
Schema Evolution and Versioning:
a Logical and Computational Characterisation

Enrico Franconi
University of Manchester, Department of Computer Science, Manchester M13 9PL, UK.

E-mail: franconi@cs.man.ac.uk

Fabio Grandi and Federica Mandreoli
Università di Bologna, CSITE-CNR DEIS, Viale Risorgimento 2, I-40136, Bologna, Italy.

E-mail: ffgrandi jfmandreolig@deis.unibo.it

Abstract

In this paper a semantic approach for the specification and the management of
databases with evolving schemata is introduced. It is shown how a general object-
oriented model for schema versioning and evolution can be formalised; how the seman-
tics of schema change operations can be defined; how interesting reasoning tasks can
be supported, based on an encoding in Description Logics.

1 Introduction

The problems of schema evolution and versioning arose in the context of long-lived database
applications, where stored data were considered worth surviving changes in the database
schema [26]. According to a widely accepted terminology [21], a database supports schema
evolution if it permits modifications of the schema without the loss of extant data; in addi-
tion, it supports schema versioning if it allows the querying of all data through user-definable
version interfaces. For the sake of brevity, schema evolution can be considered as a special
case of schema versioning where only the current schema version is retained. With schema
versioning, different schemata can be identified and selected by means of a suitable “coor-
dinate system”: symbolic labels are often used in design systems to this purpose, whereas
proper time values are the elective choice for temporal applications [14, 15].

In this paper, we present and discuss a formal approach, which we have first introduced
in [13], for the specification and management of schema versioning in a very general object-
oriented data model. The adoption of an object-oriented data model is the most common
choice in the literature concerning schema evolution, though schema versioning in relational
databases [11] has also been studied deeply. The approach is based on:

� the definition of an extended object-oriented model supporting evolving schemata
(equipped with all the usually adopted schema changes) for which a semantics is pro-
vided;

� the formulation of interesting reasoning tasks, in order to support the design and the
management of an evolving schema;

� an encoding, which has been proved correct, as inclusion dependencies in a suitable
Description Logics, which can then be used to solve the tasks defined for the schema
versioning.

Within such a framework, the main problems connected with schema versioning support
will be formally characterised, both from a logical and computational viewpoint. From
a practical viewpoint, the application purpose of our approach is the enhancement of the
functionalities of a system supporting evolving schemata along the directions which follow.

� The complexity of schema changes becomes potentially unlimited: in addition to the
classical schema change primitives (a well-known comprehensive taxonomy can be
found in [4]), our approach enables the definition of complex and articulated schema
changes.

� Techniques for consistency checking and classification can be automatically applied
to any resulting schema. We define different notions of consistency, related to the
existence of a legal database for the global schema or for a single schema version,
or related to the consistency of single classes within a consistent schema (version).
Classification tasks we define include the discovery of implicit inclusion/inheritance
relationships between classes ([5]). Decidability and complexity results are available
for the above mentioned tasks in our framework; tools based on Description Logics
can be used for solving these tasks.

� The process of schema transformation can be formally checked. The provided seman-
tics of the various schema change operations makes it possible to reduce the correct-
ness proof of complex sequences of schema changes to solvable reasoning tasks.

However, our semantic approach has not thoroughly addressed the so-called change
propagation problem yet, which concerns the effects of schema changes on the underly-
ing data instances. In general, change propagation can be accomplished by populating the
new schema version with the results of queries involving extant data connected to previous
schema versions. Moreover, from a theoretical point of view, dealing with the presence
of object identifiers (OIDs, which correspond to real and conceptual objects in the “real
world”) represents a non-trivial problem for the definition of such a query language, which,
thus, must be very carefully designed. In Section 4, our proposal will be reviewed in the light
of previous approaches concerning object languages dealing with OIDs (e.g. [1, 19, 20, 10]),
and directions for future developments will also be sketched.

The paper is organised as follows. After a survey of the current status of the field,
Section 3 first introduces the syntax and the semantics of the object-oriented model for
evolving schemata, and then formally defines the relevant reasoning problems supporting
the design and the management of an evolving schema and it analyses their computational
complexity. Section 3.3 mentions a provably correct encoding of the object-oriented model
for evolving schemata into a Description Logic, so that theoretical and practical results from
the Description Logic field can be reused for the object-oriented model. A critical discussion
(Sec. 4) about the proposed approach precedes the conclusions (Sec. 5).

