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Abstract

Cost models based on the clustering factor (CF) of the attributes have been proposed and shown to be attractive
for block access estimation in databases, thanks to their accuracy and economy of use. While query optimizers can
use the actual CFs, measured from the data, physical design methods and tools must rely on estimates before the
data are stored.

In this paper we present a CF estimation procedure which can be applied to totally clustered attributes (e.g.
ordered attributes). Simple and accurate approximations of the derived formulas are also introduced.

Simulations show the accuracy of the proposed CF estimates and the improvement in their behaviour compared
to previously published estimates. Reliability for physical design of cost models based on the CF in the presence of
a skewed data distribution is also discussed.

Keywords: Databases; Clustering factor; Performance evaluation; Physical design; Relational database

1. Introduction

Cost models for data access by an index are required in relational databases for query
optimization [13] and physical design [9]. Usage and maintenance of models based on the
clustering factor [2] are not expensive, because they are based on a single parameter value per
attribute and can easily be embedded in the systems and design tools already in use. Cost
models for data access based on this parameter give results that are encouraging for their
accuracy, economy of use and applicability in a wide range of situations [1,2,5-7,10-12] with
respect to more sophisticated models.

The clustering factor (CF) of an attribute takes into account the actual placement of the
different values of an attribute on the data pages, by counting the average number of tuples
with the same value on a page. The average is evaluated over the values of the attribute and
over the pages. If we define as cluster the set of occurrences of the same attribute value on a
page, the CF represents the average size of a cluster. Notice that the term clustering is used to
mean the presence of more than one tuple with the same value of an attribute on the same
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Fig. 1. This figure shows the six pages of a sample relation. All attributes A, A,, A, and A, are fotally clustered (attribute A, is
also ordered). Average duplications and clustering factors are: 5.14 and 3 for A; 2.77 and 2.12 for A,; 4.5 and 2.77 for A;; 1.5
and 1.33 for A,. The column TID (not belonging to the relation) contains the Tuple IDentifiers in the format ‘PID.
Offset-in-the-page’.

page. Total clustering means all the tuples with the same value of the attribute are consecutive
in the storage space and ordering is a special case of total clustering where the values are also
sorted. Fig. 1 shows examples of totally clustered attributes.

Two cases can be distinguished in the use of the clustering factor: the operative phase, when
the data are already stored in the database and the actual CF can easily be measured on the
data (or on the index), and the design phase [6], when data are not yet available, and the CF
can be estimated by means of the known or forecast parameter values (i.e. number of pages,
tuples and distinct key values). The knowledge of the CF can be used in this phase to evaluate
the convenience of building an index on an attribute. The term key is used in the following to
indicate an attribute on which an index is built: such keys are the distinct attributes which will
be used as search keys in data retrieval.

In this work we present a simple method of estimating, during the physical design process,
the clustering factor of totally clustered attributes in relations with a uniform number of tuples
per page and without assumptions on the distribution of key values in the tuples. The rest of
the paper is organized as follows. A formal definition of the clustering factor and an
approximate estimation of its value for totally clustered attributes can be found in Section 2.
Section 3 concerns the derivation of our new estimate, which is experimentally validated in
Section 4. A discussion on the applicability of our estimate in the presence of skewed
attributes is also included. Conclusions are finally reported in Section 5. A list of the symbols
used in the paper can be found in Table 1.

2. Previous work

The clustering factor was originally defined in [2] as:
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Table 1

A synopsis of the symbols

NT number of tuples

NP number of pages

NK number of distinct key values

TP average number of tuples per page

KpP average number of distinct key values per page
DK average duplication of key values

CF average clustering factor of the key attribute
PID page identifier in an index leaf

NPID total number of PIDs in the index

PID(K,) number of PIDs in the index associated with key X,
PID(P) number of PIDs in the index referring to page P,

with the constraints:
NT=NP-TP=NK-DK, KP-CF=TP

NT
NPID (1)

where NPID is the total number of Page IDentifiers (PIDs) — not necessarily distinct — which
can be found in the leaves of an index built on that attribute, if the index leaves contain {key:
PID,, ..., PID,) groups, with only distinct PIDs stored within each group [2]. More in
general, indexes can be assumed to be standard B *-trees or similar [8], with leaves containing
(key: TID,, ..., TID,) groups, where a TID is a Tuple IDentifier composed of a PID and an
offset. In this case, in order to compute NPID, the same PIDs are considered equal within the
same group but distinct when occurring in different groups.

