Honey, I Shrunk the Cube

Matteo Golfarelli and Stefano Rizzi

DISI, University of Bologna, Italy
matteo.golfarelli,stefano.rizzi}@unibo.it
g

Abstract. Information flooding may occur during an OLAP session
when the user drills down her cube up to a very fine-grained level, be-
cause the huge number of facts returned makes it very hard to analyze
them using a pivot table. To overcome this problem we propose a novel
OLAP operation, called shrink, aimed at balancing data precision with
data size in cube visualization via pivot tables. The shrink operation
fuses slices of similar data and replaces them with a single represen-
tative slice, respecting the constraints posed by dimension hierarchies,
until the result is smaller than a given threshold. We present a greedy
agglomerative clustering algorithm that at each step fuses the two slices
yielding the minimum increase in the total approximation, and discuss
some experimental results that show its efficiency and effectiveness.

1 Introduction

OLAP is the main paradigm for querying multidimensional databases and data
marts. A typical OLAP query asks for returning the values of one or more nu-
merical measures, grouped by a given set of analysis attributes, possibly with
reference to a subset of attribute values. The data returned by an OLAP query
takes the form of a multidimensional cube, and can be represented either graph-
ically or textually. While graphical representations range from simple line, bar,
and pie charts to more sophisticated dashboards involving gauges and geograph-
ical maps, the most commonly used textual representation is the so-called pivot
table. A pivot table usually consists of row, column, and data fields that allow
aggregating measures using operators such as sum and average (see Figure[I]).

To simplify the querying process for non-ICT users and to support more
effectively the decision-making process, OLAP analyses do not normally come
in the form of stand-alone queries, but rather of session. An OLAP session
is a sequence of OLAP queries, each obtained by transforming the previous
one through the application of an OLAP operation, so as to generate a sort
of path that explores relevant areas of the cube. OLAP operations commonly
supported by specialized front-end tools are roll-up, that further aggregates the
data returned by the previous query along dimension hierarchies, drill-down,
that disaggregates them, and slice-and-dice, that selects a subset of values based
on some predicate [1].

The effectiveness of OLAP analyses depends on several factors, such as the
ability of the front-end tool in intuitively displaying metadata to users and

B. Catania, G. Guerrini, and J. Pokorny (Eds.): ADBIS 2013, LNCS 8133, pp. 176189 2013.
© Springer-Verlag Berlin Heidelberg 2013

Honey, I Shrunk the Cube 177

Year
2010 2011 2012

Miami| 47 45 50
Orlando | 44 43 52
Tampa| 39 50 41
Washington | 47 45 51
Richmond | 43 46 49
Arlington| — 47 52

City

Fig.1. A simple pivot table showing data per City and Year

the performance of the underlying multidimensional engine. In particular, when
pivot tables are used, one of factors is the achievement of a satisfactory compro-
mise between the precision and the size of the data being visualized. Indeed, as
argued in [2], more detail gives more information, but at the risk of missing the
overall picture, while focusing on general trends of data may prevent users from
observing specific small-scale phenomena. This is also strictly related to the “in-
formation flooding” problem, often occurring when a non-expert user is provided
with the full expressiveness of OLAP, that may happen because the user drilled
down her cube up to a very fine-grained level, where data are very detailed and
a huge number of measure values are to be returned [2]. In this case, it is very
hard for the user to browse and analyze the resulting data using a pivot ta-
ble, especially if the device used has limited visualization and data-transmission
capabilities (which is becoming more and more common, considering the wide
diffusion of smartphones and tablets as supports for individual productivity).

A possible solution to the above-mentioned problem, often adopted in com-
mercial tools, is to put some constraints to the accessible cube exploration paths,
e.g., by disallowing drill-downs to the maximum level of data detail (so-called
semi-static reporting). However, this often leaves users puzzled and unsatisfied.
Other approaches devised in the literature that may be used to cope with infor-
mation flooding are:

— Query personalization: when querying, users are allowed to express their
preferences, e.g., by stating that data for Italian cities are more relevant
than those for other cities, or that measure values below a given threshold
are the most interesting [3].

— Intensional query answering, where the data returned by a query are sum-
marized with a concise description of the properties they share [2].

— Approximate query answering, aimed at increasing querying efficiency by
quickly returning a concise answer at the price of some imprecision in the
returned values [4].

