Integrating the Results of Multimedia Sub-Queries
Using Qualitative Preferences

Ilaria Bartolini} Paolo Ciaccia
DEIS - IEIIT-BO/CNR
University of Bologna, Bologna, Italy
{ibartolini,pciaccia}@deis.unibo.it

Vincent Oria
Computer Science NJIT
University Heights, Newark, NJ, USA
oria@cis.njit.edu

M. Tamer Ozsu
School of Computer Science
University of Waterloo, Waterloo, Canada
tozsu@Qdb.uwaterloo.ca

Abstract

When similarity queries over multimedia databases are processed
by splitting the overall query condition into a set of sub-queries, the
problem of how to efficiently and effectively integrate the sub-queries’
results arises. The common approach is to use a (monotone) scoring
function, like min and average, to compute an overall similarity score
by aggregating the partial scores an object obtains on the sub-queries.
In order to minimize the number of database accesses, a “middleware”
algorithm, like TA by Fagin, Lotem and Naor, is applied to return only
the top k highest scored objects.

In this paper we consider the use of qualitative preferences for the
integration of partial scores. With qualitative preferences one can
define arbitrary partial (rather than only linear) orders on database
objects, which adds a large flexibility and avoids some drawbacks of
scoring functions when query refinement is involved. For the purpose
of efficient evaluation, we propose two integration algorithms: MPO,
which delivers objects one layer at a time, layers being defined by the
specific partial order at hand, and iMPO, which is an incremental al-
gorithm that delivers one object at a time, thus suitable for top k
queries. We provide formal evidence that iMPO, when equipped with
Skyline preferences, will perform faster than TA, and demonstrate this

*Part of this work was performed while this author was visiting NJIT.

through experiments on a real image database. Besides being faster,
iMPO can deliver results whose quality, in terms of standard preci-
sion measure, is comparable to that obtainable with scoring functions.
However, results of iMPO provide a much better (i.e., less unbiased)
overall view of the objects relevant to a query, which highly simplifies
query refinement tasks.

1 Introduction

Specification and evaluation of multimedia (MM) queries are both difficult
problems to be addressed for the development of effective MM tools and
applications. Indeed, the formulation of a query on a MM database has
to take into account both the intrinsic complexity to properly characterize
the semantic content of multimedia objects and the difficulty that a user
experiences when trying to exactly formulate her needs. With a large MM
database, in which each object is characterized by means of a set of relevant,
automatically extracted, low-level features (e.g., color, texture, and shape in
the case of still images) and where the most common query modality is QBE
(Query By Example), the user provides the system with a “target” (query)
object and expects as result the “most similar” database objects. For this
retrieval model to effectively work, it is well recognized that the similarity
function used to compare objects has to be properly adapted, possibly by
means of some relevance feedback [14], to fit the subjective user preferences.

When dealing with complexr MM queries involving multiple features, the
scenario is further complicated. Indeed, since it is a common case that
features are separately indexed [13] or even managed by independent spe-
cialized sub-systems [10], an integration of partial results is needed. The
usual approach (see, e.g., [10, 13, 11, 5]) is to have an independent, yet
synchronized, evaluation of sub-queries, one for each involved feature. Each
object returned by a sub-query has an associated partial score for the cor-
responding feature, which are then aggregated by means of some scoring
function, like min, max, and avg, into an overall score. Under this view one
object is better than (i.e., preferred to/ranked higher than) another iff its
overall score is higher.

Example 1.1 (Scoring functions) Consider a user who, through the sys-
tem graphical interface, draws the image query shown on top of Figure 1
(image op) and aims to retrieve from the database those images with a palm
tree on the right side (1st sub-query) and a sun on the left side (2nd sub-
query). Consider two images 01 and o2 and assume that the partial scores of
o1 are, respectively, s1.1 = 0.6 and s12 = 0.4, and those of 02 are s31 = 0.5
and s3 2 = 0.6. If the scoring function is min we get s; = 0.4 and s3 = 0.5,
thus image o2 has to be preferred to o1. On the other hand if the scoring
function is s; = 0.7 X s;1 + 0.3 X s;2 then we get s1 = 0.54 and sy = 0.53,

thus o1 s now better than os.

As above example shows, the choice of the scoring function can be a critical
factor for the determination of the final result, that, when using scoring
functions, usually consists of the k highest scored (top k) objects. A further
problem is that it is a hard, if not impossible, task to derive a scoring
function that can suitably represent user preferences.

Example 1.2 (Images) Consider the same query used in Example 1.1.
If an image like oy does not exist in the database, the user would prefer
images with both objects on the right (image 01) rather than to have the
sun on the right and a palm on the left (image o2). Further, images with
only the sun on the left (image 03) are preferred to images with only a palm
on the right (image o4). The overall preference specification is represented
in the figure, where we draw an arrow from o; to o; if o; is preferred to
0j. We claim that no scoring function, defined independently of the actual

0
/ \
YAy vAg
<D<v> s DA

0 i i 03
vig
< >
A

0, 0,

Figure 1: The target image op and two user preferences

content of the database, can capture above preferences.! Indeed, assume

that the database contains images {o0g,01,02,03,04}. Since no preference
exists between o1 and oz and between oy and o4, it is necessarily the case
that s > s1 = 83 > So = s4. Assume now that the only images in the
database are {0g,01,02,04}. In this case the “right” scoring function should

!See, for a similar example, Example 7.4 in [7].

yield sg > s1 = 84 > So, since only og is now to be preferred to o4. As a
conclusion, in the first database instance we have s1 > s4, whereas in the
second it is s1 = sS4, which demonstrates the point.

What above example highlights is that scoring functions have indeed limited
expressive power, since they can only capture a limited type of preferences.
These, also called quantitative preferences, are exactly those that assign to
each object a numerical value (its score, or “utility”) regardless of the other
objects in the database [12]. As the example shows, user preferences are not
always of this kind.

A third problem with scoring functions is that they provide a poor “cov-
erage” of the best available alternatives. As shown in Example 1.1, the
“best” objects depend on the adopted scoring function. This implies that,
once a scoring function has been chosen, only a (very) limited portion of
the potential best objects can be retrieved. Although relevance feedback
mechanisms can alleviate this well-known problem, by allowing the user to
progressively shift her focus towards interesting regions of the search space,
they usually require several iterations before leading to acceptable results,
thus generating a not negligible overhead on the system [1].

In this paper we propose a novel, more general, approach to sub-query
integration based on qualitative preferences as an alternative to quantitative
scoring functions. Qualitative preferences, which have been recently used in
the context of relational databases [6], require only that, given a pair of
objects 0; and oj, one has some (binary) preference relation stating whether
o; is preferred to o; (0o; > o) or not (o; % oj). This approach includes
scoring functions as a special case, since, given a scoring function, one can
always define o; > o; iff s; > s;. Note that with qualitative preferences it
might be the case that neither o; > 0; nor o; > o0; hold, in which case o; and
o; are indifferent (written o; ~ 0;).

Although qualitative preferences enjoy much more flexibility than scoring
functions, in this paper we focus on the well-defined and intuitive case, which
we call partial order (PO) integration where the preference relation defines
a (strict) partial order on database objects, thus o; ¥ o; (irreflexivity) and
0j = 0j, 0j = 0, = 0; > oy, (transitivity).