2 Related Work

The problems of schema evolution and schema versioning support have been diffusively
studied in relational and object-oriented database papers: [26] provides an excellent survey
on the main issues concerned. The introduction of schema change facilities in a system
involves the solution of two fundamental problems: the semantics of change, which refers
to the effects of the change on the schema itself, and the change propagation, which refers
to the effects on the underlying data instances. The former problem involves the check-
ing and maintenance of schema consistency after changes, whereas the latter involves the
consistency of extant data with the modified schema.

In the object-oriented field (see [27, 11] for the relational case), two main approaches
were followed to ensure consistency in pursuing the “semantics of change” problem. The
first approach is based on the adoption of invariants and rules, and has been used, for in-
stance, in the ORION [4] and O2 [12] systems. The second approach, which was proposed
in [25], is based on the introduction of axioms. In the former approach, the invariants define
the consistency of a schema, and definite rules must be followed to maintain the invariants
satisfied after each schema change. Invariants and rules are strictly dependent on the un-
derlying object model, as they refer to specific model elements. In the latter approach, a
sound and complete set of axioms (provided with an inference mechanism) formalises the
dynamic schema evolution, which is the actual management of schema changes in a system
in operation. The approach is general enough to capture the behaviour of several different
systems and, thus, is useful for their comparison in a unified framework. The compliance of
the available primitive schema changes with the axioms automatically ensures schema con-
sistency, without need for explicit checking, as incorrect schema versions cannot actually be
generated.

For the “change propagation” problem, several solutions have been proposed and imple-
mented in real systems [4, 12, 23, 24]. In all cases, simple default mechanisms can be used
or user-supplied conversion functions must be defined for non-trivial extant object updates.

As far as complex schema changes are concerned, [22] considered sequences of schema
change primitives to make up high-level useful changes, solving the propagation to objects
problem with simple schema integration techniques. However, with this approach, the con-
sistency of the resulting database is not guaranteed nor checked. In [6], high-level primitives
are defined as well-ordered sets of primitive schema changes. Consistency of the result-
ing schema is ensured by the use of invariants’ preserving elementary steps and by ad-hoc
constraints imposed on their application order. In other words, consistency preservation is
dependent on an accurate design of high-level schema changes and, thus, still relies on the
database designer/administrator’s skills.

3 An Object-Oriented Data Model for Evolving Schemata

In this Section we summarise a general object-oriented model for evolving schemata which
supports the taxonomy usually adopted for schema changes, as first proposed in [13]. To this
end, we will first formally introduce the syntax and the semantics for the schema (version)
and for the supported schema changes, and then formulate some interesting reasoning prob-
lems and analyse their computational properties. To the best of our knowledge, this has been

the first attempt to formally define the semantics of schema changes based on the semantics
of the underlying data model for the single schemata.

3.1 Syntax and Semantics

The object-oriented model we propose allows for the representation of multiple schema ver-
sions. It is an expressive version of the “snapshot” – i.e., single-schema – object-oriented
model introduced by [1] and further extended and elaborated in its relationships with De-
scription Logics by [8, 9]; in this paper we borrow the notation from [8]. The language
embodies the features of the static parts of UML/OMT and ODMG and, therefore, it does
not take into account those aspects related to the definition of methods. At the end of sec-
tion 3.3 suggestions will be given on how to extend even more the expressiveness of the data
model, both at the level of the schema language for classes and types and at the level of the
schema change language.

The definition of an evolving schema S is based on a set of class and attribute names
(CS and AS respectively) and includes a partially ordered set of schema versions. The initial
schema version of S contains a set of class definitions having one of the following forms:

Class C is-a C1, : : : ,Ch disjoint Ch+1, : : : ,Ck type-is T .
View-class C is-a C1, : : : ,Ch disjoint Ch+1, : : : ,Ck type-is T .

A class definition introduces just necessary conditions regarding the type of the class – this is
the standard case in object-oriented data models – while views are defined by means of both
necessary and sufficient conditions. The symbol T denotes a type expression built according
to the following syntax:

T ! C j

Union T1, : : : ,Tk End j (union type)
Set-of [m,n] T j (set type)
Record A1:T1, : : : ,Ak:Tk End . (record type)

where C 2 CS , Ai 2 AS , and [m,n] denotes an optional cardinality constraint.
A schema version in S is defined by the application of a sequence of schema changes to

a preceding schema version. The schema change taxonomy is built by combining the model
elements which are subject to change with the elementary modifications, add, drop and
change, they undergo. In this paper only a basic set of elementary schema change operators
will be introduced; it includes the standard ones found in the literature (e.g., [4]); however,
it is not difficult to consider the complete set of operators with respect to the constructs of
the data model.

