) > 0 holds for any pair of regions of Iq and
Is, then a matching Γs can be optimal only if it is maximal, that is, only if Γs(Rq,i) is undefined
for exactly max{nq − ms, 0} regions of Iq. When nq ≤ ms a maximal matching is also said a
complete matching, since for all query regions Rq,i it is Γs(Rq,i) ∈ Rs.

4.3 Determining the Optimal Matching

Determining the optimal matching for images Iq and Is can be formulated as a generalized
assignment problem. For this, let sij = rsim(Rq,i, Rs,j) be the similarity score between region
Rq,i of Iq and region Rs,j of Is, and denote with H the index set of pairs of matched regions,
that is:

H = {(i, j)|Γs(Rq,i) = Rs,j}

Of course, it is |H| ≤ min{nq,ms}. Then, the goal is to maximize the function IMsim(si1j1 , . . . , si|H|j|H|),
with (ihjh), (iljl) ∈ H, (ihjh) �= (iljl). To this end, we introduce the variables xij , where xij = 1
if Γs(Rq,i) = Rs,j and xij = 0 otherwise. Then, the generalized assignment problem is formulated
as follows:

Isim(Iq, Is) = max {IMsim(si1j1 , . . . , si|H|j|H|)} (ihjh), (iljl) ∈ H, (ihjh) �= (iljl) (13)

H = {(i, j)|xij = 1} (14)
ms∑
j=1

xij ≤ 1 (i = 1, . . . , nq) (15)

nq∑
i=1

xij ≤ 1 (j = 1, . . . ,ms) (16)

xij ∈ {0, 1} (i = 1, . . . , nq; j = 1, . . . ,ms) (17)
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Equation 13 means that to determine the overall score Isim(Iq, Is) we have to consider only the
matches in H (Equation 14). Equation 15 (Equation 16) expresses the constraint that at most
one region Rs,j of Is (resp. Rq,i of Iq) can be assigned to a region Rq,i of Iq (resp. Rs,j of Is).

In order to devise an algorithm to solve the generalized assignment problem, we need to
consider specific choices for the IMsim combining function. At present, in Windsurf we consider
the average similarity between pairs of matched regions:

Isim(Iq, Is) =
1
nq

nq∑
i=1

rsim(Rq,i,Γopt
s (Rq,i)) =

1
nq

nq∑
i=1

h(d(Rq,i,Γopt
s (Rq,i))) (18)

This leads to rewrite Equation 13 as follows:

Isim(Iq, Is) =
1
nq

max




nq∑
i=1

ms∑
j=1

sij · xij


 (19)

The generalized assignment problem, in this case, takes the form of the well known Assignment
Problem (AP), a widely studied topic in combinatorial optimization, for which the Hungarian
Algorithm [Kuh55] can be used.

In case of sequential evaluation, the ERASE (Exact Region Assignment SEquential) algorithm,
shown in Figure 7, can be used to determine the k nearest neighbors of the image query Iq within
the C data-set. Note that HUNG invokes the Hungarian Algorithm on the {sij} matrix of regions’
similarity scores..

ERASE(Iq: query image, k: integer, C: data-set)

{ ∀ image Is in the data-set C
{ ∀ region Rs,j of Is

∀ region Rq,i of Iq compute sij = s(Rq,i, Rs,j);
invoke HUNG({sij}) obtaining, as the result, the value Isim(Iq, Is); }

return the k images having the highest overall similarity scores Isim(Iq, Is); }

Figure 7: The Exact Region Assignment SEquential algorithm.

Resolution of k nearest neighbors queries by means of the ERASE algorithm requires the
computation of similarity scores between regions in the query image and all the regions contained
in the DB images. Algorithm complexity is, hence, linear in the database size.

To evaluate the goodness of the ERASE solution, we also introduce a simple heuristic method
of image matching, called Windsurfapp. Windsurfapp first determines for each query region
Rq,i the most similar region Γ∗

s(Rq,i) in Rs. Then, in case Γ∗
s(Rq,i) = Γ∗

s(Rq,i′) holds for two
distinct query regions Rq,i and Rq,i′ , Windsurfapp only keeps the best of the two assignments
and discards the other one (i.e. the corresponding score is set to 0 and the query region remains
unmatched).
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5 Index Evaluation

In this Section we describe an index-based algorithm aiming to speed-up the evaluation of k

nearest neighbors queries. This is carried out by reducing the number of candidate images, i.e.
images for which the overall image similarity needs to be computed.