— OLAM—On-Line Analytical Mining: the OLAP paradigm is coupled with
data mining techniques to create an approach where multidimensional data
can be mined “on-the-fly” to extract concise patterns for user’s evaluation,

178 M. Golfarelli and S. Rizzi

but at the price of an increased computational complexity and an overhead
for analyzing the generated patterns [5].

The approach described in this paper can be seen as a form of OLAM based
on hierarchical clustering. Starting from the observation that approximation is
a key to balance data precision with data size in cube visualization via pivot
tables, we propose a novel OLAP operation called shrink that can be applied
to the cube resulting from an OLAP query to decrease its size while controlling
the loss in precision. The shrink operation is ruled by a parameter expressing
the maximum size allowed for the resulting data. The idea is to fuse slices of
similar data and replace them with a single representative slice (computed as
their average), respecting the constraints posed by dimension hierarchies. To this
end we present a greedy agglomerative clustering algorithm that at each step
fuses the two slices yielding the minimum increase in the total approximation.

The paper outline is as follows. Section 2] introduces a formalization and our
working example. Section [3] describes the shrink approach, while Section [shows
some experimental results. After discussing the related literature in Section [
in Section [0l we draw the conclusions.

2 Background on Cubes

In this section we introduce a basic formal setting to manipulate multidimen-
sional data. For simplicity we will consider hierarchies without branches, i.e.,
consisting of chains of attributes, and focus on schemata that include a single
measure.

Definition 1 (Multidimensional Schema). 4 multidimensional schema (or,
briefly, a schema) M is a couple of

— a finite set of disjoint hierarchies, {h1,...,hy,}, each characterized by a set
A; of attributes and a roll-up total order <y, of A;. Each hierarchy attribute
a is defined over a categorical domain Dom(a).

— a family of roll-up functions that, for each pair of attributes ax,a; € A; such
that ap <p, aj, roll-up each value in Dom(ay) to one value in Dom(a;).

To simplify the notation, we will use letter a for the attributes of h, letter b for
the attributes of ho, and so on; besides, we will order the indexes of attributes
in each hierarchy according to their roll-up order: a; <p, a2 <p,;

A group-by includes one level for each hierarchy, and defines a possible way
to aggregate data.

Definition 2 (Group-by). A group-by of schema M is an element G € A; x
...XA,. A coordinate of G = (a,b,...) is an element g € Dom(a)x Dom(b) X. . ..

Ezxample 1. IPUMS is a public database storing census microdata for social and
economic research [6]. As a working example we will use a simplified form of
its CENSUS multidimensional schema based on two hierarchies, namely RESI-
DENCE and TIME. Within RESIDENCE it is City <resipence State, and Miami €

Honey, I Shrunk the Cube 179

All AlCities

W Region
FL VA State AllYears All
Miarﬁ Wasm T T 2010
Orlando Richmond City Years 2011
Tampa Arlington 2012
RESIDENCE TIME

Fig. 2. Roll-up orders and functions for two hierarchies in the CENSUS schema

Dom(City) rolls-up to FL € Dom(State) (roll-up orders and functions are shown
in Figure [2). Some examples of group-by are G; = (City, Year) and Go =
(State, AllYears). A coordinate of Gy is (Miami, 2012).

An instance of a schema is a set of facts; each fact is characterized by a group-
by G that defines its aggregation level, by a coordinate of GG, and by a numerical
value m. Our shrink operation will be applied to a cube, i.e., to the subset of
facts resulting from any OLAP query launched; this can be formalized as follows:

Definition 3 (Cube). A cube at group-by G is a partial function C that maps
a coordinate of G to a numerical value (measure). Each couple {g,m) such that
C(g) = m is called a fact of C.

The reason why function C'is partial is that cubes are normally sparse, i.e., some
facts are missing (their measure value is null). An example of missing fact is the
one for the Arlington city and year 2010 in Figure [I1

Ezample 2. Two examples of facts of CENSUS are ((Miami,2012),50) and
({(Orlando, 2011),43). The measure in this case quantifies the average income
of citizens. A possible cube at G is depicted in Figure [

3 The Shrink Approach

For explanation simplicity we will start by assuming that the shrink operation is
applied along hierarchy hy to a cube C' at the finest group-by, G = (a1, b1, ...).

First of all we observe that, given attribute value v € Dom(a;), cube C can
be equivalently rewritten as a set of value-slice couples:

C = {{(v,C"),v € Dom(ay)}

where C is the slice of C corresponding to a; = v (in the common OLAP sense).