M ! Add-attribute C, A, T End j

Drop-attribute C, A End j

Change-attr-name C, A, A’ End j

Change-attr-type C, A, T ’ End j

Add-class C, T End j

Drop-class C End j

Change-class-name C, C’ End j

Change-class-type C, T ’ End j

Add-is-a C, C’ End j

Drop-is-a C, C’ End .

In a framework supporting schema versioning, a mechanism for defining version co-
ordinates is required. Such coordinates will be used to reference distinct schema versions
which can then be employed as interfaces for querying extant data or modified by means
of schema changes. We require that different schema versions have different version coor-
dinates. At present, we omit the definition of a schema version coordinate mechanism and
simply reference distinct schema versions by means of different subscripts. As a matter of
fact, this approach is quite general in order to identify different versions. Any kind of ver-
sioning dimension usually considered in the literature could actually be employed – such as
transaction time, valid time and symbolic labels – provided that a suitable mapping between
version coordinates and index values is defined.

Definition 1 An evolving object-oriented schema is a tupleS = (CS ;AS;SV0;MS), where:

� CS is a finite set of class names;

� AS is a finite set of attribute names;

� SV0 is the initial schema version, which includes class and view definitions for some
C 2 CS;

� MS is a set of modifications Mij, where i; j denote a pair of version coordinates.
Each modification is a finite sequence of elementary schema changes.

The set MS induces a partial order SV over a finite and discrete set of schema versions
with minimal element SV 0. Hence SV0 precedes every other schema version and the schema
version SV j represents the outcome of the application ofMij to SV i. S is called elementary
if every Mij in MS contains only one elementary modification, and every schema version
SV i has at most one immediate predecessor. Without loss of generality, in the following we
will consider only elementary evolving schemata.

Let us now introduce the meaning of an evolving object-oriented schema S. Informally,
the semantics is given by assigning to each schema version a possible legal database state –
i.e., a legal instance of the schema version – conforming to the constraints imposed by the
sequence of schema changes starting from the initial schema version.

Formally, an instance I of S is a tuple I =(OI , �I , (I0; : : : ; In)), consisting of a finite
set OI of object identifiers, a function �I : O

I
7! VOI giving a value to object identifiers,

and a sequence of version instances Ii, one for each schema version SV i in S. The set

VOI of values is defined by induction as the smallest set including the union of OI with all
possible “sets” of values and with all possible “records” of values. Although the set VOI is
infinite, we consider for an instance I the finite set VI of active values, which is the subset
of VOI formed by the union of OI and the set of values assigned by �I ([8]).

A version instance Ii =(�Ii , �Ii) consists of a total function �Ii : CS 7! 2
OI

, giving
the set of object identifiers in the extension of each class C 2 CS for that version, and of
a function �Ii (the interpretation function) mapping type expressions to sets of values, such
that the following is satisfied:

CIi = �Ii(C)

(Union T1, : : : ,Tk End)Ii = T Ii

1 [: : : [T Ii

k

(Set-of [m,n] T)Ii
= ffj v1; : : : ; vk jg j m � k � n; vj 2 T Ii;

for j 2 f1; : : : ; kgg

(Record A1:T1, : : : ,Ak:Tk End)Ii = f[[A1 : v1; : : : ; Ak : vk; : : : ; Ah : vh]] j

for some h � k;

vj 2 T Ii

j ; for j 2 f1; : : : ; kg;

vj 2 VOI ; for j 2 fk + 1; : : : ; hgg

where an open semantics for records is adopted (called *-interpretation in [1]) in order to
give the right semantics to inheritance. In a set constructor if the minimum or the maximum
cardinalities are not explicitly specified, they are assumed to be zero and infinite, respec-
tively.

A legal instance I of a schema S should satisfy the constraints imposed by the class def-
initions in the initial schema version and by the schema changes between schema versions.