Since similarity between images is computed by combining distances between regions’ fea-
tures, we use a distance-based access method (DBAM), like the R*-tree [BKSS90] or the M-tree
[CPZ97], to index regions extracted from the database images.1 Such index structures are able
to efficiently answer both range and k nearest neighbors queries, as well as to perform a sorted
access to the data, i.e. they can output regions one by one in increasing order of distance with
respect to a query region [HS95].

In order to deal with “compound” queries, where multiple query regions are specified, a
query processing algorithm based on multiple sorted access index scans is needed. To retrieve
the best matches for the query regions, we run a sorted access to the indexed regions for each
region in the query image. Clearly, the problem is to devise a suitable condition to stop such
sorted access phase so that we are guaranteed that the k best images can be correctly determined
without looking at the whole data-set. More precisely, the stop condition has to guarantee that
the k nearest neighbor images of the query image Iq are among the so-called candidate images,
i.e. those images for which at least one region has been retrieved during the sorted access phase
(Figure 8).

query regions
...

DBAM

regions

stop here!

regions result sets...

... ... ...

candidate images

Figure 8: Producing the candidate set of images from the sorted access phase.

A first näıve approach to resolve compound queries with DBAMs goes as follows. For each
region Rq,i of the query image Iq, we execute a k nearest neighbors query, that is, we determine
the k regions in the data-set most similar to Rq,i. Then, we compute an optimal matching for

1In Windsurf we use the M-tree index [CPZ97], but other choices are possible.
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all the images for which at least one region has been returned by the previous step. Note that
this is, indeed, the query processing approach used by Blobworld.

This algorithm guarantees that the number of candidate images is not higher than nq · k.
Such a solution is indeed quite efficient, but it is not correct. As an example, consider the case
where nq = 2, k = 1, and assume that the regions’ similarity scores obtained by the two sorted
access scans are as in Table 1.

Rq,1 Rq,2

region image similarity region image similarity

R1,1 I1 0.90 R3,2 I3 0.87

R2,2 I2 0.85 R2,1 I2 0.79

R4,1 I4 0.83 R3,3 I3 0.75

R3,3 I3 0.71 R1,1 I1 0.72

R2,1 I2 0.69 R1,2 I1 0.70
...

...
...

...
...

...

Table 1: A sorted access example for a query image with two regions Rq,1 and Rq,2.

It is plain to see that the image most similar to Iq is the image I2 (the overall similarity
score, computed as the average sum of regions similarities, is (0.9 + 0.7)/2 = 0.80 for image I1,
(0.85 + 0.79)/2 = 0.82 for I2, (0.71 + 0.87)2 = 0.79 for I3, with other images leading to lower
scores), whereas the candidate set only contains images I1 and I3.

In order to find a correct condition to stop the sorted accesses, we start from Fagin’s A0

algorithm [Fag96]. The A0 algorithm stops the sorted access phase when at least k objects
are included in all the index scans results. The only requirement for the A0 algorithm is that
the function applied to combine objects’ scores (in our case, the IMsim function) has to be
monotonic. Applying the A0 algorithm to the optimal image matching problem would be as in
Figure 9.

A0(Iq: query image, k: integer, T : DBAM)

{ ∀ region Rq,i of Iq, open a sorted access index scan on T and insert images

containing result regions in the set Xi;

stop the sorted accesses when there are at least k images in the intersection

L = ∩iX
i;

for each image Is in the candidate set ∪iX
i, compute the optimal assignment;

(random access )

return the k images having the highest overall similarity scores Isim(Is, Iq); }

Figure 9: The A0 algorithm for the optimal image matching problem.

A0, however, does not guarantee yet that the k best images are included in the candidate
set, since its stopping condition does not take into account that assignment of regions has to
be a matching. Just consider, as an example, the case depicted in Table 2, where nq = 2 and
k = 1. Here, as opposed to the case of Table 1, it is not correct to stop the sorted access phase
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at the second step, since image I2 has been found for both query regions with the same region
R2,1; therefore, we cannot find a matching for image I2 by using only regions that have been
seen during the sorted access phase.