When the shrink operation is applied to C, the slices of C' are (completely and
disjointly) partitioned into a number of clusters, and all the slices in each cluster
are fused into a single, approximate slice, which we call f-slice, by averaging
their non-null measure values. This means that an f-slice in the shrunk cube

180 M. Golfarelli and S. Rizzi

Red),(C)

Fig. 3. The shrinking intuition

may not refer to a single value of the domain of a1, but rather to a set of values
—or even to a set of values of a more aggregate attribute ag, as, ... in h;. This
process is exemplified in Figure B} where C is first graphically decomposed into
its slices over ay; these six slices are then partitioned into two clusters including
four and two slices, respectively. Finally, the fusion step creates the two f-slices
that constitute the shrunk cube.

More precisely, let a;, j > 1, be an attribute of k1, and V' C Dom(a;) be a set
of values of a;. We denote with Desci (V') the set of all values of a; that roll-up to
a value in V' (conventionally, if j = 1 it is Descy (V) =V for all V' C Dom(ay)).
The shrink operation takes cube C in input and returns a reduction Redy, (C)
of C, i.e., a set of couples, each formed by a set V' of values of any a;, j > 1 and
by the f-slice F'V that results from fusing the slices in Descy(V):

Redy, (C) ={(V,F"),V C Dom(a;)}

The measure value of each fact in FV is computed as the average of the non-null
measure values of the corresponding facts in the slices belonging to Descy (V.
F-slice FV is said to have level j; f-slices with different levels can be mixed
in a reduction. The size of a reduction is the number of f-slices it includes:
size(Redp, (C)) = |Redy, (C)|.

Noticeably, to preserve the semantics of hierarchies in the reduction, the clus-
tering of the slices for fusion must meet some further constraints besides dis-
jointness and completeness:

1. Two slices corresponding to values v and v’ of a; can be fused in a single
f-slice with level j only if both v and v’ roll-up to the same value of a;i1
(and therefore to the same value of all the subsequent attributes in hq).

2. If the slices corresponding to all the values of a; that roll-up to a single value
T of aj (j > 1) are all fused together, then the corresponding f-slice has level
j and is coupled in the reduction with a set V such that v e V .

Ezample 3. Figure @ shows two possible reductions, with size 3 and 1 respec-
tively, of the cube shown in Figure[I} in (a) the first two rows have been fused

1 Of course, if Desci (V) = {v}, the measure values in F'V are those in C”.

Honey, I Shrunk the Cube 181

Year Year
2010 2011 2012 2010 2011 2012
Miami, Orlando | 45.5 44 51
-g Tampa| 39 | 50 | 41 South-Atlantic‘ 44 ‘ 46 ‘49.2‘
Virginia| 45 | 46 | 50.6
(a) (b)

Fig. 4. Two reductions of the same cube

into a single f-slice (with level 1) referring to {Miami,Orlando} and the last three
rows have been replaced by a single f-slice (with level 2) referring to the Virginia
state, while in (b) all six rows have been replaced by a single f-slice (with level
3) referring to the South-Atlantic region. Note that, in the f-slice for Virginia
shown in Figure Ma, the income measure has been averaged on three facts for
years 2011 and 2012, and on two facts for year 2010 (since the income value for
Arlington in 2010 is null in Figure [I). Some examples of slice clustering that
would violate the hierarchy semantics are as follows:

{Miami, Orlando, Washington}, { Tampa, Richmond, Arlington} (1)
{FL, Washington}, {Richmond}, { Arlington} (2)
{FL}, {Tampa}, {Washington} (3)

(in (1) two slices corresponding to cities of different states are put together; in
(2) values of attributes with different levels are mixed; in (3) the clustering is
neither complete nor disjoint).

This approach can easily be generalized to be applied to any cube at any
group-by G = (ay, ...) resulting from an OLAP query; of course, all f-slices in
the reduction will have levels not lower than £ in this case.

3.1 Measuring the Approximation Error

Fusing some slices into a single f-slice of the reduction when applying the shrink
operation gives raise to an approximation. Like in [7], to measure this approxi-
mation we use the sum squared error.