CF=

2.1. An approximate estimation

A first estimate for physical design of the clustering factor for a totally clustered attribute
was proposed by Ciaccia and Maio in [6]. They used a ‘normalized’ clustering factor c¢f defined
as:

NP
/' ="NPID (2)

Its reciprocal, ¢f ', represents the average number of clusters per page, that is the average
number of distinct key values per page (KP). From definitions (1) and (2) we can easily
obtain:

CF=TP-cf (3)

In [6], the estimate of ¢f for an ordered attribute is computed as:

__ (NP/NK if NK > NP
of = {1 otherwise 4

Obviously, the validity of (4) is not really limited to the case of ordering but extends to the
general case of total clustering. Total clustering without ordering occurs, for instance, for an
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attribute with a 1:1 functional dependency on the primary attribute (on which the relation is
sorted). By means of NT = TP-NP = DK - NK, Eq. (4) can be rewritten as:

Cf={DK/TP it DK<TP (5)

1 otherwise

Using (3), we can finally derive the Ciaccia—Maio estimate, say CF,, of the clustering factor
for a totally clustered attribute:

DK if DK<TP _

CR=\TP if TP<DK™

min {TP, DK} (6)

The derivation of (6) can easily be explained. If DK < TP, more than one key is contained
in a page and a mean estimate of the number of distinct key values per page is given by
KP =TP/DK. If TP < DK, a key value spans more than one page, thus in a given page only
one key value is contained: KP=1. Eq. (4) immediately follows (¢f = 1/KP), whereas (6)
follows from CF = TP/KP.

The shortcoming in (6) is that the estimates used for KP are not globally correct, due to a
sort of border effect. Let us consider, for instance, the case TP < DK. When any key value
spans more than one page, some pages of the relation contain exactly one key value, but all
the other pages contain two key values, unless the key value change always occurs at a page
boundary. This can only happen if all the key values have a number of duplicates which are
exact multiples of TP. An analogous effect can be observed when DK < TP. In this case some
key values are completely contained in one page, whereas the others exactly span two pages.
For instance, attribute A, in Fig. 1 (with DK =35.14<TP=6) has only values {a,k}
completely contained in a page and values {b, d, f, g, i} span two pages.

3. A more precise estimation

In this section we derive a more accurate estimate of CF in the presence of total clustering,
taking into account the border effect described above. The value NPID to be used in the CF
definition (1), can be computed as

NPID = g PID(K,) (7

where PID(K,) represents the number of distinct PIDs associated to the key value K,
(PID(K;)=1 when DK = TP), or as

NP

NPID = Z,lPID(PI. ) (8)

where PID(P;) represents the total number of PIDs referencing the same page P, (PID(P,) =1
when TP = DK). The two evaluation methods that follow from (7) and (8) are the subject of
the following subsections. Their results will be generalized in Section 3.3.
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3.1. Estimation for high duplication (DK = TP)

Since DK = TP, we can evaluate NPID by means of (7). In this case all the duplicates of the
key value K; span one or more consecutive pages and PID(K;) is exactly the number of such

pages.

Let us number from 1 to NK the key values as they are consecutively found in the relation,
but not necessarily in their value order. Thus, K;_, physically precedes K, (i= , NK) in
the relation, but K, < K;_, only if the relation is ordered. Let pland p be the page numbers
of the ﬁrst and the last page spanned by the key K, respectively. Obviously, we have pi=1
and p%, = NP. With these positions, we have:

PID(K,) =p* 9)
PID(K)=pr—-pf+1 (i=2,...,NK) (10)

Moreover, if g¥ represents the probability that the first occurrence of the key value K, is
placed on the first position of the first page spanned by such key, we have (for i=
2,...,NK):

(11)

- {pf_l +1 with probability ¢~
pP: =

. with probability 1 — ¢

where the first case accounts for the possibility that the key change between K; | and K;
occurs at a page boundary. Therefore, the mean value of p,” is given by

E[p]1=(pi +Daf +pi(1-q/)=p+4q" (12)
By substituting (12) for p; into (10), we have the following estimate:
PID(K)=pF—-p-,+1—qFf (i=2,...,NK)

and, thus, using also (9), (7) becomes:
NK
NPID =p{ +2.(p{ —pi-, +1-qf)
i=2

NK
K
=ik +2(1-gf)
= NP + (NK — 1)(1 — ¢%)

where g* is the average value of the probabilities g5, . . . , ghg. Such a value, representing the
average probability that the first occurrence of a given key value be placed on the first position
of the first page spanned by such key value, can be simply estimated as

q“=1/TP (14)
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as TP represents the average number of positions in a page. By virtue of value (14), Eq. (13)
yields

NPID = NP + (NK — 1)(1 - 1/TP) (15)
and, finally,
CF NT (16)

T NP+ (NK - 1)(1-1/TP)
On multiplying and dividing by TP - DK/NT, we can also write:

TP-DK
CF= (17)
. N
TP K IP-DK K—-1

NT NK

If NK is not too small, we can derive our first estimate, say CF,, of the clustering factor for
a totally clustered attribute:
TP-DK

CF=CF =5p DK+ TP -DK/NT =1 (18)