Rq,1 Rq,2

region image similarity region image similarity

R1,1 I1 0.90 R3,2 I3 0.87

R2,1 I2 0.85 R2,1 I2 0.79

R4,1 I4 0.83 R3,3 I3 0.75

R3,3 I3 0.71 R1,1 I1 0.72

R2,3 I2 0.69 R1,2 I1 0.70
...

...
...

...
...

...

Table 2: Another sorted access example for a query image with two regions Rq,1 and Rq,2.

To ensure that the k best results are included into the set of candidate images, the stop-
ping condition of A0 algorithm has to be modified to test correctness of regions’ assignments
(see Definition 4.1). The sorted access phase can be stopped as soon as a complete matching
(Property 4.1) is found, by taking into account only regions returned by index scans.2 In the
example of Table 2, hence, we stop the sorted access phase after the fourth step, since image I3

has a complete matching (Γ3(Rq,1) = R3,3 and Γ3(Rq,2) = R3,2). It should be noted, however,
that this is not the best result for Iq (image I1 leads to the best overall score of 0.8). In other
words, the sorted accesses can be stopped as soon as it is guaranteed that each image outside of
the candidate set leads to an overall similarity score lower than that of the k-th best image, i.e.
when optimal matchings for non-candidate images could only lead to lower scores with respect
to the k-th best matching within the candidate set.

Consider again, as an example, the case where nq = 2 and k = 1, and refer to Table
2. After the first step, the candidate set is {I1, I3} with overall scores (0.9 + 0)/2 = 0.45 and
(0+0.87)/2 = 0.435, respectively. Since an image outside the candidate set could potentially lead
to an overall score of (0.9+ 0.87)/2 = 0.885, we have to continue the sorted access phase. After
the second step, we add image I2 to the candidate set with an overall score of (0.85+0)/2 = 0.425
(remember that region R2,1 can match at most one region of Iq); therefore, the sorted accesses
cannot be stopped yet. At the third step, also image I4 is added to the candidate set, with a
score of (0.83 + 0)/2 = 0.415. Finally, at fourth step, we obtain a complete matching for image
I3 (Γ3(Rq,1) = R3,3 and Γ3(Rq,2) = R3,2) with a score of (0.71 + 0.87)/2 = 0.79. In this case,
the sorted access phase can be stopped, since images outside of the candidate set can only lead
to lower scores (at most (0.71 + 0.72)/2 = 0.715). The monotonicity of the combining function
IMsim is used here to ensure algorithm correctness (see below). Note, however, that image I3

is not the best result for Iq, since image I1 leads to the best overall score of 0.8. In order to
solve the optimal image matching problem on the set of candidate images, we need to compute
similarity scores between query regions and all the regions of candidate images.

From above example, it is clear that the sorted access phase can be stopped as soon as a

2By the way, this is the reason why Blobworld algorithm is not correct, since its stopping condition cannot

guarantee the existence of a complete matching.
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complete matching is found, by taking into account only regions returned by index scans. This
leads to the AWS

0 algorithm shown in Figure 10.

AWS
0 (Iq: query image, k: integer, T : DBAM)

{ ∀ region Rq,i of Iq, open a sorted access index scan

on T and insert result regions in the set Xi;

stop the sorted accesses when there are at least k images for which a complete

matching exists, considering only regions in ∪iX
i;

∀ image Is having regions in ∪iX
i,

∀ pair Rq,i, Rs,j

if Rs,j �∈ Xi compute score sij; (random access )

compute the optimal assignment; (combining phase )

return the k images having the highest overall similarity scores Isim(Iq, Is); }

Figure 10: The AWS
0 algorithm.

The random access phase consists in computing those similarity scores sij between query
regions and regions of candidate images not present in the Xi regions result sets. After that,
the combining phase determines the optimal matchings for all the candidate images.