Definition 2 An instance I of a schema S is said to be legal if

� for each class definition Class C is-a C1, : : : ,Ch disjoint Ch+1, : : : ,Ck type-is T in
SV0 it holds that:
CI0 � CI0

j for each j 2 f1; : : : ; hg,
CI0 \ CI0

j = ; for each j 2 fh+ 1; : : : ; kg,
f�I(o) j o 2 �I0(C)g � T I0;

� for each view definition View-class C is-a C1, : : : ,Ch disjoint Ch+1, : : : ,Ck type-is T
in SV0 it holds that:
CI0 � CI0

j for each j 2 f1; : : : ; hg,
CI0 \ CI0

j = ; for each j 2 fh+ 1; : : : ; kg,
f�I(o) j o 2 �I0(C)g = T I0;

� for each schema change Mij in M, the version instances Ii and Ij satisfy the equa-
tions of the corresponding schema change type at the right hand side of Tab. 1.

Add-attribute C,A, T End �
Ij (C) = �

Ii(C) \ fo 2 OI j �I(o) = [[: : : ;A : v; : : :]] ^ v 2 TIjg,

�
Ii(D) = �

Ij (D) for all D 6= C

Drop-attribute C,A End �
Ii(C) = �

Ij (C) \ fo 2 OI j �I(o) = [[: : : ;A : v; : : :]]g,

�
Ii(D) = �

Ij (D) for all D 6= C

Change-attr-name C,A,A0 End �
Ii(C) \ fo 2 OI j �I(o) = [[: : : ;A : v; : : :]]g =

�
Ij (C) \ fo 2 OI j �I(o) = [[: : : ;A0 : v; : : :]]g,

�
Ii(D) = �

Ij (D) for all D 6= C

Change-attr-type C,A, T0 End �
Ii(C) \ fo 2 OI j �I(o) = [[: : : ;A : v; : : :]] ^ v 2 T0Ijg =

�
Ij (C) \ fo 2 OI j �I(o) = [[: : : ;A : v; : : :]]g,

�
Ii(D) = �

Ij (D) for all D 6= C

Add-class C, T End �
Ii(C) = ;; �

I(�Ii(C)) � TIj ; �
Ii(D) = �

Ij (D) for all D 6= C

Drop-class C End �
Ij (C) = ;; �

Ii(D) = �
Ij (D) for all D 6= C

Change-class-name C,C0 End �
Ii(C) = �

Ij (C0), �
Ii(D) = �

Ij (D) for all D 6= C;C0

Change-class-type C, T0 End �
Ij (C) = �

Ii(C) \ fo 2 OI j �I(o) 2 T0Ijg,

�
Ii(D) = �

Ij (D) for all D 6= C

Add-is-a C,C0 End �
Ij (C) = �

Ii(C) \ �
Ii(C0), �

Ii(D) = �
Ij (D) for all D 6= C

Drop-is-a C,C0 End �
Ii(C) = �

Ij (C) \ �
Ij (C0), �

Ii(D) = �
Ij (D) for all D 6= C

Table 1: Semantics of the schema changes.

3.2 Reasoning Problems

According to the semantic definitions given in the previous section, several reasoning prob-
lems can be introduced, in order to support the design and the management of an evolving
schema.

Definition 3 Reasoning problems:

a. Global/local Schema Consistency: an evolving schema S is globally consistent if it
admits a legal instance; a schema version SV i of S is locally consistent if the evolving
schema S#i– obtained from S by reducing the set of modifications MS#i to the linear
sequence of schema changes in MS which led to the version SV i from SV0– admits a
legal instance. In the following, a global reasoning problem refers to S, while a local
one refers to S#i.

b. Global/local Class Consistency: a class C is globally inconsistent if for every legal
instance I of S and for every version SV i its extension is empty, i.e., 8i: �Ii(C) = ;;
a class C is locally inconsistent in the version SV i if for every legal instance I of S#i
its extension is empty, i.e., �Ii(C) = ;.

c. Global/local Disjoint Classes: two classes C;D are globally disjoint if for every
legal instance I of S and for every version SV i their extensions are disjoint, i.e.,

8i: �Ii(C) \ �Ii(D) = ;; two classes C;D are locally disjoint in the version SV i if
for every legal instance I of S#i their extensions are disjoint, i.e., �Ii(C)\�Ii(D) = ;.

d. Global/local Class Subsumption: a class D globally subsumes a class C if for every
legal instance I of S and for every version SV i the extension of C is included in the
extension of D, i.e., 8i: �Ii(C) � �Ii(D); a class D locally subsumes a class C in
the version SV i if for every legal instance I of S#i the extension of C is included in
the extension of D, i.e., �Ii(C) � �Ii(D).

e. Global/local Class Equivalence: two classes C;D are globally/locally equivalent if
C globally/locally subsumes D and viceversa.