Given cube C at group-by G = (ag,b,...), let V.C Dom(a;), k < j. We
denote with Descy (V') the set of all values of ay that roll-up to a value in V', and
with F'V the corresponding f-slice. Now let § € Dom(b) x Dom(c) x ... be an
incomplete coordinate of G (no value for attribute ay, is given). The sum squared
error (SSE) associated to FV is

SSE(FV) = > > (€@ -F" @) (4)

geDom(b)x Dom(c)X... vEDescy(V)

182 M. Golfarelli and S. Rizzi

(conventionally, C*(g) — FV (g) = 0 if C?(g) is null). Given reduction Redy, (C),
the SSE associated to Redp, (C) is

SSE(Redy, (C)) = > SSE(FY) (5)
(V,FV)€Redp, (C)

Ezample 4. The SSEs associated to the f-slices in Figure[da are (2.25+ 2.25) +
(I1+1)+(1+41)=28.5,0, and 14.68 respectively; the overall SSE associated to
the reduction is 23.2. The SSE associated to the reduction in Figure[dlb is 158.8.

3.2 A Heuristic Algorithm for the Shrink Operation

Given a cube C, a combinatorial number of possible reductions can be operated
on it, one for each way of clustering the slices of C by preserving the hierarchy
semantics. Of course, the more the reduction process is pushed further, the lower
the number of resulting f-slices; hence, the lower the size of the data returned
to the user but the higher the approximation introduced. So, it is apparent
that the reduction process should be driven by a parameter size;,q, expressing
the trade-off between size and precision, in particular the maximum tolerable
number of f-slices in the reduction (determined for instance by the size of the
display and/or by the network bandwidth of the device). In the light of this, the
problem of finding a reduction of C' along h; can be so formulated:

Problem 1 (Reduction Problem). Find the reduction that yields the minimum
SSE among those whose size is not larger than sizenqq.

The reduction problem has exponential complexity, which is hardly compat-
ible with the inherent interactivity of OLAP sessions. Indeed, the presence of
hierarchy-related constraints reduces the problem search space, so the worst case
for the reduction problem is the one where no such constraints are present (i.e.,
all values of ay roll-up to the same value of axy1). In this case, the size of the
search space is given by the |Dom(ay)|-th Bell numberf, i.e., the number of dif-
ferent partitions of a set with |Dom(ag)| elements [§]. So, there is a need for
a heuristic approach that satisfies real-time computational feasibility while pre-
serving the quality of the solutions obtained. In this direction, we observe that
a reduction is determined starting from a clustering of the slices in C, where
each cluster determines an f-slice and the size of the reduction is given by the
number of clusters. Then, we show how the reduction problem can be solved
in a sub-optimal way by applying an agglomerative algorithm for hierarchical
clustering with constraints to the set of slices in C.

Hierarchical clustering aims at building a hierarchy of clusters [9]; this can
be done following either a top-down or a bottom-up approach. The algorithms
based on a bottom-up approach are called agglomerative: each element (each
slice of C, in our case) initially stands in its own cluster, then pairs of clusters
are progressively merged. The decision of which pair of clusters will be merged is

2 The Bell number is defined as follows: By y1 = Y r—o (Z) By, Bo=B; = 1.

Honey, I Shrunk the Cube 183

Algorithm 1. The Shrinking Algorithm

Require: C at group-by G = (ay,b,...), sizeémax
Ensure: Redp, (C)

1: Redn, (C) < 0 > Initialize reduction...
2: for all v € Dom(a) do Redp, (C) < Redp, (C)U {({v}, ctvhyy > ...one slice per f-slice
3: while size(Redy, (C)) > sizeémax do > Check constraint on maximum size
4: find FV,, Fv" € Redp, (C) s.t. FV' and FV" have the same level 7

5: and SSE(FY'VV") — SSE(FV') — SSE(FY") is minimal

6: and all values in V' U V"’ roll-up to the same value of a;41 > Hierarchy constraints
T Redp, (C) < Redp, (C)\ {FV/, FV”} > Merge into an f-slice...
8: if 3v € Dom(a;41) s.t. Desc;(®) = V' UV” then

9: Redp,, (C) + Redy, (C) U {F{7}} > ...either at level j + 1
10: else R

11: Redp, (C) + Redp,, (C)U{FY "V} > ...or at level j

12: return Redp, (C)

usually taken in a greedy (i.e., locally optimal) manner. In our context, merging
two clusters means merging two f-slices (i.e., fusing all the slices belonging to
each of the two f-slices into a single f-slice). As a merging criterion we adopted
the Ward’s minimum variance method [9], i.e., at each step we merge the pair
of f-slices that leads to minimum increase ASSE in the total SSE of the corre-
sponding reduction. Of course, two f-slices can be merged only if the resulting
reduction preserves the hierarchy semantics as explained above. Finally, the ag-
glomerative process is stopped when the next merge would violate the constraint
expressed by sizepqe. The overall process is outlined in Algorithm [I} remark-
ably, since the SSE grows monotonically at each merge, by simply changing line
the same algorithm can be used to solve a symmetrical formulation of the
reduction problem asking for the reduction that has minimum size among those
whose SSE is below a threshold.