Correctness of the AWS
0 algorithm follows from the monotonicity of the IMsim combining

function. Without loss of generality, consider the case k = 1 and assume by contradiction that
the nearest neighbor image, say Inn, of Iq is not in the candidate set. Also observe that the
candidate set includes (at least) one image, say Is, for which a complete matching has been
obtained. We prove that Isim(Iq, Is) ≥ Isim(Iq, Inn). Because of the monotonicity of IMsim it
is enough to show that, for each i ∈ [1, nq], it is

rsim(Rq,i,Γs(Rq,i)) ≥ rsim(Rq,i,Γopt
nn (Rq,i))

where Γs is the matching obtained for Is from the sorted access phase, and Γopt
nn is the optimal

matching for Inn. Assume that there exists a value of i for which it is:

rsim(Rq,i,Γopt
nn (Rq,i)) > rsim(Rq,i,Γs(Rq,i))

However, this is impossible since the region Γopt
nn (Rq,i) of Inn does not belong, by hypothesis, to

the set Xi obtained from the i-th sorted access scan. This is enough to prove that Isim(Iq, Is) ≥
Isim(Iq, Inn).

The index evaluation of compound queries, thus, will have a twofold impact on query eval-
uation: First, the use of an index can reduce the number of distance computations needed for
assessing image similarity; second, the number of images on which the Hungarian algorithm has
to be run is reduced by considering only images in the candidate set.

6 Experimental results

Preliminary experimentation of the proposed techniques has been performed on a sample medium-
size data-set consisting of about 2, 000 real-life images, yielding more than 10, 000 regions, ex-

17



tracted from a CD-ROM from IMSI-PHOTOS.3 The query workload consists of about 100
randomly chosen images not included in the data-set. All experiments were performed on a
Pentium II 450 MHz PC equipped with 64MB of main memory and running Windows NT 4.0.

6.1 Efficiency

The first set of experiments we present concerns the efficiency of the proposed approach. In
order to test the performance of the AWS

0 index-based algorithm, in Figure 11 we compare the
number of candidate images, i.e. the images on which the Hungarian algorithm has to be applied,
as a function of the number of query regions.4 Of course, for the ERASE algorithm the number
of candidate images equals the number of images in the data-set, whereas for the index version
this number depends both on values of k and of the number of query regions. As the graph
shows, the AWS

0 algorithm is indeed very efficient in reducing the number of candidate images,
even if its performance deteriorates as the number of query regions increases. This is intuitive,
since the complexity of finding k objects in the intersection of nq sets augments with nq.
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Figure 11: Average number of candidate images as a function of the number of query regions.

Another element affecting performance is the number of computed distances between regions.
In Figure 12 (a) we show the number of computed distances for the ERASE and the AWS

0 algo-
rithms, as a function of k, with a number of query regions nq = 3. In order to reduce the number
of distances to be computed for the index-based algorithm, we also considered an approximate
version of the AWS

0 algorithm, called AWSapp

0 . In this case, the random access phase computes
the optimal matching for each candidate image by taking into account only regions returned by
the sorted access phase, i.e. no new distance is computed. Average number of distance com-
putations for the AWSapp

0 algorithm is also shown in Figure 12 (a). The graph shows that the
index-based approach is not very efficient in reducing the number of computed distances. We
believe that this is due to the low cardinality of the data-set: Increasing the number of images in
the data-set would have a beneficial effect on the performance of index-based algorithms (whose
search costs grow logarithmically with the number of indexed objects) with respect to that of
sequential ones.

3IMSI MasterPhotos 50,000: http://www.imsisoft.com.
4Unless otherwise specified, all the graphs presented here show numbers averaged over all the images contained

in the query workload.
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Finally, in Figure 12 (b) we compare query response times as a function of k (with a constant
value of nq = 3). The graph shows average query evaluation times (in seconds) for the ERASE

algorithm, the Windsurfapp heuristic matching algorithm, and the two index-based algorithms,
AWS

0 and AWSapp

0 , respectively. From the graph it can be deduced that:

(i) The lower complexity of image matching for the Windsurfapp algorithm with respect to
the ERASE algorithm does not pay off in reducing query evaluation times. This is due to
the fact that, if nq is low (as it is in our case), finding the optimal result is very easy.

(ii) The index-based algorithms really succeed in cutting down query resolution times, even if
difference in performance reduces with increasing values of k.

(iii) The approximate AWSapp

0 algorithm has performance similar to that of the exact AWS
0

algorithm. This demonstrates that the performance improvement with respect to sequential
query evaluation is due to the lower number of candidate images, and that the number of
computed distances has a minor impact on performance.
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Figure 12: Average number of computed distances (a) and average query resolution time (b) as
a function of k (nq = 3).