The rationale for using PO stems from the basic observation that all
the problems that plague scoring functions are no longer a concern. Indeed,
expressiveness is not a problem with PO, as argued above. PO is not forced
to use a scoring function in order to rank objects, rather it can use other,
more sophisticated and flexible, criteria that directly take into account all
the partial scores. This has the consequence that there is no risk of choosing
“bad parameter values” for the scoring function. Finally, with PO it is
possible to get an “overall view” of the potential best objects for a given
query, a fact that highly simplifies the task of focusing on the right part
of the search space. To this end we will show that PO’s relevant results

cover much better than scoring functions the search space, as demonstrated
through experiments on a real-world image database.

The model of queries we consider includes the standard one, where one
is interested in obtaining the top k results, the major difference being, of
course, the criterion according to which objects are ranked. To this end we
rely on the well-defined (equivalent) semantics of the Best [15] and Winnow
[6] operators, recently proposed in the context of relational databases. The
Best operator . (C) returns all the objects o in a collection C' such that
there is no object in C' better than o according to relation . Ranking can be
easily obtained by recursively applying the Best operator to the remaining
objects (i.e., those not in C' — (. (C), and so on). This leads to a layered
view of the search space where all the objects in one layer are indifferent.
Thus, besides top k queries, PO also naturally supports a “first ¢ layers”
query model, which adds further flexibility to the retrieval phase.

For the purpose of efficient query evaluation, we propose two integration
algorithms. Algorithm MPO applies to any preference relation that defines
a strictly monotone PO (see Definition 6) and returns the first £ layers of the
partial order. In order to efficiently support top & queries, we then modify
MPO into an online algorithm, iMPO, which delivers its results to the user in
an incremental way. We experiment with two specific preference relations:
1) so-called (layered) Skyline (SL) preferences [4], for which an object o
belongs to [, g (C) iff there is no other object that dominates o on all
sub-queries; and 2) Region-prioritized Skyline (RS) preferences, which avoid
some drawback of Skyline preferences when used for multimedia queries.

Our contributions are summarized as follows:

e We provide a formal demonstration of the general inadequacy of scor-
ing functions in supporting the retrieval of the potential best matches
of a query (Theorem 1).

e We introduce qualitative preferences, in particular strictly monotone
partial orders, as a new model for the integration of sub-queries’ re-
sults, and present the new Region-prioritized Skyline (RS) preference
relation.

e We detail two integration algorithms, MPO and iMPO, for the effi-
cient computation of the result of “first £ layers” and top k queries,
respectively.

e Under rather broad assumptions, we prove (Theorem 3) that iMPO,
equipped with Skyline preferences, will deliver results faster than TA [11],
which is the algorithm using scoring functions we take for reference
purpose.

o We demonstrate, through experiments on a real-world image database,
that the quality of the results returned by iMPO and TA, as measured

in terms of classical precision, is comparable; however:

— iMPO requires less database accesses than TA to get the same
number of relevant objects, and

— iMPO results, especially when using RS preferences, reflect much
better than TA (using either min or avg) the actual distribution
of relevant objects in the database, thus highly simplifying query
refinement activities.

The paper is organized as follows. In Section 2 we provide the basic
definitions concerning the query scenario and the integration problem; then
we discuss scoring functions and their intrinsic limits. Section 3 introduces
qualitative preferences. In Section 4 we present the MPO and iMPO al-
gorithms, and in Section 5 we describe experimental results. Table 1 lists
relevant symbols used in the paper.

Symbol | Description

C collection of objects

0; an object of collection C'

Q complex query with m sub-queries
Qq g-th sub-query (¢ =1,...,m)

Siq partial score of o; for Qq (siq €10,1])
A answer space (A = [0,1]™)

Si representative point of o; (s; € A)

s the “threshold point”

S scoring function

S overall score of object 0; (s; = S(s;))
- preference relation

O the Best operator

Table 1: Relevant symbols used in the paper

2 The Integration Problem

Consider a collection C' of objects and a complex MM query of the form
Q = (Q1,Q2,...,Qm) where each @, is a sub-query. With respect to the
condition expressed by @),, we assume that each object o; € C' can be eval-
uated and assigned a partial score, s;, € [0,1], assessing “how well” o;
matches @, condition (higher values are clearly better). Thus, the under-
lying collection C can be regarded as being composed of m lists, one for
each sub-query, where the list L, (¢ = 1,...,m) contains pairs of the form
(04, 8i,q) and is linearly ordered according to scores, with higher partial scores
at the beginning of the list.

The integration problem is to return as a result of Q the “best” (in some
sense to be defined) objects based on the L, lists. We model access to the
database in the usual way [10, 11, 5], assuming that objects can be retrieved
through one of two distinct modalities:

e In the sorted (i.e., sequential) access modality one retrieves from a list
L, the next unseen object on that list, say o;, together with its partial
score, S 4.

e In the random access modality, given an object o; seen via sorted
access on some list L, one can retrieve from the database the needed
features and, consequently, evaluate the missing partial scores for o;.

2.1 Scoring Functions

The standard approach to define the semantics of a complex MM query
is based on so-called scoring functions. Consider the m-dimensional space
A = [0,1]™, which we can conveniently call the answer space. For a given
query Q, each object o; is univocally represented in A by a point s; =
(Si1,---,8im), whose coordinate values are its m partial scores for the m
sub-queries.

Definition 1 (Scoring function) A scoring function on A is any function
S+ A —[0,1] that assigns to each point s; € A a value s; = S(s;), called the
overall score of 0;.

Intuitively, the scoring function .S is the “rule” that one wants to adopt to
give proper credit to the partial scores and, consequently, to the correspond-
ing sub-queries.

In the last years a large variety of algorithms have been proposed to
efficiently evaluate the result of top k complex queries, i.e., when one is in-
terested in obtaining the k£ highest scored objects, with ties to be arbitrarily
broken. Approaches that make specific hypotheses on how the sub-queries
are evaluated, like [8] and [3], can yield superior performance, yet they have
limited applicability and imply a modification of the access methods used
for sub-query evaluation. On the other hand, “middleware” algorithms, like
Ao [10], TA and NRA [11], and Upper [5], to name a few, just rely on the
sorted and random access modalities and on the hypothesis of monotonicity
of the scoring function.

Definition 2 (Monotonicity of scoring functions) Anm-ary scoring func-
tion S is monotone if sj, < s;4 for all ¢ implies s; = S(sj1,...,8jm) <

S; = S(SZ'J, ey Si,m)-

In practice, most commonly used scoring functions, like min, max, avg, etc.,

as well as their “weighted” extensions, are not only monotone, but also
strictly monotone, that is, s;, < s; 4 for all ¢ implies s; < s;.

Monotonicity and strict monotonicity can be given a simple yet useful
geometric interpretation. For this consider the “target” point in A defined
as 1 = (1,...,1), which corresponds to the best possible evaluation for all
the sub-queries, and let R; be the hyper-rectangle having points s; and 1 as
opposite vertices. We call R; the hyper-rectangle of o;.

Observation 1 IfS is (strictly) monotone and sj is a point of (resp., in the
interior of) the hyper-rectangle R; of o;, then S(s;) < S(s3) (S(si) < S(sj)).

As a simple corollary, if there are at least k points of C' in the hyper-rectangle
of 0;, then there is no strictly monotone scoring function that can make o;
one of the k highest scored objects in C'. Further, since ties can be arbitrarily
broken, o; can also be safely neglected in case of monotone scoring functions.
This is precisely captured by the concept of potential (k) best match:

Definition 3 (Potential & best match) An object o; for which there are
k — 1 points of C in its hyper-rectangle is called a potential k best match.
A potential 1 best match is simply called a potential best match.