Interestingly, it can be proven that the SSE of a reduction can be incrementally
computed, ie., the SSE of an f-slice FV'YV" obtained by merging two f-slices
FV and FV" (line[]) can be computed from the SSEs of the f-slices to be merged
as follows:

1"

SSE(FV'WV") = SSE(FY') + SSE(FV")+

H. . H!
g 9 (FV'(a) — FV" (7))2
x > e FT@-r@r ©

geDom(b)x Dom(c)X...
where Hg = [{v € Desc (V') s.t. C*(g) is not null}| (similarly for Hy).

Ezample 5. Consider again the cube in Figure [l In the following we show in
detail how Algorithm [Tl computes a reduction with size;,q. = 3 (Figure [l).

1. In the initialization step (line), six singleton f-slices are created, one for
each slice of C. Since this first reduction has size 6, it violates the sizeqz
constraint and the while cycle is entered.

2. The most promising merge is the one between the Arlington and the Wash-
ington slices, that yields ASSE = 2.5 (Figure Hla, right).

184 M. Golfarelli and S. Rizzi

E 2 =
° w5 0§
2010 2011 2012 SSE L -
Miami | 47 45 50 Miami
Orlando | 44 43 52 Orlando ?
2 Tampa | 39 50 41 Tampa | 85 |97.5 ()
© Washington | 47 45 51 ‘Washington
Richmond | 43 46 49 Richmond 10.5
Arlington | — 47 52 Arlington 25| 5 ‘
£ 5
v - 8 = T2
ear ASSE § ‘E £ 5
2010 2011 2012 SSE = o £ = X
Miami | 47 45 50 Miami
Orlando| 44 | 43 | 52 Orlando | 8.5 |
5 Tampa| 39 | 50 | 41 Tampa | 85 |97.5 (b)
‘Washington, Arlington | 47 46 51.5 Wash., Arlin.
Richmond | 43 46 49 Richmond 14.7
& z 2
Year E 2 j é
2010 2011 2012 SSE ASSE g E E é
Miami, Orlando | 45.5 44 51 85 ‘ Miami, Orlando
> Tampa| 39 | 50 | 41 Tampa | 127.3 |
O Washington, Arlington | 47 | 46 | 515 | 2. Wash., Arlin. ©
Richmond | 43 46 . 49 Richmond 14.7
Year
2010 2011 2012 SSE
Miami. Orlando| 455 | 44 | 51 | 85 |
g Tampa| 39 | 50 | 41 0 | ()
Virginia| 45 46 50.6 | 14.7
2527

Fig. 5. Applying the agglomerative clustering algorithm

3. In the resulting reduction (Figure Blb, left), that still violates the sizepqax
constraint, the most promising merge is the one between the Miami and the
Orlando slices (Figure Blb, right).

4. At this step, the Richmond slice is fused with the Washington-Arlington
f-slice (Figure Blc, right). Since the resulting f-slice covers all the Virginia
state, its level is changed to 2 (Figure Bld).

5. The resulting reduction meets the size, ., constraint, so the algorithm stops.

The worst-case complexity of Algorithm [Ilin terms of operations for comput-
ing ASSE refers to the case where no hierarchy-related constraints are present
and sizemaz = 2, in which case it is O(§2 - |C”]) where § = |[Dom(ay)| and |C"|
is the size of each slice. Specifically, each ASSFE computation requires |C”| op-
erations according to Equation [l (because it is | Dom/(b)| - |[Dom(c)| - ... = |C?]);
if sizema, = 2 the while loop (line Bl of Algorithm[I]) is executed 6 — 2 times, and

Honey, I Shrunk the Cube 185

Table 1. The four cubes used for testing

Cube| # facts |Sparsity|# facts per slice
Coh (34,008,000 0.6% 21,800
C1 (13,603,200 11.4% 8,720
Cy | 1,622,400 4.5% 1,040
C3 28,080 22.2% 18

it requires W ASSE computations (line[l) at the i-th time, yielding a

(8°-2)
6

total of — 1 computations.