3.2. Estimation for low duplication (TP = DK)

Using Eq. (8), when TP = DK, yields a perfectly dual derivation procedure in which tuples
spanned by a page or by a key value exchange the role played. As a matter of fact, letting k|
and k| be the key numbers contained in the first and in the last position of the page P, (k; =1

and Ky, = NK), respectively, we have:

PID(P,) = k- (19)
PID(P) =kl —kl+1 (i=2,...,NP) (20)
KF = {k,ﬁ1 +1 w?th probab?l?ty q’ ) 1)
k., with probability 1 — g,
Elk{]=k._, +q/ (22)
NP
NPID = k! +2}2(kf —kb +1-¢"
=NK + (NP -1)(1-4") (23)

where g, represents the probability that the first position of the page P, contains the first
duplicate of the first key value this page contains, with average value on the pages qP
evaluated as 1/DK, since DK represents the average number of duplicates of a key value.
Therefore, we have:

NPID = NK + (NP — 1)(1 — 1/DK) (24)
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TP-DK
CFzTP+DK+TP-DK NP =1 (25)
NT ~ NP
TP- DK

“ TP+ DK+ TP-DK/NT—1 (26)
where the last approximation is immaterial if NP is not too small.

The last derived CF is the same as CF, defined by (18), as can also be argued from the
structure of the formula (18), which is symmetrical with respect to 7P and DK.

3.3. A generalized estimation formula

Since we obtained — with good approximation — the same value either when DK = TP or
when DK < TP, a further simplification consists in assuming that value to be valid in the most
general case. For instance, very skewed distributions of key values may give rise to DK, <TP
for some key values and to DK, > TP for other key values. Zipf distribution [16] is a clear
example of this case. Our hypothesis is to assume the CF, value (18) as a good estimate of the
average clustering factor in any case. Experimental results for the evaluation of this
assumption are provided in the next section.

By applying identity KP = TP/CF to (18), for a totally clustered attribute we also have:

DK+ TP -1 1

KP= BK + NP (27)
If TP + DK and NP are large, we can approximate (27) as:
TP
KP=1+ DK (28)

which shows the contribution of the border effect on the clustering. Since KP =cf ', when
DK < TP we have from (5) KP =~ TP/DK, thus ‘1" is the border contribution in (28); when
TP < DK Eq. (5) yields KP =1 and thus the border contribution is ‘TP/DK.’

4. Experimental validation

In this section we analyze the accuracy of the CF estimate (18):

~ DK - TP
'\ = DK+ TP+ DK-TPINT -1

CF

Moreover, we consider the following two approximations of CF, and evaluate their
accuracy:

DK - TP
CF,=pK+TP-1 (29)

DK -TP

CHs=pK+TP

(30)
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The last approximation can easily be remembered as it is the harmonic mean between DK
and TP and it can be directly derived by neglecting the possibility that a key value change and
a page change may coincide (g* = ¢” =0). The accuracy of CF,, CF, and CF, estimates is also
matched against prediction errors of the Ciaccia—Maio CF, estimate (6).

In the relations used for simulations, the duplication of key values and the number of tuples
in the pages are generated as random variables. In particular, two classes of experiments have
been effected: in the former key values have been drawn from a uniform distribution, in the
latter from a Zipf distribution. The DK and TP values used in the estimation formulae are the
average values computed from the actual distributions. The non-constant value of TP
corresponds to a different number of tuples per page (as resulting from variable-length
records).

The figures from Fig. 2 to Fig. 5 show the CF values for a totally clustered attribute in
relations with 30,000 tuples. Three graphs are displayed in every figure, even if two of them in
practice coincide: the piecewise-linear graph plots the CF, estimate provided by (6), whereas
the other two curves plot the actual values of CF measured from the two classes of
experiments (uniform and Zipf distribution of attribute values). Eight types of relations have
been studied: for each of the two classes of key distributions, four numbers of pages have been
considered. The number of pages is 2,500 in Fig. 2 (TP =12 £3.46), 375 in Fig. 3 (TP =80 =
8.93), 200 in Fig. 4 (TP=150+12.22) and 75 in Fig. 5 (TP =400+x19.87). In all the
simulations, the number of key values NK is the independent variable, which ranges from 100
(75 for the fourth relation) to 30,000. However, DK = NT/NK is reported for greater clarity
as abscissa in the figures. The approximation error of (6) is apparent in the figures, whereas all
the estimates CF,, CF, and CF; yield values which would be indistinguishable from the actual
CFs at the scale of the figures.