2.2 (In)completeness of Scoring Functions

It is clear that any top k query based on a monotone scoring function can
only return points that are potential & best matches. In practice, which of
them are more relevant to the user is difficult to assess a priori, and relevance
feedback mechanisms are usually used to this end. Under this view, the
search process is better understood as the search of a “good” scoring function
within a class of scoring functions with parameters (usually called “weights”)
[1]. As an example, one could use the class of weighted averages and change
the weight to be assigned to each partial score (sub-query) depending on the
correlation between the sub-query scores and objects’ relevance, as assessed
by the user.

A natural requirement for a class of scoring functions is that of complete-
ness.

Definition 4 (Completeness of scoring functions) A classC(W) = {Sw}
of scoring functions with parameters VW is complete iff there is an assign-
ment of values W to the W parameters such that if sy is a potential best
match, then Sw(si) > Sw(s;j) holds for all s;.

Thus, a complete class makes it possible to “explore” the space of potential
best matches, whereas if C(W) is incomplete it will inevitably miss some
potentially useful answer. To obviate this one could use larger values of k.
However, for any fixed k value it is always possible to produce a collection
of objects such that s; is a potential k£ best match, yet o; cannot be retrieved
by any scoring function in the given (incomplete) class.

Let min(W) be the “weighted min” class defined as follows:
mmi/n(si) = mqin{wq X Siq} (1)

where weights w, have to be chosen in such a way to ensure minyy (s;) € [0, 1].
We have the following positive result.

Lemma 1 The class min(W) is complete.

Proof. Consider the case £k = 1, the proof for £ > 1 requiring similar
arguments. Let s; be a potential best match and assume, without loss of
generality, that s;1 = maxg{s;q}. Define wy = s;1/si4 ¢ =1,...,m) and
denote with W; the resulting weight vector. By substituting in Equation
(1) it is immediately obtained that minyy, (s;) = s;1. Consider now another
point s;j. Since sj is a potential best match, sj is external to the R; hyper-
rectangle. In turn, this implies that there exists at least one coordinate
(sub-query), say ¢*, for which s; 4+ < s; 4=. The overall score of object o; is:

. . 83,1 . 55,
rrvl[}n(sj) = min {— X sj7q} =51 X mln{]q} < 81
7

q Si,q q Siyq
thus minyy, (s;) < miny;,(s;) as claimed. O

Although min(W) is complete, it is hardly used in practice because it is
not differentiable with respect to the W parameters, a fact which precludes
common (numerical) feedback mechanisms to be applied. Further, min (thus
min()V) as well) has often been criticized because of its lack of sensitivity
to changes in non-minimal partial scores. To this end, for the purpose of
sub-query integration, weighted averages are much more appropriate:

avgyy (si) = avg {wy X s; 4} (2)

The following result however shows that even avg(W) is not exempt of prob-
lems.

Lemma 2 The class avg(W) is incomplete.

Sketch of proof. Consider the case k = 1 and 2 sub-queries, i.e., m = 2.
Let so = (50,1, 50,2), where both partial scores are strictly less than 1, be a
potential best match. Take 2 points s; and s with scores:

s1 = (so1+0,502—¢€)

s2 = (S0,1—¢€,802+9)

with § > € > 0. Any choice of the weight values in Equation (2) either
yields avgy (so) < avgy (s1) or avgy (so) < avgy (s2). Extension to the

case m > 2 requires m (non-collinear) points s1,...,Sm chosen in such a
way that sg lies “below” the hyper-plane spanned by such points. [

The following major result proves the general inadequacy of scoring func-
tions to cover the space of possible best matches.

Theorem 1 A class of monotone scoring functions is complete iff it in-

cludes min(W).

Sketch of proof. The “if” part is Lemma 1. To prove necessity, we rely
on geometric arguments applied to the case kK = 1, the extension to k > 1
being straightforward. Let sg be a potential best-match, and consider a class
C(W) that does not include min(W). In particular, C(W) does not include
the scoring function minyy,, defined as in the proof of Lemma 1. Consider
a scoring function Sy € C(W) and the closed region Regw (so) C [0, 1]™
delimited by the space boundaries and bounded from below by the hyper-
surface By (sg) passing for s with equation Sy (sj) = Sw(so) (Bw(so)
is just the locus of points with the same overall score of 0p). Since Sy
is monotone and Sy # minyy,, for any choice of W the region Regw (so)
strictly includes the hyper-rectangle Ry of oy defined by sg and 1. That is,
the “delta region” Ay (sg) = Regw (so) — Ro is not empty. It follows that
it is always possible to have a point s1 € Ay (sg). Then, since s7 is “above”
By (so), it is Sw(so) < Sw(s1). O

Above result highlights an intrinsic limit of very natural classes of scor-
ing functions, such as avg(W). This, together with the observation that
the exploration of the space of potential best matches, through relevance
feedback mechanisms, is inherently slow, suggests us to look for other, more
general and efficient, alternatives to the integration problem.

3 Qualitative Preferences

We ground our approach on the basic notion of qualitative preferences. Un-
like quantitative ones, qualitative preferences do not necessarily require the
specification of a scoring function, rather they are directly represented by a
preference relation.

Definition 5 Let X be a domain of values. A preference relation over X
is a binary relation = over X x X. If x1,x9 € X and (x1,x2) € =, we also
write x1 > x2 and say that x1 is preferable to xo or, equivalently, that x;
dominates xo. If neither x1 = xo nor xo = x1 hold, we say that x1 and xo
are indifferent, written x1 ~ xo.

In the context of sub-query integration, the X domain is the answer space
A =[0,1]™, whose values are the representative points of the objects. Let o;
and o; be two objects in the C' collection and s; and s;j be their corresponding

10

points in A. With a slight abuse of notation we write o; > 0;, and say that
o; dominates (is preferable to) o;, whenever s; > s;.

In this paper we focus our attention on a specific case of qualitative
preferences, namely those for which the preference relation is a partial order
(PO). We remind that > is a (strict) partial order if it is irreflezive (x # x)
and transitive (xy > xo and zo = z3 imply x; > x3). Note that asymmetry,
that is &1 = xo implies xo ¥ 1, directly follows from the irreflexivity and
transitivity properties. Dealing with PO preference relations is strictly more
general than using scoring functions, since any scoring function S can be
viewed as a PO preference relation >g by defining o; ~g 0; < S(s;) > S(s;)
[12].

What kind of PO preference relations are suitable for sub-query integra-
tion? A reasonable requirement is that >, although not necessarily based on
the comparison of overall scores, still enjoys some kind of “monotonicity”
property that establishes some positive correlation between partial scores
and the dominance relation.

Definition 6 (Monotonicity of preference relations) A preference re-
lation > over the answer space A = [0,1]™ is monotone if s, < s; 4 for all
q implies s; ¥ si. If sj4 < ;4 for all g implies s; = s; we say that = is
strictly monotone.

Strict monotonicity, as in the case with scoring functions, excludes the pres-
ence of “indifference regions”. Indeed, if > is monotone, but not strictly
monotone, and s;, < s; 4 holds for all g, we might have s;)* s; and s; i~ sj,
thus s; ~ s;j.