6.2 Effectiveness

In order to compare the “goodness” of results obtained by approximate algorithms (i.e. the
Windsurfapp heuristic matching algorithm and AWSapp

0 ) with respect to those obtained by
exact ones (ERASE and AWS

0 ), we need a performance measure able to compare results of k

nearest neighbors queries. Such measure should compare two sorted lists of results, that is, it
should contrast ranks (positions) of images in exact and approximate results. Given the i-th
image in the approximate result, its rank, rank(i), is given by the position of that image in the
exact result. As an example, consider the case when k = 1. The “goodness” of an approximate
result with respect to the exact one can be obtained by just taking into account rank(1): The
lower rank(1) is, the better the approximation works. This measure can be easily extended to
the case where k > 1 by considering the ranks of all the k images in the approximate result, i.e.
rank(1), . . . , rank(k).
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In [WB00], the normalized rank sum (nrs) is used to quantify the loss of result quality when
k nearest neighbors queries are approximately evaluated. The nrs is defined as:

nrs =
k(k + 1)

2 ·
∑k

i=1 rank(i)
(20)

The nrs is computed as the inverse of the sum of all the ranks of the images in the approximate
result. Thus, higher values of nrs are to be preferred. This measure, however, is not able
to capture inversions in the result (e.g. when image Is is ranked higher than image Is′ in the
approximate result and lower in the exact result), since no difference between ranks of images
in the approximate and in the exact results is taken into account.

In [ZSAR98], the precision of approximation measure P is introduced, which is defined as:

P =
1
k

k∑
i=1

i

rank(i)
(21)

P , therefore, measures the relative error in ranking for all the images in the approximate result.
This measure, however, relies on the assumption that i ≤ rank(i), thus no inversions on results
are allowed.

To overcome above limitations in quality measures, we introduce a new measure, the nor-
malized rank difference sum ψ. To compute ψ, we sum differences in rankings for images in the
approximate result and normalize by k. Normalization of the measure in the interval [0, 1] leads
to the formulation of ψ as follows:

ψ =
1

1 + 1
k

(∑k
i=1 1(rank(i)− i)p

)1/p
(22)

where 1() is the ramp function (1(x) = 0 if x < 0, 1(x) = x if x ≥ 0), and p is an integer
parameter (we used p = 2 in our experiments). Values of ψ close to 1 indicate high quality of
the approximate result. The use of the ramp function 1() is needed to avoid counting twice the
effects of inversions in ranking. For instance, consider the case where k = 3 and the exact result
is I1, I2, and I3. If the approximate result is I1, I3, I2, it is rank(1) = 1, rank(2) = 3, and
rank(3) = 2. Accordingly to Equation 22, and setting p = 2, the value of ψ is computed as:

ψ =
1

1 + 1
3 (1(1− 1)2 + 1(3− 2)2 + 1(2− 3)2)1/2

=
1

1 + 1
3 (0 + 1 + 0)1/2

= 0.75

Figure 13 shows average (a) and minimum (b) values of ψ for exact and approximate al-
gorithms as a function of the fraction of query regions used to query the database (the value
of k is kept fixed at 20, other values lead to similar results and are omitted here for brevity).
This is to show the effectiveness of different approaches when only some regions of the query
image are used for the query (this can be done in order to reduce the query response time or
just because we are interested only in some objects included in the query image). Both graphs
exhibit similar trends: The effectiveness of the AWSapp

0 algorithm is almost always the lowest,
and, for all curves, ψ only reaches high values when the fraction of query regions is close to 1.
Figure 13 (b) shows that, in order to find a “good” result, we have to use all the regions in the
query image. From Figure 13 (a), on the other hand, we see that approximate algorithms lead
to a low effectiveness, even if, as we have seen before, they attain slightly better performance
with respect to their exact counterparts.
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Figure 13: Average (a) and minimum (b) ψ as a function of the fraction of query regions (k = 20).

6.3 Comparison with other CBIR techniques

In order to evaluate the effectiveness of Windsurf, we compare the results of Windsurf for
a number of image queries with those obtained by applying the method proposed in [SO95],
denoted SO.