Please note that the classical subtyping problem – i.e., finding the explicit representation
of the partial order induced on a set of type expressions by the containment between their
extensions – is a special case of class subsumption, if we restrict our attention to view defi-
nitions.

As to the change propagation task, which is one of the fundamental task addressed in the
literature (see Sec. 2), it is usually dealt with by populating the classes in the new version
with the result of queries over the previous version. The same applies for our framework: a
language for the specification of views can be defined for specifying how to populate classes
in a version from the previous data. Formally, we require a query language for expressing
views providing a mechanism for explicit creation of object identifiers. At present, our
approach includes one single data pool and a set of version instances which can be thought as
views over the data pool. Therefore we consider update as a schema augmentation problem
in the sense of [19], where the original logical schema is augmented and the new data may
refer to the input data. The result of applying any view to a source data pool may involve
OIDs from the source besides the new required OIDs to be created. The association between
the source OIDs and the target ones should not be destroyed, and only the target data pool
will be retained. In Section 4 an alternative approach will be discussed.
Of course, at this point the problem of global consistency of an evolving schema S becomes
more complex, since it involves the additional constraints defined by the data conversions:
an instance would therefore be legal if it satisfies not only the constraints of Definition 2
but also the constraints specified by the views. Obviously, a schema S involving a schema
change for which the corresponding semantics expressed by the equation in Tab. 1 and the
associated data conversions are incompatible would never admit a legal instance. In general,
the introduction of data conversion views makes all the reasoning problems defined above
more complex.

We will try to explain the application of the reasoning problems through an example.
Let us consider an evolving schema S describing the employees of a company. The schema
includes an initial schema version SV 0 defined as follows:

Class Employee type-is Union Manager, Secretary, Worker End;
Class Manager is-a Employee disjoint Secretary, Worker ;
Class Secretary is-a Employee disjoint Worker ;
Class Worker is-a Employee;
View-class Senior type-is Record has staff: Set-of [2,n] Worker End;

/Senior/ /Junior/

/Everybody/

Worker Secretary Manager

Employee

Executive

fcompleteg fdisjoint,completeg

fdisjointg

0..1

has-staff

2..?

has-staff

Figure 1: The Employee initial schema version in UML notation.

View-class Junior type-is Record has staff: Set-of [0,1] Worker End;
Class Executive disjoint Secretary, Worker;
View-class Everybody type-is Union Senior, Junior End End;

Figure 1 shows the UML-like representation induced by the initial schema SV 0; note that
classes with names between slashes represent the views. The evolving schema S includes a
set of schema modifications MS defined as follows:

(M01) Add-is-a Secretary, Manager End;
(M02) Add-is-a Everybody, Manager End;
(M23) Add-is-a Everybody, Secretary End;
(M04) Add-is-a Executive, Employee End;
(M45) Add-attribute Manager, IdNum, Number End;
(M56) Change-attr-type Manager, IdNum, Integer End;
(M67) Change-attr-type Manager, IdNum, String End;
(M68) Drop-class Employee End;

Let us analyse the effect of each schema change Mij by considering the schema version
SV j it produces.

First of all, it can be noticed that in SV 0 the Junior and Senior classes are disjoint
classes and that Everybody contains all the possible instances of the record type. In fact,
Everybody is defined as the union of view classes which are complementary with respect
to the record type: any possible record instance is the value of an object belonging either to
Senior or Junior.

Secretary is inconsistent in SV 1 since Secretary and Manager are disjoint: its
extension is included in the Manager extension only if it is empty (for each version in-
stance I1, SecretaryI1 = ;). Therefore, Secretary is locally inconsistent, as it is
inconsistent in SV 1 but not in SV 0.

The schema version SV3 is inconsistent because Secretary and Manager, which
are both superclasses of Everybody, are disjoint and the intersection of their extensions
is empty: no version instance I3 exists such that EverybodyI3 � ;. It follows that S is
locally inconsistent with respect to SV 3 and, thus, globally inconsistent (although is locally
consistent wrt the other schema versions).

In SV4, it can be derived that Executive is locally subsumed by Manager, since it
is a subclass of Employee disjoint from Secretary and Worker (Manager, Secre-
tary and Worker are a partition of Employee).

The schema versionSV5 exemplifies a case of attribute inheritance. The attribute IdNum
which has been added to the Manager class is inherited by the Executive class. This
means that every legal instance of S should be such that every instance of Executive
in SV5 has an attribute IdNum of type Number, i.e., ExecutiveI5 � fo j �I(o) =

[[: : : ;IdNum : v; : : :]] ^ v 2 NumberI5g. Of course, there is no restriction on the way
classes are related via subsumption, and multiple inheritance is allowed as soon as it does
not generate an inconsistency.