In the following we will only consider strictly monotone PO preference
relations. This does not appear to be a relevant restriction, and has the
major advantage of allowing us to derive efficient integration algorithms
(see next section). The first example of a strictly monotone PO preference
relation are the so-called Skyline preferences [4].

Definition 7 (Skyline preferences) The Skyline preference relation gy,
over A =1[0,1]" is defined as follows:

0; =51 0j & (Vq: 854 < sig) N (g1 854 < Siyg) (3)

where s; 4 (Sj,4) is the partial score that object o; (resp., oj) obtains for sub-
query Qq. Thus, o; is preferred to o; iff it is at least as good as o; on all
sub-queries and there is at least one sub-query for which the partial score of
o is strictly higher than that of oj. The set of points (objects) of a collection
C' for which there is no object that dominates them according to =gy, is called

the Skyline of C.

There is a simple connection between Skyline preferences and the potential
best matches of C' (see Definition 3).

11

Lemma 3 An object o; is a potential best match of C iff it belongs to the
Skyline of C'.

Proof. Immediate from the definitions. [

Figure 2 shows the results of a sample query over an image database when
Skyline preferences are used to integrate the results of the sub-queries, over
color and texture features, respectively. The figure shows the target “eagle”
image Q and the potential best matches (i.e., Skyline) of Q. Note that most
of them belong to the same semantic class, “Birds”, of Q (more details on
this point are given in Section 5) and that they are quite spread over the
answer space. Even for this specific example it can be shown that no scoring
function will be able to return the set of all potential best matches.

0.8 r
0.7 -
0.6
0.5 r
04

texture

0.3 -
0.2 -

01 r

0 01 02 03 04 05 06 07 08 09 1

color

Figure 2: The Skyline of the “eagle” image

Skylines are not the whole story about strictly monotone POs. To give a
flavor of the power of PO-based integration, we introduce a generalization of
Skyline preferences that we call Region-prioritized Skyline (RS) preferences.
For this we assume that the answer space A is partitioned into a set of
regions Aj,...,Ap, and that a preference relation is also expressed over
such regions.

Definition 8 (RS preferences) Let Y = {Ai,...,Ap} be any partition
of A=10,1]™, and let >Rey be a PO preference relation over Y. Let Reg()
be a function that maps each point of A into its (unique) region of Y. The

12

Region-prioritized Skyline (RS) preference relation »=pgrg over A = [0,1]™ is
defined as follows:

0; =rs 0j & (Reg(si) =pgey Reg(s;)) Vv (4)
((Reg(si) = Reg(s;)) A (si =si sj))

Thus, if two points belong to the same region the Skyline logic applies,
whereas priority among regions prevails when two points belong to different
regions. As a simple example, let m = 2 and Y = {A;, Ay}, with A; =
[0,1]x[0.7,1], Ay = [0,1]x[0,0.7), and A1 >peg A2. Any point in the “upper
rectangle” Ay will dominate points in the “lower rectangle” As. Intuitively,
this will favor objects with a good partial score for sub-query (2. Among
such objects (if any), the best matches will be determined using Skyline
preferences. If region A; is empty, then the best matches will be found in
region As.

Algorithm MPO (Input: query Q, collection C, strictly monotone preference
relation >)

(1) Set Result = 0; Set s = (1,...,1); /* s is the threshold point */

(2) While (A(o0i,si) € Result such that s; > s):

(3) For each sub-query Qg4 (¢ =1,...,m) do:

(4) Retrieve the next unseen object o; from Lg; /* sorted access */

(5) Retrieve missing scores for the other sub-queries and obtain s;; /* random accesses

*
/

(6) Set Dominated = false;

(7) While (not(Dominated) A 3 (0j,s;) € Result unmatched with s;):
sj = sj remove (0j,s;) from Result,

(8) Compare s; with sj: { s;j ~s; do nothing,
sj = s; set Dominated = true;

9) End While;

(10) If not(Dominated) insert (0;,s;) in Result;

(11) Let sq be the lowest score seen by sorted access on list Lg; Set s = (51,...,5m);

(12) End For;

(13) End While;

(14) If (s; = s A s =51, s;) does not imply s; >~ sj then /* execute the “final cycle” */

(15) Repeat from step 3 to 10 until on each list Ly is found an object 0j, with partial

score sj, g < Sq;
(16) Return Result.

Figure 3: The MPO algorithm

RS preferences can also be used to limit some pathological behavior
of Skyline preferences. Indeed, let o; be an object with s; = (0.8,0.1), and
assume that 0.8 is the best score for sub-query @1. If there is no other object
with equal score for 1, it is guaranteed that o; belongs to the Skyline, which
a user could find questionable if she also sees (possibly many) other objects
with somewhat “more balanced” score values. The classical threshold-based
solution, besides suffering the problem of requiring detailed knowledge of
the objects’ distribution in order to set a suitable threshold value, ignores

13

that the choice of whether or not o; has to be discarded could depend on
the presence of “more preferred” objects. Region prioritization easily solves
the dilemma.

In order to guarantee strict monotonicity of >=rg we need to ensure that
priority among regions does not contrast with Skyline preferences.

Lemma 4 The preference relation =g is strictly monotone iff when Reg(s;) #
Reg(s;) and sjq < siq for all q then it is Reg(s;) > Rreq Reg(s;).

Sketch of proof. Proving that >-prg is indeed a PO is left as an exercise.
(only if) Immediate from Definitions 6 and 8.

(if) We consider two cases: (a) if Reg(s;) = Reg(s;) then the result follows
from the strict monotonicity of >~gr; (b) if Reg(si) # Reg(s;j) and s;4 < si 4
for all ¢, by hypothesis Reg(s;) = reg Reg(s;j), thus o; =gs 0, as required. O

It should be clear that if in Definition 8 we replace >gr, with any other
strictly monotone PO preference relation we still get a valid strictly mono-
tone PO region-prioritized preference relation. For instance, one could define
four regions, Y = { A, As, A3, A4}, and within each of them use a, possibly
different (!), preference relation, say >gz in A1, >min in Ag (where we make
use of the min scoring function to compare objects), etc. Also, nothing would
prevent to recursively apply region-prioritization, that is, by partitioning Ay
into sub-regions, and so on.

4 Query Evaluation

In this section we present two algorithms for efficiently performing PO-based
integration of sub-query results. The first algorithm, called MPO, works for
any strictly monotone PO preference relation. Since MPO returns all the
potential best matches, it is unsuitable if one wants to explicitly control the
cardinality of the result and the amount of resources needed to solve the
query . To this end we introduce an incremental (i.e., online) algorithm,
called iMPO, which returns an object o to the user as soon as it can be
proven that, among the objects not yet returned, there is no object that
dominates o.

4.1 The MPO Algorithm

The first algorithm we introduce is based on the (equivalent) semantics of
the Best [15] and the Winnow [6] operators. The Best operator is defined
as:

B (C)={oeC|Pd €Cd = o} (5)

In Figure 3 we present the MPO algorithm, whose logic is as follows. At
each step MPO retrieves via sorted access (step 4) the best “unseen” object

14

o; from one of the m sorted lists, and then obtains missing partial scores
for such object via random access (step 5). The so-obtained representative
point s; is then compared with the current objects in S (C') (steps 7 and
8). If no objects o; dominates o;, o; is inserted in fy (C) (possibly also
removing objects dominated by o; itself), otherwise o; is discarded. At each
point MPO maintains a “threshold point” s, whose g-th component, s, is
the lowest partial score seen so far under sorted access on list L. As soon
as a point o; is found such that s; dominates the threshold point s the main
loop of the algorithm ends (step 2). Before delivering the result (step 16),
the condition at step 14 is checked. If implication is not guaranteed, then the
main loop is executed again (but without changing anymore the threshold
point s) so as to ensure that on each sorted list L, there is no other object
with a partial score equal to s,. We call this the “final cycle” of MPO.