From a semantic point of view, results obtained by Windsurf are considerably better with
respect to those obtained by the SO method. As an example, consider Figure 14: Results for SO
(SO1 - SO5) contain images semantically uncorrelated to the query image (e.g. image (SO3), a
house, and image (SO5), a harbour). As for the results of Windsurf (WS1 - WS5), all of them
present a “sky” region and a darker area.

The superior effectiveness of our approach is confirmed when considering “difficult” queries,
i.e. queries having a low number of similar images in the DB. In Figure 15 we show the results
for a query having only two similar images: For SO, none of the two images is included in the
result. Windsurf, on the other hand, retrieves both images.

Finally, we compared the two approaches when dealing with “partial-match” queries, i.e.
queries specifying only a part of the image. As an example, consider Figure 16, where the
query image is obtained by “cropping” a DB image, namely, the dome of St. Peter in Rome.
With Windsurf all the retrieved images refer to St. Peter, with the only exception of image
(WS3), representing the dome of St. Marcus in Venice. Indeed, the query image was extracted
from image (WS1). When we anaylze the result obtained by using SO, we see that only one
image related to the query image is retrieved in third position, whereas other images, with the
exception of image (SO2) (again the dome of St. Marcus), are totally uncorrelated to the query
image.

7 Conclusions

In this work we have presented Windsurf, a region-based image retrieval system. Windsurf

uses a wavelet-based clustering approach to segment images into homogeneous regions, and then
applies a correct image matching algorithm to retrieve the k nearest neighbor images of a query
image. Similarity between images is assessed by means of a distance function comparing re-
gion features and combining the results at a global level. Towards this goal, both a sequential
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Figure 14: Results for the “mountains” query.

(ERASE) and an index-based (AWS
0 ) algorithms have been described. Preliminary experimen-

tal results demonstrate the superior retrieval effectiveness of Windsurf with respect to the
method described in [SO95] and show that our image matching algorithm is very effective with
respect to existing heuristic approaches. However, from the efficiency point of view, there is
still room for improvement. In particular, we have observed that the AWS

0 algorithm, even if
more efficient as compared to the sequential one, is not successful in reducing the number of
distance computations needed to answer a query. In order to overcome this limitation, we plan
to employ approximate techniques for index access [CP00]. Another issue that needs to be in-
vestigated regards the possible parallelization of multiple index scans, along the lines described
in [BEKS00].
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Figure 15: Results for the “bridge” query.

References

[BCGM98] Serge Belongie, Chad Carson, Hayit Greenspan, and Jitendra Malik. Color- and
texture-based image segmentation using EM and its application to content-based
image retrieval. In Proceedings of the 6th International Conference on Computer
Vision ICCV’98, Mumbai, India, January 1998.

[BDV99] Stefano Berretti, Alberto Del Bimbo, and Enrico Vicario. Managing the complexity
of match in retrieval by spatial arrangement. In International Conference on Image
Analysis and Processing (ICIAP’99), Venezia, Italy, September 1999.

[BEKS00] Bernhard Braunmüller, Martin Ester, Hans-Peter Kriegel, and Jörg Sander. Ef-
ficiently supporting multiple similarity queries for mining in metric databases.
In Proceedings of the 16th International Conference on Data Engineering (ICDE
2000), pages 256–267, San Diego, CA, February 2000.

[BKSS90] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger. The
R∗-tree: An efficient and robust access method for points and rectangles. In Pro-
ceedings of the 1990 ACM SIGMOD International Conference on Management of
Data, pages 322–331, Atlantic City, NJ, May 1990.

[CK93] T. Chang and C.-C.J. Kuo. Texture analysis and classification with tree-structured
wavelet transform. IEEE Transactions on Image Processing, 2(4):429–440, October
1993.

[CP00] Paolo Ciaccia and Marco Patella. PAC nearest neighbor queries: Approximate and
controlled search in high-dimensional and metric spaces. In Proceedings of the 16th
International Conference on Data Engineering (ICDE 2000), pages 244–255, San
Diego, CA, February 2000.

23



(query) (SO1) (SO2)

(SO3) (SO4) (SO5)

(query) (WS1) (WS2)

(WS3) (WS4) (WS5)

Figure 16: Results for the “dome” query.