The Change-attr-type elementary schema change allows for the modification of the type
of an attribute with the proviso that the new type is not incompatible with the old one, like in
M56. In fact, the semantics of elementary schema changes as defined in Tab. 1 is based on
the assumption that the updated view should coexist with the starting data, since we are in
the context of update as schema augmentation. If an object changes its value, then its object
identifier should change, too. Notice that, for this reason, M67 leads to an inconsistent
version if Number and String are defined to be non-empty disjoint classes. Since the
only elementary change that can refer to new objects is Add-class, in order to specify a
schema change involving a restructuring of the data and the creation of new objects – like
in the case of the change of the type of an attribute with an incompatible new type – a
sequence of Drop-class and Add-class should be specified, together with a data conversion
view specifying how the data is converted from one version to the other.

The deletion of the class Employee in SV 8 does not cause any inconsistency in the
resulting schema version. In SV 8 the Employee extension is empty and the former Em-
ployee subclasses continue to exist (with the constraint that their extensions are subsets of
the extension of Employee in SV 6). Notice that, in a classical object model where the class
hierarchy is explicitly based on a DAG, the deletion of a non-isolated class would require a
restructuring of the DAG itself (e.g. to get rid of dangling edges).

3.3 Computational Properties of Reasoning

In this section we only summarise the main results on the computational cost of reasoning
in the proposed framework.

Theorem 1 Given an evolving schema S, the reasoning problems defined in Definition 3
are all decidable in EXPTIME with a PSPACE lower bound. The reasoning problems can
be reduced to corresponding satisfiability problems in the ALCQI Description Logic.

This has been proved in [13] by establishing a relationship between the proposed model
for evolving schemata and the ALCQI Description Logic; for a full account of ALCQI,
see, e.g., [7]. To this end, a correct and complete encoding from an evolving schema into an

ALCQI knowledge base � has been provided, such that the reasoning problems mentioned
in the previous section can be reduced to corresponding Description Logics satisfiability
problems, for which extensive theories and well founded and efficient implemented systems
exist. The encoding is grounded on the fact that there is a correspondence between the
models of the knowledge base and the legal instances of the evolving schema.

Please note that the worst case complexity between PSPACE and EXPTIME does not
imply bad practical computational behaviour in the real cases: in fact, a preliminary experi-
mentation with the Description Logic system FaCT [18, 17] shows that reasoning problems
in realistic scenarios of evolving schemata are solved very efficiently.

As a final remark, it should be noted that the high expressiveness of the Description
Logic constructs can capture an extended version of the presented object-oriented model,
at no extra cost with respect to the computational complexity, since the target Description
Logic in which the problem is encoded does not change. This includes not only taxonomic
relationships, but also arbitrary boolean constructs, inverse attributes, n-ary relationships,
and a large class of integrity constraints expressed by means of ALCQI inclusion depen-
dencies [8]. The last point suggests that axioms modeling schema changes can be freely
combined in order to transform a schema in a new one. Some combination can be defined at
database level by introducing new non-elementary primitives.

4 Discussion

In this paper we have introduced an approach to schema versioning which considers a (con-
ceptual) schema change as a (logical) schema augmentation, in the sense of [19]. In fact,
the sequence of schema versions can be seen as an increasing set of constraints, as defined
in Table 1; every elementary schema change introduces new constraints over a vocabulary
augmented by the classes for the new version. An update of the schema is also reflected by
the introduction of materialised views at the level of the data which specify how to populate
the classes of the new version from the data of the previous version. Formally, in our ap-
proach the materialised views coexist together with the base data in the same pool of data.
In some sense, there is no proper evolution of the objects themselves, since the emphasis is
given to the evolution of the schema.

More complex is the case when it is needed that a particular object maintains its identity
over different version – i.e., the object evolves by varying its structural properties – and it
is requested to have an overview of its evolution over the various versions. This is the case
when a query – possibly over more than one conceptual schema – requires an answer about
an object from more than one version.

In this case an explicit treatment of the partial order over the schema versions induced by
the schema changes is required at the level of the semantics. Formally, this partial order de-
fines some sort of “temporal structure” which leads us to consider the evolving data as a (for-
mal) temporal database with a temporally extended conceptual data model [16, 3, 2]. With
such an approach, different formal “timestamps” can be associated with different schema
versions: all the objects connected with a schema version are assigned the same timestamp,
such that each data pool represents a homogeneous state (snapshot) in the database evolution

along the formal time axis1. Objects belonging to different versions can be distingushed by
means of the object’s OID and the timestamp.