4 Experimental Results

This section collects the main results of the tests we carried out to evaluate
the behavior of the shrink operation. The shrink algorithm is implemented in
C++ and has run on a Pentium i5 quad-core (2.67GHz, 4 GB RAM, Windows
7-64 bit). The experiments have been carried out on four 4-dimensional cubes
extracted from the IPUMS database, whose properties are summarized in Table[Il
The cubes from C to Cs are obtained by grouping the facts in Cy at progressively
coarser granularities.

For each cube, we applied the shrink operation to the City attribute of the
RESIDENCE hierarchy. Figure [6]l shows the SSE and the corresponding number
of non-null facts in the reduction for decreasing values of size,,q, from 1560
(no shrinking, all city slices are kept distinct) to 1 (all city slices are fused into
a single f-slice). As expected, the SSE shows an exponential behavior that is
more apparent for cubes at coarser group-by’s. The decrease in the number of
non-null facts is also related to the features of the cube to which shrinking is
applied, namely, their sparsity and their distribution of measure values. More
details on these issues follow:

— When a non-null fact is fused with a null one, the contribution to the SSE
is 0 (see Section BJ]). Thus, the SSE increases slowly in cubes with a fine
group-by due to their high sparsity.

— The SSE increases slowly for high values of size,,., because Algorithm [
merges the f-slices with lowest SSE first and because sparsity decreases as
the shrinking process is pushed further.

— While the decrease in the total number of facts of a reduction strictly depends
on the size of the slices to be fused (when two slices are fused, the total
number of facts is always reduced by the total number of facts in a slice),
the decrease of non-null facts varies according to the sparsity.

— Sparsity is not the only factor that determines the SSE values and trend.
Facts at a specific group-by can be characterized by measure values with
particularly high variance. For instance, this is the case for C3, which is
sparser than C3 and has a finer group-by, but initially leads to higher SSEs.

186 M. Golfarelli and S. Rizzi

3000 |
2500 }
2000 —
%
o 1500
B
a
1000 y
500
ory—1+ ; —=—C,
1560 1404 1248 1092 936 780 624 468 312 156 1| _4
SiZ€max foX
200 [l
180
g 160
Z 140
g 120
&
= 100 LN
T 8
g
=
iy \
20 _ \
oA 4
1560 1404 1248 1092 936 780 624 468 312 156 1
81264,

Fig. 6. SSE (top) and number of non-null facts in the reduction (bottom) for decreasing
values of sizemax

The overall execution time for reducing our largest cube, Cy, to two f-slices
(sizemaz = 2) is 3.08 secs, with an average duration of each reduction step of
about 2 milliseconds. The time is not significantly smaller for the other cubes,
because its major component is the search of the minimum SSE, which only
depends on the number of f-slices to be compared (due to the enforcement of
hierarchy-related constraints, only a small number of SSE computations are re-
quired, so the size of each slice is not very influential).

To better evaluate the trade-off between sub-optimality and time-saving in-
troduced by our heuristics, we also implemented an optimal algorithm based on
a branch-and-bound approach that carries out an exhaustive enumeration of the
feasible solutions. The enumeration technique we adopted was initially proposed
in [8] for enumerating in a systematic manner all the partitions of the leafs of a
generalization hierarchy. A node in the search space, corresponding to a possible
partition, is cut when its SSE is greater or equal to the one of the best feasible
solution found so far; the initial upper-bound was set to our heuristic solution.
Among the different criteria for choosing the next node to be expanded (i.e., the
two f-slices to be merged), the most effective one turned out to be a best-first
search choosing to merge the two f-slices for which the ratio of the SSE obtained
and the relative reduction in cube size is minimum. Unfortunately, the huge size
of the search space allowed us to solve to optimality only very small problems
(|[Dom(ar)| < 23 and sizepmqr = 0.3+ |Dom(ay)|. In all the experiments, the gap
between the optimal and heuristic solution in terms of SSE value turned out
to be less than 10%. The execution time of the optimal algorithm was about

Honey, I Shrunk the Cube 187

30 mins when |Dom(ay)| = 23; when |Dom(ay)| = 55, no optimal solution was
found after about 1 day.