Theorem 2 The MPO algorithm correctly computes (. (C').

Proof. Clearly Result C 3. (C). To show containment in the other way,
let o; be an object of C' that has not been seen under sorted access by
the algorithm, and let o; be the object that is found at step 2 to dominate
the threshold point. Unless s;j is coincident with the threshold point (i.e.,
sj = s), in which case we are obviously done, at least one partial score of o,
is strictly less than the corresponding threshold value. Thus, Vq : s;, < s4
and dq : sj4 < 84, which coincides with the definition of Skyline dominance.
If, depending on the preference relation > at hand, s; = s and s >g7, Sj
imply s; >~ sj (see step 14), we are guaranteed that o; € 5. (C). On the
other hand, when the implication does not hold, the final cycle (step 15)
guarantees that, for each sub-query @, sj 4 < s4. Thus s > s; follows since
> is strictly monotone. Since > is a PO, s; >~ S_]_ follows by transitivity. [

The need for the “final cycle” in the MPO algorithm may not be obvious.
Indeed, MPO resembles middleware algorithms that were developed for the
case when the integration is based on a scoring function and only the k
highest scored objects are requested, with ties arbitrarily broken. This is not
the case with MPO, which returns all the potential best matches, regardless
of how many they are. It is easy to show that, for a generic >, omitting the
final cycle could lead to missing some object in F.(C).

From a more pragmatical point of view, it has to be remarked that
preference relations requiring the final cycle are more an exception than the
rule.? Indeed, the following result shows that “natural” preference relations
do not require the execution of the final cycle.

Lemma 5 Let - be either =-gr, =Rrs, or =g, where S is any monotone
scoring function. In all such cases MPO correctly computes By (C) even if
the final cycle is omitted.

2We omit here the description of one such preference relation.

15

Sketch of proof. The proof amounts to showing that for each of the con-
sidered preference relations s; > s and s >gr, sj imply s; = s;. We omit the
proof’s details. [

4.2 The Incremental MPO Algorithm

If one wants to exert explicit control on the cardinality of the result, MPO
is not the best alternative. Indeed, it is known that the size of the Skyline
can become quite large, and grows fast with the number of dimensions when
partial scores have a negative correlation [4]. On the other hand, when the
size of (. (C) becomes too small it would be advisable to allow the user to
retrieve also further “good” objects, even if they are not in S (C).

To achieve both of the above goals we start by introducing a new opera-
tor, called BesTop, that combines the semantics of Best and Top-k operators.
For its definition it is first useful to remind the “layered” version of the Best
operator [15]:3

BLIC) = B-(C) (6)
SHO) = Bo(C— U BL(0)) (7)

Thus, B%(C) retrieves the ¢-th “layer” of (the partial order induced by >
on) C. We are now ready to define the BesTop operator.

Definition 9 (BesTop operator) Let {(k) > 1 be the smallest integer

that satisfies the inequality szf | BL(C) |> k.

The BesTop operator, ﬁ&](C) (k > 1), retrieves k objects from C' such
that:

. Bg_:]k()C? i@cludes a[il] the objects in the first L(k) — 1 layers of C (thus
Uimi BL(C) € B(0));

o it further includes other k — ngcl)fl | BL(C) | objects from the £(k)-th
layer of C.

A nalve approach to compute ﬂ[f}(C) would be to iterate algorithm MPO
up to layer ¢(k), and then to select all the objects in the first (k) — 1 layers
plus others from layer £(k), so as to reach the desired result cardinality k.*
The major drawback of this approach is made evident through a simple
example. Let &k = 1, thus ¢(1) = 1 (the first layer is obviously enough). If
we run MPO and wait until its completion we would miss the opportunity
to stop as soon as we can conclude that a single object belongs to ﬁi(C). In
general, we see that no object of a layer £ can be returned by MPO before it
is discovered that no further object belongs to layer ¢, which might severely
affect performance.

3 An analogous extension has been proposed for the Winnow operator [6].
“Note that at layer £(k) ties are arbitrarily broken, as it is customary for top k queries.

16

Algorithm iMPO (Input: query Q, collection C, strictly monotone preference
relation >, integer k)

(1) Set NoO fResults = 0; Set ThisLayer = NextLayer = 0; Set s = (1,...,1);

(2) While (NoOfResults < k):

(3) While (A(0s,s;) € ThisLayer such that s; = s A NoO f Results < k):

(4) For each sub-query Qq (¢ =1,...,m) do:

(5) Retrieve the next unseen object o; from Lg; /* sorted access */

(6) Retrieve missing scores for the other sub-queries and obtain s;; /* random ac-

cesses */
(7) Set Dominated = false;
(8) While (not(Dominated) A 3 (0j,s;) € ThisLayer unmatched with s;):
s; = s; move (0j4,s;5) from ThisLayer to NextLayer,
9) Compare s; with sj: { s; ~s; do nothing,
sj = s; set Dominated = true and insert (o;,s;) in NextLayer;
(10) End While;
(11) If not(Dominated) insert (0;,si) in ThisLayer;
(12) Let s be the lowest score seen by sorted access on list Lg; Set s = (51,...,5m);
(13) Output all objects (0;,s;) € ThisLayer s.t. s ¥ s; and update NoO f Results;
(14) End For;
(15) End While;
(16) If (NoOfResults < k) then:
(17) Set ThisLayer = NextLayer; Set NextLayer = @; /* starts to process the
next layer */
(18) For all o;,0; € ThisLayer s.t. s; > s; move (oj,s;) from ThisLayer to
NextLayer;
(19) Output all objects (0i,s;) € ThisLayer s.t. s % s; and update NoO f Results;
(20) End If;

(21) End While.

Figure 4: The incremental MPO algorithm

Algorithm iMPO (incremental MPO), summarized in Figure 4, elegantly
solves the above problem. To understand the logic of iMPO the following
observation is useful.

Observation 2 Let > be a strictly monotone PO preference relation. If
s si and Vq : s 4 < Sq (thus, s = s;5) then sj # s;.

Indeed, if s; > s; then by transitivity it would follow that s > s;, thus
contradicting the hypothesis.

iMPO exploits the above observation as follows. Each time the thresh-
old point s changes, iMPO checks if some object o; that has already been
retrieved is not dominated by s, i.e, s ¥ s; (step 13). If this is the case,
as soon as we see on all the m lists L, partial scores that are strictly lower
than s,, we can conclude that no unseen object o; can dominate o;. This
is sufficient to assert that o; can be immediately delivered to the user. For
this reason we call s 3 s; the delivery condition of iMPO for object o;.

Again, it has to be remarked that the need to wait for seeing partial
scores strictly less than the threshold values is not necessary for relevant
preference relations. In order to avoid unnecessary complications to the

17

algorithm description, in Figure 4 we omit to detail this “final cycle”.

The second major feature that distinguishes iMPO from MPO is the
management of multiple layers of the partially ordered collection C'. Rather
than simply removing objects that are found to be dominated by some other
object (as MPO does), iMPO keeps them in a NextLayer structure. Objects
in such a structure are processed again upon completion of a layer, and before
restarting to retrieve other objects via sorted access (steps 17 and 18).