In such a framework, the (materialised) views expressing the data conversions can be ex-
pressed as temporal queries. In some sense, we can say that such a query language operates
in a schema translation fashion[10] instead of a schema augmentation, where new data are
presumed to be independent of the source data and an explicit mapping between them has to
be maintained. Multischema queries can be seen as temporal queries involving in their for-
mulation distinct (formal) timestamps. Moreover, in case (bi)temporal schema versioning
is adopted, this “formal” temporal dimension has also interesting and non-trivial connec-
tions, which deserve further investigation, with the “real” temporal dimension(s) used for
versioning.

5 Conclusions and Further Work

This paper deals with the support of database schema evolution and versioning by present-
ing and discussing a general framework based on a semantic approach, where the notion of
change is seen as schema augmentation. The reducibility of a general object-oriented con-
ceptual model to the proposed framework made it possible to provide a sound foundation for
the purposes stated in the Introduction. As a consequence, we were able to define interesting
reasoning tasks, to prove their computational complexity, and to reduce them to a reasoning
problem in Description Logics for which inference tools do exist.

We are currently working to extend the framework presented in this paper to include
a (simple) view language for data conversion in the schema augmentation context [19], for
which the evaluation, consistency, and containment problems (under the constraints given by
the evolving schema) could still be proved decidable. Once this view language is available,
it would be possible to use it also for accessing the data through the schema versions, in
the case when the schema evolves but a single database is maintained. Legacy applications
could reuse the same query formulation related to a version of the schema different from the
one modelling the actual data.
This approach would also allow for multi-schema queries. In the database literature, the
potentialities of queries involving multiple schema versions have been considered to a lim-
ited extent so far. For instance, relational queries [26] are usually solved with the help of a
constructed schema, simply consisting of the union (or intersection) of all the attributes con-
tained in the schema versions involved. Simple conversion functions are used to adapt data,
stored according to a schema, to the constructed schema. On the other hand, this approach
could be used as a basis for allowing the reformulation of multi-schema query answering as
a view-based query processing problem, where powerful reasoning techniques on the query
and the schemata can be deployed. In this way, complex relationships between extant data
connected to different schema versions could be taken into account and sophisticated mech-
anisms could be used to combine them to construct the query answer in a provably correct
way.

1This case corresponds to the multi-pool solution for temporal schema versioning of snapshot data in the
[11] taxonomy.

Further work will also be devoted to study the extensions/modifications of the proposed
framework concerning the issues sketched in the discussion section.

References

[1] S. Abiteboul and P. Kanellakis. Object identity as a query language primitive. Journal
of the ACM, 45(5):798–842, 1998. A first version appeared in SIGMOD’89.

[2] Alessandro Artale and Enrico Franconi. Schema integration of temporal databases.
Technical report, University of Manchester, 1999.

[3] Alessandro Artale and Enrico Franconi. Temporal ER modeling with description
logics. In Proc. of the International Conference on Conceptual Modeling (ER’99).
Springer-Verlag, November 1999.

[4] J. Banerjee, W. Kim, H.-J. Kim, and H. F. Korth. Semantics and Implementation
of Schema Evolution in Object-Oriented Databases. In Proc. of the ACM-SIGMOD
Annual Conference, pages 311–322, San Francisco, CA, May 1987.

[5] S. Bergamaschi and B. Nebel. Automatic Building and Validation of Multiple Inher-
itance Complex Object Database Schemata. International Journal of Applied Intelli-
gence, 4(2):185–204, 1994.

[6] P. Brèche. Advanced Principles of Changing Schema of Object Databases. In Proc.
of the 8th Int’l Conf. on Advanced Information Systems Engineering (CAiSE), pages
476–495, Crete, Greece, May 1996.

[7] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Daniele Nardi. Rea-
soning in expressive description logics. In A. Robinson and A. Voronkov, editors,
Handbook of Automated Reasoning. Elsevier, 1999. To appear.

[8] Diego Calvanese, Maurizio Lenzerini, and Daniele Nardi. Description logics for
conceptual data modeling. In Jan Chomicki and Günter Saake, editors, Logics for
Databases and Information Systems, pages 229–263. Kluwer Academic Publisher,
1998.