5 Related Literature

Many studies in the literature can be related to the information flooding problem.

Query personalization allows a reduction in the output size by providing a
mechanism for selecting only the information relevant to the users. In [3] the
authors propose an algebra for defining preferences in the OLAP context. This
approach is powerful from an expressiveness point of view, but differently from
the shrink operation, it requires users to manually specify their preference crite-
ria. In [I0] a technique is proposed for obtaining a personalized visualization of
OLAP query results in presence of constraints on the maximum number of re-
turned cells for each dimension of analysis; user preferences are manually defined
in terms of a total order of the dimensional values. Also most other works on
OLAP content personalization, such as [I1], share with the two mentioned above
the need for some manual intervention to define preferences. In a few cases, such
as [12], preferences are automatically derived by analyzing the log of the user
queries, which makes the results of current queries dependent on the past queries
—while the results of shrinking are always independent of the past.

According to [13], an intensional answer to a query, instead of returning a pre-
cise and complete set of tuples, summarizes them with a concise description of
the properties these tuples share. Intensional query answering has been applied
in many area of computer science (e.g., object-oriented databases [14], deductive
database [15], and question answering systems [I6]17]) but, to the best of our
knowledge, the only work related to the OLAP area is [2], that proposes a frame-
work for computing an intensional answer to an OLAP query by leveraging the
previous queries in the current session. The idea is to use an intensional answer
to concisely characterize the cube regions whose data do not change along the
sequence, coupled with an extensional answer to describe in detail only the cube
regions whose data significantly differ from the expectation. Like for [12], even
here query results strongly depend on the user history.

Another research topic that is related to our is approzimate query answering,
whose main goal is to increase query efficiency by returning a reduced result
while minimizing the approximation introduced —which is clearly similar to our
goal. Some approximate query answering approaches were specifically devised
for OLAP. For instance, in [18] the authors propose a set of techniques that,
given a fixed amount of space, return the cells that maximize the accuracy for
all possible group-by queries on a set of columns. While the shrink operation
uses approximation to reduce the size of query results, in [I8] using sampling
to quickly compute measure values for each group introduces an approximation
but does not change the size of results. In [19] the focus is different: tuples
are sent to a data warehouse as separate streams that must be integrated, and
the approximation of queries when a small quantity of memory is available is
studied. OLAP query approximation was also studied in the context of data

188 M. Golfarelli and S. Rizzi

exchange [20]. In particular, in [I9] a data warehouse is fed by several sources
and the authors study how to sample each source to guarantee that the union
of the samples correctly approximates the union of the sources. [21I] considers a
peer-to-peer data warehouse and studies how to approximately answer OLAP
queries by mapping the information available on a source peer on the schema of
a target peer.

Finally, an approach similar to ours in the area of temporal databases is
parsimonious temporal aggregation (PTA), a novel temporal aggregation oper-
ator that merges tuples related to the same subject and with consecutive time
intervals to computes aggregation summaries that reflect the most significant
changes in the data over time [22]. Though our technique shares the same basic
principle, it bears more complexity because (a) the constraints deriving from
temporal consecutiveness strongly reduce the PTA search space; (b) preserving
hierarchy semantics introduces additional complexity; (¢) PTA computes the ap-
proximation level on a single numerical attribute while we work with complex
multidimensional slices.

6 Conclusions and Future Works

In this paper we have proposed a novel OLAP operation, called shrink, to cope
with the information flooding problem by enabling users to balance the size of
query results with their approximation. We described a heuristic implementation
of the shrink operation and discussed its efficiency and effectiveness. Remark-
ably, since the proposed algorithm works by progressively merging couples of
f-slices, when using the shrink operation during an OLAP session the shrunk re-
sults obtained for a given size threshold can always be reused to compute more
efficiently the results for a lower size threshold.

To enhance the shrink approach, we are currently working on two relevant
issues. Firstly, to improve effectiveness, we will extend the formulation of the op-
eration to work on several hierarchies simultaneously. This will obviously make
the problem much harder from the computational point of view, thus bringing to
the forefront efficiency issues. To cope with this, we will study smarter heuristics
to obtain good solutions through a greedy approach on the one hand, specific op-
timization techniques to obtain optimal solution through dynamic programming
approaches on the other.