[CPZ97] Paolo Ciaccia, Marco Patella, and Pavel Zezula. M-tree: An efficient access method
for similarity search in metric spaces. In Proceedings of the 23rd International
Conference on Very Large Data Bases (VLDB’97), pages 426–435, Athens, Greece,
August 1997.

[CPZ98] Paolo Ciaccia, Marco Patella, and Pavel Zezula. Processing complex similarity
queries with distance-based access methods. In Proceedings of the 6th International
Conference on Extending Database Technology (EDBT’98), pages 9–23, Valencia,
Spain, March 1998.

[CTB+99] Chad Carson, Megan Thomas, Serge Belongie, Joseph M. Hellerstein, and Jitendra
Malik. Blobworld: A system for region-based image indexing and retrieval. In

24



Proceedings of the 3rd International Conference on Visual Information Systems
VISUAL’99, pages 509–516, Amsterdam, The Netherlands, June 1999.

[Dau92] Ingrid Daubechies. Ten Lectures on Wavelets. Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, 1992.

[Fag96] Ronald Fagin. Combining fuzzy information from multiple systems. In Proceed-
ings of the 15th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems (PODS’96), pages 216–226, Montreal, Canada, June 1996.

[Fal96] Christos Faloutsos. Searching Multimedia Database by Content. Kluwer Academic
Publishers, 1996.

[FEF+94] Christos Faloutsos, Will Equitz, Myron Flickner, Wayne Niblack, Dragutin
Petkovic, and Ron Barber. Efficient and effective querying by image content.
Journal of Intelligent Information Systems, 3(3/4):231–262, July 1994.

[GR95] Venkat N. Gudivada and Vijay V. Raghavan. Content-based image retrieval sys-
tems. IEEE Computer, 28(9):18–22, September 1995. Guest Editors’ Introduction.

[HS95] Gisli R. Hjaltason and Hanan Samet. Ranking in spatial databases. In Proceedings
of the 4st International Symposium on Advances in Spatial Databases (SSD’95),
pages 83–95, Portland, ME, August 1995.

[Kuh55] Harold W. Kuhn. The hungarian method for the assignment problem. Naval
Research Logistic Quarterly, 2:83–97, 1955.

[NRS99] Apostol Natsev, Rajeev Rastogi, and Kyuseok Shim. WALRUS: A similarity re-
trieval algorithm for image databases. In Proceedings 1999 ACM SIGMOD Inter-
national Conference on Management of Data, Philadelphia, PA, June 1999.

[OS95] Virginia E. Ogle and Michael Stonebraker. Chabot: Retrieval from a relational
database of images. IEEE Computer, 28(9):40–48, September 1995.

[PPS96] Alex Pentland, Rosalind W. Picard, and Stan Sclaroff. Photobook: Content-based
manipulation of image databases. In Borko Furht, editor, Multimedia Tools and
Applications, chapter 2, pages 43–80. Kluwer Academic Publishers, 1996.

[Sal88] Gerard Salton. Automatic Text Processing: The Transformational, Analysis, and
Retrieval of Information by Computer. Addison-Wesley, Reading, MA, 1988.

[SC96] John R. Smith and Shih-Fu Chang. VisualSEEk: A fully automated
content-based image query system. In Proceedings of the 4th ACM Interna-
tional Conference on Multimedia, pages 87–98, Boston, MA, November 1996.
http://www.ctr.columbia.edu/visualseek/.

[Smi97] John R. Smith. Integrated Spatial and Feature Image Systems: Retrieval, Analysis
and Compression. PhD thesis, Columbia University, 1997.

25



[SO95] Markus Stricker and Markus Orengo. Similarity of color images. In Storage and
Retrieval for Image and Video Databases SPIE, volume 2420, pages 381–392, San
Jose, CA, February 1995.

[TCH00] Megan Thomas, Chad Carson, and Joseph M. Hellerstein. Creating a customized
access method for Blobworld. In Proceedings of the 16th International Conference
on Data Engineering ICDE 2000, page 82, San Diego, CA, March 2000.

[UVJ+97] Geert Uytterhoeven, Filip Van Wulpen, Maarten Jansen, Dirk Roose, and Adhe-
mar Bultheel. WAILI: Wavelets with integer lifting. Technical Report 262, De-
partment of Computer Science, Katholieke Universiteit Leuven, Heverlee, Belgium,
July 1997.