4.3 Analysis of Algorithms

In this section we prove some basic facts that shed light on the behavior of
MPO and iMPO algorithms.

The first simple, yet important, observation is that iMPO will always
return an object o; before MPO does so. This stems from the following basic
result, in which we consider MPO extended so as to deal with multiple layers
(rather than just the first one) of C. Having already introduced iMPO, this
extension is straightforward, since it essentially amounts to dropping the
incremental delivery condition from the logic of iMPO.

Lemma 6 Let o; be an object at layer £ of C, and let o; be the object that
allows MPO to terminate the elaboration of the (-th layer (thus, s; > 8).
Let #SA(MPO) be the number of sorted accesses that MPO has executed
up to this point, and #SA(iM PO) those executed by iMPO when it delivers
object 0j. It is #SA(IMPO) < #SA(MPO).

Proof. We have s; >~ s and, by hypothesis, s; ~ s;. From these we can
conclude that s i/ s;, which proves the resultl]

For reference purpose, we now contrast our algorithms to the TA al-
gorithm [11], a well-known algorithm that works for any monotone scoring
function S. Here we do not consider variants of TA, such as TA-EP and
Upper, aiming to reduce the number of random accesses [5].

The logic of TA is somewhat similar to that of MPO. Both algorithms,
after performing a sorted access that retrieves an object o;, get, through
random access, the missing partial scores, so as to obtain s;. At this point
TA computes S(s;j), the overall score of 0;, and the threshold value, S(s).
If at least k points have been found such that S(s;) > S(s), TA stops and
returns the k objects with the highest scores.

Although TA delivers objects only at its termination, it is not difficult
to turn it into an incremental algorithm.? For this it is sufficient to check,
whenever the threshold value changes, if S(s;) > S(s) and then immediately
return o; to the user. We call this the delivery condition of TA.

5To the best of our knowledge this is new, in that no incremental version of TA and
related algorithms has ever been proposed before.

18

A comparison between (the incremental version of) TA and iMPO with-
out making any hypothesis on which scoring function and preference relation
are respectively used is indeed hopeless, due to the wide range of possibilities
that preclude any general conclusion to be drawn on the relative behavior
of the two algorithms. Therefore, in the following we prove some basic
facts that, although based on specific assumptions, indeed cover the most
interesting cases.

We first show under which provable conditions iMPO, when equipped
with Skyline preferences, delivers results faster than TA with any monotone
scoring function.

Theorem 3 Let 0o; € C be an object at the (-th layer (¢ > 1) of C when
=gr, is used. Assume that TA, using the scoring function S, returns o;
after having executed #SA(TA) sorted accesses, and let #SA(iMPO) be
the number of sorted accesses needed by iMPO to return the same object. If

1MPO starts to process layer £ after a number of sorted accesses less than
#SA(TA), then:

1. if TA returns o; because S(s;) > S(s), then #SA(IMPO) < #SA(TA);

2. if TA returns o; because S(s;) = S(s), #SA(IMPO) > #SA(TA)
only if s; lies on the surface of the hyper-rectangle having the origin
0=(0,...,0) and s as opposite vertices. In this case #SA(iMPO) —
#SA(TA) will linearly depend on the number of objects having the
same score of o; for the sub-query on which o; has been retrieved via
sorted access;

3. if the scoring function S is strictly monotone in each argument, that
18, increasing one partial score and leaving the others unchanged leads
to an increase in the overall score (this is the case, say, of avg) [11],
it is guaranteed that #SA(IMPO) < #SA(TA).

Sketch of proof. The condition requiring that iMPO has already started
to process layer ¢ before TA delivers o; eliminates the possibility that o;
cannot be output since it does not belong to the current top layer.

(1) Immediate, since S(s;) > S(s) implies s ¥ g1, si;

(2) Necessity follows from the definition of Skyline preferences. To prove the
rest of the result, observe that if there are X objects with the same partial
score of o; in the sub-query where o; has been retrieved via sorted access,
O(X) sorted accesses are enough to lower the threshold value on that list,
after which S ?LSL Si 3

(3) In this case S(s;) > S(s) always implies s ¥ sz, s;. O

Thus, when S(sj) > S(s) implies s ¥ s si, and o; is an object of the
current top layer, we have that:

19

e if both TA and iMPO (equipped with Skyline preferences) are executed
so as to deliver the same number of objects k£, iMPO will run faster
than TA;

e if TA and iMPO are allowed to execute the same number of steps, the
result of TA will be included in that of iMPO.

Let us say that a collection C' has the uniqueness property if on each sub-
query Q4 no two objects get the same partial score, i.e., Vq,0;,0; # 0; :
Siq 7# Sjq [11]. When this is the case the delivery conditions of TA and
iMPO can be relaxed, by using as threshold point s. in place of s, where
Vg :Seq=s5q—€(e>0).

Theorem 4 Assume that the collection C satisfies the uniqueness property.
Under the same hypotheses of Theorem 3, #SA(iMPO) < #SA(TA).

Proof. Omitted OJ

5 Experimental Analysis

We evaluated the performance of MPO and iMPO algorithms using a real-
world image collection consisting of about 10,000 color images.% Although
this data set is not particularly large, we chose it for two reasons:

e Since each image comes with a manually assigned semantic classifi-
cation into one of 7 classes, this allows us to evaluate effectiveness
(quality) of results, which would not be possible without an objective
“ground truth”. To this end, given a query image, any image in the
same class of the query is considered relevant, whereas all other images
are considered not relevant, regardless of their actual low-level feature
contents. Note that classes are just used for evaluation purposes and
not during the retrieval phase (i.e., algorithms know nothing about
the class of an image). This leads to hard-to-solve conceptual queries,
since within a same class feature values may wildly vary. However,
this is exactly the hard task that a MM retrieval system has to face!

e Further, since in this paper we are not dealing with issues related to
the evaluation of sub-queries, the actual size of the data set is not
particularly relevant in assessing performance. Indeed, although our
system uses indexes to efficiently evaluate sub-queries, relative figures
are not shown here (any method able to return ranked lists would serve
the purpose).

SIMSI MasterPhotos 50,000: http://www.imsisoft.com.

20

Each image, using wavelet transform, was automatically segmented into a
set of homogeneous regions, based on the proximity of wavelet coefficients,
which convey information about color and texture features. Each region cor-
responds to a cluster of pixels and is represented through a 37-dimensional
feature vector.” On average, 4 regions were obtained from each image. The
same procedure is adopted when an image query @ is submitted. If m is
the number of regions extracted from @, each of the m regions becomes a
sub-query. Partial scores for a given query region (), are obtained by using a
distance function based on the Bhattacharyya metric [2], which is commonly
used to compare ellipsoids.

We implemented MPO (extended so as to answer “first £ layers” queries),
iMPO, and TA algorithms in C++ and run all the experiments on a 1.6 GHz
Pentium machine. All the results we present are averaged over a sample of
100 randomly-chosen query images. Our major interest is to understand
how our algorithms (iMPO in particular) perform in terms of efficiency and
effectiveness:

Efficiency. The metrics we use are the number of sorted accesses, #SA,
and the number of random accesses, # RA, executed by the algorithms.
This ensures a fair, system-independent, comparison. Note that actual
execution times are indeed expected to vary in a significant way de-
pending on the relative cost of sorted and random accesses, the nature
of the underlying system(s) evaluating sub-queries (e.g., Web-based
or not), the available access methods, etc. To avoid distracting the
reader with too many parameters and variables we opted for clean,
easy to understand, metrics.