[9] Diego Calvanese, Maurizio Lenzerini, and Daniele Nardi. Unifying class-based repre-
sentation formalisms. Journal of Artificial Intelligence Research, 11:199–240, 1999.

[10] Ti-Pin Chang and Richard Hull. Using witness generators to support bi-directional
update between object-based databases. In Proc. of the 1995 ACM SIGACT SIGMOD
SIGART Symposium on Principles of Database Systems (PODS’95), 1995.

[11] C. De Castro, F. Grandi, and M. R. Scalas. Schema Versioning for Multitemporal
Relational Databases. Information Systems, 22(5):249–290, 1997.

[12] F. Ferrandina, T. Meyer, R. Zicari, G. Ferran, and J. Madec. Schema and Database
Evolution in the O2 Object Database System. In Proc. of the 21st Int’l Conf. on Very
Large Databases (VLDB), pages 170–181, Zurich, Switzerland, September 1995.

[13] Enrico Franconi, Fabio Grandi, and Federica Mandreoli. A semantic approach for
schema evolution and versioning in object-oriented databases. In Proceedings of the
6th International Conference on Rules and Objects in Databases (DOOD 2000) as
a stream of the First International Conference on Computational Logic (CL 2000),
number 1861 in Lecture Notes in Artificial Intelligence, pages 1048–1062. Springer-
Verlag, July 2000.

[14] F. Grandi and F. Mandreoli. ODMG Language Extensions for Generalized Schema
Versioning Support. In Proc. of ECDM’99 Workshop (in conj. with ER), Versailles,
France, November 1999.

[15] F. Grandi, F. Mandreoli, and M. R. Scalas. A Generalized Modeling Framework for
Schema Versioning Support. In Proc. of 11th Australasian Database Conference (ADC
2000), Canberra, Australia, January 2000.

[16] H. Gregersen and C. S. Jensen. Temporal Entity-Relationship Models - A Survey.
IEEE Transaction on Knowledge and Data Engineering, 11(3):464–497, 1999.

[17] I. Horrocks. FaCT and iFaCT. In Proceedings of the International Workshop on De-
scription Logics (DL’99), pages 133–135, 1999.

[18] I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive description
logics. In H. Ganzinger, D. McAllester, and A. Voronkov, editors, Proceedings of the
6th International Conference on Logic for Programming and Automated Reasoning
(LPAR’99), number 1705 in Lecture Notes in Artificial Intelligence, pages 161–180.
Springer-Verlag, 1999.

[19] Richard Hull and Masatoshi Yoshikawa. ILOG: Declarative creation and manipulation
of object identifiers. In Proc. of the 16th VLDB Conference, 1990.

[20] Richard Hull and Masatoshi Yoshikawa. On the equivalence of database restructuring
involving object identifiers. In Proc. of the 1991 ACM SIGACT SIGMOD SIGART
Symposium on Principles of Database Systems (PODS’91), 1991.

[21] C. S. Jensen, J. Clifford, S. K. Gadia, P. Hayes, and S. Jajodia et al. The Consen-
sus Glossary of Temporal Database Concepts - February 1998 Version. In O. Etzion,
S. Jajodia, and S. Sripada, editors, Temporal Databases - Research and Practice, pages
367–405. Springer-Verlag, 1998. LNCS No. 1399.

[22] S.-E. Lautemann. A Propagation Mechanism for Populated Schema Versions. In Proc.
of the 13th International Conference on Data Engineering (ICDE), pages 67–78, Birm-
ingham, U.K., April 1997.

[23] S. Monk and I. Sommerville. A Model for Versioning of Classes in Object-Oriented
Databases. In Proc. of the 10th British National Conf. of Databases (BNCOD), pages
42–58, Aberdeen, Scotland, July 1992.

[24] D. J. Penney and J. Stein. Class Modification in the GemStone object-oriented DBMS.
In Proc. of the Int’l Conf. on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA), pages 111–117, Orlando, FL, December 1987.

[25] R. J. Peters and M. T. Özsu. An Axiomatic Model of Dynamic Schema Evolution in
Objectbase Systems. ACM Transaction on Database Systems, 22(1):75–114, 1997.

[26] J. F. Roddick. A Survey of Schema Versioning Issues for Database Systems. Informa-
tion and Software Technology, 37(7):383–393, 1996.

[27] J. F. Roddick and R. T. Snodgrass. Schema Versioning. In The TSQL2 Temporal Query
Language, pages 427–449. Kluwer, 1995.