[VSLV] Gert Van de Wouver, Paul Scheunders, Stefan Livens, and Dirk Van Dyck. Color
texture classification by wavelet energy-correlation signatures. To appear on Pat-
tern Recognition.
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A The Wavelet Transform

The basic idea of the wavelet transform (WT) is similar to that of Fourier transform: Approx-
imate a signal through a set of basic mathematical functions. However, wavelet functions are
able to give a multi-resolution representation of the signal, since each frequency component can
be analyzed with a different resolution and scale, whereas the Fourier transform divides the
time-frequency domain in a homogeneous way. This allows the WT to represent discontinuities
in the signal by using “short” functions and, at the same time, to emphasize low frequency
components using “wide” functions.

The Continuous WT decomposes a 1-D signal f(x) into a set of scaling functions by using
a set of wavelet basis functions {ψa,b}:

(Waf)(b) =
∫

f(x)ψ∗
a,b(x)dx (23)
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where each wavelet basis function is obtained from amother wavelet ψ(x) by scaling and shifting:

ψa,b(x) =
1√
a
ψ

(
x − b

a

)
(24)

The mother wavelet should only satisfy the zero-average condition, i.e.
∫

ψ(x)dx = 0.
The Discrete WT is obtained by taking a = 2n and b ∈ Z. The oldest, and simplest, example

of a mother wavelet is the Haar function, which was first introduced in 1910, and is composed
by a pair of rectangular pulses:

ψ(x) =




1 0 ≤ x < 1/2
−1 1/2 ≤ x < 1
0 otherwise

(25)

The following examples show how a discrete signal is decomposed by means of the Haar wavelet.

Example A.1 Consider a discrete signal x = (x0, x1, . . . , x2L−1) having length 2L. The DWT
is computed through the following steps:

1. For each pair of consecutive samples (x2i, x2i+1), (0 ≤ i < 2L−1), compute a1
i = 1√

2
(x2i +

x2i+1) and d1
i = 1√

2
(x2i − x2i+1).

2. Consider the new signal (a1
0, . . . , a1

2L−1−1
) and proceed as in step 1., obtaining a2

i and d2
i

(0 ≤ i < 2L−2).

3. Continue until a single value of aL
0 is obtained.

The Haar transform of x is given by the set of “difference” values dl
i (0 < l ≤ L, 0 < i < 2l−1),

and the “average” value for the last level aL
0 . In the frequency domain, the values al

i correspond to
the output of a low pass filter, thus representing low-frequency information, whereas the dl

i values
correspond to the output of a high pass filter, thus representing high-frequency information.

In our case, the signal is a 2-D color image, where the “time” domain is the spatial location
of pixels and the frequency domain is the color variation between adjacent pixels. In order
to build an orthonormal wavelet basis for the 2-dimensional space, one can start from the 1-
dimensional domain and compute the product of two 1-dimensional basis functions, that is,
Ψj1,k1;j2,k2(x1, x2) = ψj1,k1(x1) · ψj2,k2(x2). If the image to be processed has dimension N × M ,
the first transformation step decomposes the signal into four sub-images of dimension N/2×M/2,
representing the sub-bands in the frequency domain. The obtained sub-images are labelled as
LL,LH,HL,HH, where L and H represent low- and high-frequency information, respectively,
and the first position refers to the horizontal direction, whereas the second position refers to the
vertical direction:

LL: Low-frequency information in both the horizontal and vertical directions.

LH: Low-frequency information in the horizontal direction, high-frequency information in the
vertical direction.
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Figure 17: The sub-images Dk
2−jf,Ad

2−Lf in the “wavelet” image representation.

HL: High-frequency information in the horizontal direction, low-frequency information in the
vertical direction.

HH: High-frequency information in both the horizontal and vertical directions.

The second transformation level decomposes the LL sub-image, obtaining four images of
dimension N/4× M/4, and so on. Figure 17 shows the decomposition of the frequency domain
at different scale levels: Ad

2−Lf contains low-frequency information, whereas D1
2−jf , D2

2−jf , and
D3

2−jf contain horizontal, vertical and diagonal information, respectively.
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