References

1. Golfarelli, M., Rizzi, S.: Data Warehouse design: Modern principles and method-
ologies. McGraw-Hill (2009)

2. Marcel, P., Missaoui, R., Rizzi, S.: Towards intensional answers to OLAP queries
for analytical sessions. In: Proc. DOLAP, Maui, USA, pp. 49-56 (2012)

3. Golfarelli, M., Rizzi, S., Biondi, P.: myOLAP: An approach to express and evaluate
OLAP preferences. IEEE Trans. Knowl. Data Eng. 23(7), 1050-1064 (2011)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Honey, I Shrunk the Cube 189

Vitter, J.S., Wang, M.: Approximate computation of multidimensional aggregates
of sparse data using wavelets. In: Proc. SIGMOD, Philadelphia, USA, pp. 193-204
(1999)

Han, J.: OLAP mining: Integration of OLAP with data mining. In: Proc. Working
Conf. on Database Semantics, Leysin, Switzerland, pp. 3-20 (1997)

Minnesota Population Center: Integrated public use microdata series (2008),
http://www.ipums.org

Gordevicius, J., Gamper, J., Bohlen, M.H.: Parsimonious temporal aggregation.
VLDB J. 21(3), 309-332 (2012)

Li, T., Li, N.: Towards optimal k-anonymization. DKE 65(1), 22-39 (2008)

Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Pearson Inter-
national (2006)

Bellatreche, L., Giacometti, A., Marcel, P., Mouloudi, H., Laurent, D.: A person-
alization framework for OLAP queries. In: Proc. DOLAP, Bremen, Germany, pp.
9-18 (2005)

Jerbi, H., Ravat, F., Teste, O., Zurfluh, G.: A framework for OLAP content person-
alization. In: Catania, B., Ivanovié, M., Thalheim, B. (eds.) ADBIS 2010. LNCS,
vol. 6295, pp. 262-277. Springer, Heidelberg (2010)

Aligon, J., Golfarelli, M., Marcel, P., Rizzi, S., Turricchia, E.: Mining preferences
from OLAP query logs for proactive personalization. In: Eder, J., Bielikova, M.,
Tjoa, A.M. (eds.) ADBIS 2011. LNCS, vol. 6909, pp. 84-97. Springer, Heidelberg
(2011)

Motro, A.: Intensional answers to database queries. IEEE Trans. Knowl. Data
Eng. 6(3), 444-454 (1994)

Yoon, S.C., Song, 1.Y., Park, E.K.: Intelligent query answering in deductive and
object-oriented databases. In: Proc. CIKM, Gaithersburg, USA, pp. 244-251 (1994)
Flach, P.: From extensional to intensional knowledge: Inductive logic programming
techniques and their application to deductive databases. Technical report, Univer-
sity of Bristol, Bristol, UK (1998)

Benamara, F.: Generating intensional answers in intelligent question answering
systems. In: Proc. Int. Conf. Natural Language Generation, Brockenhurst, UK,
pp. 11-20 (2004)

Cimiano, P., Rudolph, S., Hartfiel, H.: Computing intensional answers to questions
— an inductive logic programming approach. DKE 69(3), 261-278 (2010)
Acharya, S., Gibbons, P.B., Poosala, V.: Congressional samples for approximate
answering of group-by queries. In: Proc. SIGMOD Conference, Dallas, USA, pp.
487-498 (2000)

de Rougemont, M., Cao, P.T.: Approximate answers to OLAP queries on streaming
data warehouses. In: Proc. DOLAP, Maui, USA, pp. 121-128 (2012)

Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: Semantics and
query answering. In: Calvanese, D., Lenzerini, M., Motwani, R. (eds.) ICDT 2003.
LNCS, vol. 2572, pp. 207-224. Springer, Heidelberg (2002)

Golfarelli, M., Mandreoli, F., Penzo, W., Rizzi, S., Turricchia, E.: OLAP query
reformulation in peer-to-peer data warehousing. Inf. Syst. 37(5), 393—411 (2012)
Gordevicius, J., Gamper, J., Bohlen, M.H.: Parsimonious temporal aggregation.
VLDB J. 21(3), 309-332 (2012)

http://www.ipums.org

	Honey, I Shrunk the Cube
	Introduction
	Background on Cubes
	The Shrink Approach
	Measuring the Approximation Error
	A Heuristic Algorithm for the Shrink Operation

	Experimental Results
	Related Literature
	Conclusions and Future Works