Effectiveness. We consider the classical precision (P) metric, that is, the
percentage of relevant images found by a query, as a measure of how
good the results of an algorithm (when equipped with a specific pref-
erence relation or scoring function) are. In addition we also analyze
the extent to which relevant images are representative of the query
class, that is, how well they fit the actual distribution of all images in
the query class. This allows a finer assessment of the quality of results
that P alone cannot provide.

For MPO and iMPO algorithms we consider both Skyline (SL) and
Region-prioritized Skyline (RS) preferences, whereas for the TA algorithm
we consider min and avg scoring functions. We use the notation MPO(SL)
to mean algorithm MPO using SL preferences, and so on. In order to gener-
ate RS preferences we proceed as follows (see also Definition 8 in Section 3).

"In detail: 12 dimensions are used for cluster’s centroids (3 color channels x 4 frequency
sub-bands), 24 coefficients store the 3 x 3 (symmetric) covariance matrices of the 4 sub-
bands, and 1 coefficient represents the cluster size.

21

2500 _ 4000
—e—iMPO(SL) —e—iMPO(RS)

—%—MPO(SL) 3500 4 —%— MPO(RS)

2000 -
3000 +

1500 A 2500 4

#SA

& 2000 |
#

1000 - 1500 |
1000 1 ReRsRR
500 1 -
500

100%

—e—SL

80% - % RS
o)
-9
Z 60% |
-
-] >
£
8 40%
B3

20% A

0% ‘ 3K ‘
0 50 100 150 200

(c)

Figure 5: Sorted accesses of MPO and iMPO algorithms for a specific query:
(a) Skyline (SL) preferences; (b) Region-prioritized Skyline (RS) preferences.
In (c) the percentage gain of iMPO over MPO is shown. The abscissa reports
the no. of retrieved objects k

On each of the m coordinates of the answer space A, we set a “soft thresh-
old” 6, (0 < 6, < 1) and assign a 0 bit to the “below-threshold” interval
[0,6,) and a 1 bit to the “above-threshold” interval [,,1]. This leads to 2™
regions, each univocally represented by an m-bit binary code. Given regions
A; and Aj, the preference relation for such regions is

Aj =Reg Aj & code(A;) N code(Aj) = code(Aj)
where bitwise AND is used and code(A4;) is the binary code of region A;. For
instance, when m = 4, this says that the region with code 1011 dominates

the region with code 1000, whereas it is indifferent to region 0100. Since
> Reg defines a Boolean lattice over regions (with region 11...1 being the

22

best region and 00...0 the worst one) it is easy to show that Lemma 4 is
satisfied, thus > pg is a strictly monotone PO.

Although we experimented with several combinations of soft threshold
values, here we just report results for the case §, = 0.4 Vq.

5.1 Experimental Results

Experiment 1: The aim of our first experiment is to measure the relative
efficiency of iMPO versus MPO. Quality of results is not a concern here,
since both MPO and iMPO return the same objects, although at different
times.

Our results confirm that iMPO consistently outperforms MPO. In Fig-
ure 5 we show efficiency results for a specific query (using either SL or RS
preferences), results for other queries being similar. Here we just show the
number of sorted accesses. MPO, by its nature, delivers objects in bursts,
each burst corresponding to the termination of one layer. For instance, in
Figure 5 (a) MPO needs 628 sorted accesses to return all the 27 images in
the 1st layer of the Skyline, 956 to complete the 2nd layer, and so on. A
somewhat bursty behavior is also observed with iMPO, starting from the
2nd layer. To explain this, consider that even if all objects in the current
layer have been output, iMPO still needs to wait that the test s; > s succeeds
before moving to the next layer. This “waiting time” leads to accumulate
objects in the NextLayer, most of which are subsequently delivered as soon
as the test succeeds. Nonetheless, Figure 5 (c) shows that the gain in effi-
ciency of iMPO over MPO is remarkable; therefore in the sequel we do not
consider MPO anymore.

Experiment 2: In this second series of experiments our objective is to
compare iMPO and TA in terms of quality of results.

Figure 6 (a) shows precision values versus k. It can be seen that SL,
and RS in particular, preferences attain precision levels comparable to that
of avg, whereas min has a definitely poor behavior. Figure 6 (b) shows
similar results, now plotting graphs with variable k,.;, the number of relevant
objects retrieved.

Clearly, similar precision values do not imply similar results. Indeed,
on the average and for any value of k, iMPO and TA share less than 50%
of the relevant objects retrieved. The distribution of relevant objects over
the answer space can play a fundamental role for the implementation of
effective relevance feedback mechanisms, as well as for giving to the user
an accurate view of the actual database contents. Therefore, we analyzed
how much the different approaches lead to an “unbiased” result. For this
we use an information-theoretic measure, related to the cross-entropy of two
distributions, known as the Kullback-Leibler (K L) divergence [9]. Given a
reference distribution f and a test one g, the KL divergence of g with respect

23

0.60

- 0.50
——iMPO(SL) ——iMPO(SL)
0-557 = IMPO(RS) 045 = IMPO(RS)
0.50 1 —+—TA(avg) ’ —+—TA(avg)
—%—TA(min) —%—TA(min)
c 0,451 _ 0:40
5 8
'g 0.40 + § 0.35
g
8 0.35 [
0.30
0.30 1
0.25 | 0.25
0.20 0.20
0 20 40 60 80 100 0 20 40 60 80 100
Kk K_rel

(a)

Figure 6: Precision vs no.
trieved objects (b)

(b)

of retrieved objects (a) and no. of relevant re-

to f is defined as

KL(g; f) = /mf(x)ln <%> dz.

KL(g; f) > 0, with 0 attained only if g = f. Thus, KL(g1; f) < KL(g2; f)
denotes that g1 fits f better than gs.

In our case, we take f to be the distance distribution of all the relevant
objects for a query @, and the g;’s be the (approximate) distance distri-
butions of the relevant objects returned in the first k& = 100 results by TA
and iMPO algorithms. All distances are measured over the answer space,
by computing the Euclidean distance between the representative points of
relevant images.

Figure 7 (a) shows the (averaged over all query images) actual distri-
bution of the whole data set (label dataset in the figure) and those of TA
and iMPO. Figure 7 (b) does the same but just for queries of a specific class
(“TreeLeaves”). Table 2 synthesizes everything using K L divergence values.

iMPO(SL) | iMPO(RS) | TA(avg) | TA(min)
Global 0.032 0.006 0.297 0.550
TreeLeaves 0.050 0.031 0.312 0.680

Table 2: Kullback-Leibler (K'L) divergence values for the distributions in
Figure 7

It is evident that iMPO with RS preferences, besides leading to precision
values comparable to those of avg, has a remarkably better capability to

24

0.40 0.40
—e—iMPO(SL) ——iMPO(SL)

0.35 1 —=—iMPO(RS) 0.357 —=—iMPO(RS)
g 0.301 &= TA(avg) g 0.30 —s—TA(avg)
o —*—TA(min) 0 —%—TA(min)
g’ 0.254 —o—dataset T 0.25 | —o—dataset
E E
- 0.20 © 0.20
]]
2 N
® 0.151 ® 0.15
£ £
S e
2 0.10 2 0.10

0.05 0.05 4

0.00 0.00

0.2

0.4 0.6
normalized distance

(a)

0.2 0.4

0.6 0.8

normalized distance

(b)

Figure 7: Global (a) and relative to the “TreeLeaves” class (b) distance
distributions of relevant objects

reflect the actual distribution of relevant objects. Skyline preferences are,
to this end, slightly worse, even if divergence values are still one order of
magnitude better than those of avg and min.

