Compito di Sistemi Informativi I (Ing. settore Informazione) del 26 novembre 1999

ESERCIZIO 1

Data la relazione:

PERSONE

CODICE	NOME	SESSO	LUOGO_NASC	ANNO_NASC	CONIUGE
YZ12	CARLO ROSSI	M	MODENA	1956	XX21
XX21	ANNA CORLI	F	FERRARA	1962	YZ12
YY12	MARTA VERDI	F	BOLOGNA	1949	null

Si scriva il codice SQL per determinare le coppie di coniugi nati nello stesso luogo e la cui differenza di età superi cinque anni. Si faccia in modo che ciascuna coppia compaia *una sola volta* nel risultato. Si riscriva la query, se necessario, per il caso in cui nella relazione non ci sia l'attributo SESSO.

ESERCIZIO 2

Data la relazione con schema:

LAUREANDO(#FAC, #CDL, #MATR, NOME, COGNOME, TITOLO_TESI, RELATORE, PRESIDENTE_CDL)

se ne determini lo stato di **normalizzazione** e se ne produca una eventuale rappresentazione equivalente in terza forma normale (3NF).

ESERCIZIO 3

Si descriva l'algoritmo di **join** noto come *simple-hash* con valutazione dei costi di esecuzione. Assumendo poi che il *file hash* utilizzato sia composto da $\bf N$ bucket e di avere a disposizione un buffer di $\bf B = p \ N$ blocchi ($\bf p < 1$) per l'esecuzione del join, si ricalcoli il costo di esecuzione tenendo conto di avere una probabilità supposta costante $\bf p = B \ / N$ di trovare un dato bucket già nel buffer.

ESERCIZIO 4

Si ottimizzi il *join naturale* fra le due relazioni **R** ed **S** con le seguenti caratteristiche:

 $\mathbf{NP_R} = 10.000$, $\mathbf{NT_R} = 150.000$, $\mathbf{IX_R}$ Unclustered su attr. join ($\mathbf{NL_R} = 250$); $\mathbf{NP_S} = 25.000$, $\mathbf{NT_S} = 320.000$, $\mathbf{IX_S}$ Unclustered su attr. join ($\mathbf{NL_S} = 450$).

assumendo che l'attributo di join sia chiave primaria in **R** e chiave esterna in **S**.

Si considerino come metodi di join gli algoritmi *merging-scans* (ovvero *nested-loops* con indice) e *simple-hash*. Nelle ipotesi dell'esercizio precedente, si discuta al variare di **p** l'eventuale convenienza del secondo metodo (assumendo, per evitare il più possibile l'overflow, di usare un numero di bucket **N** pari al doppio delle pagine della relazione da trasformare).