Experiment 3: In the third experiment our objective is to analyze the
efficiency of iMPO and TA in answering top k queries.

Figure 8 shows how many sorted accesses and random accesses are needed
by the analyzed algorithms to deliver k objects. In this case iMPO(SL) is
undoubtedly the winner, whereas iMPO(RS) is slower, however reaching
a performance level that is always better than that of both TA(avg) and
TA(min). Thus, not only qualitative preferences are better than scoring
functions in delivering high-quality results, they are also faster.

3000

3000

——IiMPO(SL) —e—IiMPO(SL)
—=—IMPO(RS i
2500 - (RS) 2500 | |—*—MPO(RS)
—+—TA(avg) —&—TA(avg)
—x—TA(min i
2000 4 (min) 2000 { | ==TA(min)
A
< |
¥ 1500 1 é 1500
#
1000 4 1000 -
> 500 -
500 -
0 T
0 T 0 20 40 60 80 100
0 20 40 60 80 100 K

(a) (b)

Figure 8: Sorted accesses (a) and random accesses (b) vs no. of retrieved
objects (k)

25

The reason why iMPO(SL) outperforms iMPO(RS) depends on the dif-
ferent delivery conditions used by the two methods. Indeed, considering how
RS preferences are defined, it can be shown that (s ¥ rs si) = (s ¥sL Si),
thus the delivery condition of iMPO(RS) is always stronger than that of
iMPO(SL). In particular, for iMPO(RS) it is likely the case that the thresh-
old point s belongs to a region that dominates the region of s;, which is
sufficient to have s =g s;j.

Finally we present graphs where efficiency and quality of results can be
observed together. Figure 9 shows how much we have to pay (in terms
of sorted and random accesses, respectively) for each relevant object we
retrieve. The graphs confirm previous results, in particular the superior
performance of qualitative preferences, and also show that, starting with
krer > 50, the reduced efficiency of iMPO(RS) with respect to iMPO(SL)
is compensated by its superior effectiveness, which leads to a “per relevant
object” cost of iIMPO(RS) almost equal to that of iMPO(SL).

140 160

——iMPO(SL) —e—iMPO(SL)
120 | —=— iMPO(RS) 140 1 —=—iMPO(RS)
——TA(avg) | ——TA(avg)
120
100 ——TA(min) ——TA(min)
9 3 100
9| 80 - g|
X
3 < 80
& 60)
60
40 4
40 4
20 A
20
0 ‘ ‘ ‘ ‘ o
0 20 40 60 80 100 o 20 0 60 80 100

no. of relevant objects (k_rel) no. of relevant objects (k_rel)

(a) (b)

Figure 9: Sorted accesses (a) and random accesses (b) vs no. of relevant
retrieved objects (k)

6 Conclusions

In this paper we have analyzed how qualitative preferences can impact mul-
timedia query processing and quality of results. We have introduced two
algorithms for efficiently performing integration of sub-queries and demon-
strated their efficiency on a real-world image database. We have also intro-
duced the class of Region-prioritized Skyline (RS) preferences, which provide
the best quality of results and enjoy a cost per relevant object comparable
to that of Skyline preferences.

Our work opens new interesting lines of research. First, it would be
interesting to apply qualitative preferences to other challenging tasks, such

26

as classification of multimedia objects, for which scoring functions have been
considered the only viable alternative. Second, qualitative preferences could
also be profitably used for the evaluation of sub-queries, thus generalizing the
common approach requiring a distance metrics to compare objects’ features.
The exploitation of qualitative preference for query refinement is a further
interesting research direction. We also plan to extend our algorithms to Web-
based scenarios in which random accesses might not be possible for some of
the sub-queries and some underlying source might not provide partial scores
for the returned objects.

References

1]

I. Bartolini, P. Ciaccia, and F. Waas. FeedbackBypass: A New Ap-
proach to Interactive Similarity Query Processing. In Proceedings of
the 27th International Conference on Very Large Data Bases (VLDB
2001), pages 201-210, Rome, Italy, Sept. 2001.

M. Basseville. Distance Measure for Signal Processing and Pattern
Recognition. Furopean Journal of Signal Processing, 18(4):349-369,
Dec. 1989.

K. Bohm, M. Mlivoncic, H.-J. Schek, and R. Weber. Fast Evalua-
tion Techniques for Complex Similarity Queries. In Proceedings of the
27th International Conference on Very Large Data Bases (VLDB 2001),
pages 211-220, Rome, Italy, Sept. 2001.

S. Borzsonyi, D. Kossmann, and K. Stocker. The Skyline Operator. In
Proceedings of the 17th International Conference on Data Engineering,
pages 421-430, Heidelberg, Germany, Apr. 2001.

N. Bruno, L. Gravano, and A. Marian. Evaluating Top-k Queries over
Web-Accessible Databases. In Proceedings of the 18th International
Conference on Data Engineering (ICDE’02), pages 369-382, San Jose,
California, USA, Feb. 2002.

J. Chomicki. Querying with Intrinsic Preferences. In Proceedings of
the 8th International Conference on Extending Database Technology
(EDBT 2002), pages 34-51, Prague, Czech Republic, Mar. 2002.

J. Chomicki. Preference Formulas in Relational Queries. ACM Trans-
actions on Database Systems (TODS), 28(4):1-39, 2003.

P. Ciaccia, M. Patella, and P. Zezula. Processing Complex Similar-
ity Queries with Distance-based Access Methods. In Proceedings of
the 6th International Conference on Extending Database Technology
(EDBT’98), pages 9-23, Valencia, Spain, Mar. 1998.

27

[9]

[10]

[11]

[14]

T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley,
1991.

R. Fagin. Combining Fuzzy Information from Multiple Systems. In
Proceedings of the Fifteenth ACM SIGACT-SIGMOD-SIGART Sym-
posium on Principles of Database Systems, pages 216-226, Montreal,
Canada, June 1996.

R. Fagin, A. Lotem, and M. Naor. Optimal Aggregation Algorithms
for Middleware. In Proceedings of the Twenteenth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems,
pages 216-226, Santa Barbara, California, USA, May 2001.

P. C. Fishburn. Preference Structures and Their Numerical Represen-
tations. Theoretical Computer Science, 217(2):359-383, 1999.

M. Ortega, Y. Rui, K. Chakrabarti, K. Porkaew, S. Mehrotra, and
T. S. Huang. Supporting Ranked Boolean Similarity Queries in MARS.
IEEE Transactions on Knowledge and Data Engineering, 10(6):905—
925, 1998.

Y. Rui, T. S. Huang, M. Ortega, and S. Mehrotra. Relevance Feedback:
A Power Tool for Interactive Content-Based Image Retrieval. IEEFE
Transaction on Circuits and Systems for Video Technology, 8(5):644—
655, Sept. 1998.

R. Torlone and P. Ciaccia. Which Are My Preferred Items? In
AH2002 Workshop on Recommendation and Personalization in eCom-
merce (RPeC02), pages 1-9, Malaga, Spain, May 2002.

28