Table 2 resumes the maximal percentage errors (E, = 100(CF, — CF)/CF, i =0, 1, 2, 3)
provided by the estimates, measured on a run of three simulations per relation type. The

CF
12 oL L o
| J— B
: —
|
8+
/
i/
[
4 ‘/}
/)
| DK
0 - ——p - bo- } ‘ . e
0 50 100 150 200 250 300

Fig. 2. Experimental CF for a totally clustered attribute following uniform and Zipf distribution in a 30 000-tuple 2500-page
relation.
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Fig. 3. Experimental CF for a totally clustered attrinute following uniform and Zipf distribution in a 30 000-tuple 375-page
relation.

worst case for (6) occurs for DK = TP. The border effect, which is null for DK =1 or
DK = NT, is maximum for DK = TP. In this case, Eq. (6) yields CF = TP, whereas Eq. (18)
yields

2
SR | R
2-TP -1+ TP*/NT 2

(if TP <NP then TP’/NT <1) which is an accurate value. The maximum error of (6) is
therefore about 100%, as confirmed by Table 2. On the other hand, estimates CF, and CF,
are proved to be very good, as they provide a maximal error less than 1% in all the
experiments, in the presence of both uniform and Zipf distributed data.

150 + CF I R e
| .

100 +

50 +

DK

0 i o ; t e —
0 50 100 150 200 250 300

Fig. 4. Experimental CF for a totally clustered attribute following uniform and Zipf distribution in a 30 000-tuple 200-page
relation.
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Fig. 5. Experimental CF for a totally clustered attrinute following uniform and Zipf distribution in a 30 000-tuple 75-page relation.

4.1. On the estimate applicability

Simulation results in the previous Section have shown that all the estimation formulas CF,,
CF, and CF, provide accurate estimations of the clustering factor for a totally clustered
attribute, both in the presence of uniform or skewed distributions of key values. Therefore,
database design tools using such estimates can actually rely on precise CF values even in the
absence of measurements on the data. However, the application of cost models based on the
knowledge of the clustering factor to totally clustered attributes needs some caution.

If attribute values follow a uniform distribution, exact cost models based on the clustering
factor [5,10] can be used. For instance, the number HP of pages hit by a query referencing
HK distinct key values can be estimated as:

NK — KP

HK

(iik

This model is based on uniform clustering, that is, the distinct number of key values per
page (KP) is assumed to be constant over the pages. In general, this assumption does not
require attribute values to be either uniformly distributed or randomly placed over the pages.
On the contrary, when the attribute is totally clustered the assumption entails a uniform
distribution over the domain (i.e. equifrequency of values).

HP(HK)=NP| 1—

Table 2
Maximum percentage error of the CF estimates
NP Uniform Zipf
E, E, E, E, E, E, E, E,
2,500 0.68 0.69 7.56 91.39 0.67 0.70 7.69 92.52
375 0.48 0.52 1.54 98.67 0.52 0.47 1.47 98.40
200 0.67 0.92 1.25 97.50 0.40 0.60 1.00 98.50

75 0.34 0.60 0.80 98.67 0.34 0.60 0.80 98.67
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In general, if KP, is the number of distinct key values stored in page P;, then the probability
that page P, is referenced by the query is given by:

(NK - KP,.)
HK
NK
HK

Therefore, the expected value of the total number of pages referenced by the query can be
evaluated [6] as:

o <NK—KP1>
HK
HP(HK) = 1-— 32
(HK) =2, NK (32)
HK

For queries referencing only one key value, the models based on uniform clustering are
exact. As a matter of fact, Eq. (32) reduces to:

KP DK
HP(l)zNPN_Kzﬁ (33)
where
NP
KP =Y KP,/NP (34)

i=1

is still the average number of key values per page. However, for queries referencing more
than one key value and when KP, is not constant in every page, it can be shown [4] that the
exact expression (32) is majorized by (31), with KP given by (34). In other words, when KP,
distribution is very skewed over the pages (as in the case of data following Zipf’s law), the
model (31) based on a uniform clustering factor provides an overestimation of the actual
costs. The case study that follows is introduced in order to highlight the relevance of such an
overestimation.

We used for query simulations four 30,000-tuple 200-page relations with varying degrees of
clustering of a totally clustered attribute. In particular, we used the values 100, 500, 1000, and
5,000 for the number of distinct key values NK. We ran five groups of queries per relation
(each group retrieving a number of key values ranging from 1 to NK) and registered actual
average access costs. Actual costs were matched against expected costs provided by formula
(31) (used with CF, estimate) and percentage prediction errors were computed. Actual costs
were also matched against expected costs provided by a linear model and a uniform model.
The linear model assumes a ratio of accessed pages equal to the ratio of referenced key values,
that is:

HP(HK) = %%NP

and is the cost model generally used by optimizers and design tools for the retrieval by an
index of a sorted attribute. The uniform model used is the ‘classical’ Yao’s formula [15] based
on total uniformity (i.e. uniformity of data values and random placement on the pages).
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Table 3
Estimation errors of cost models for sorted Zipf attributes
NK CF model Linear model Uniform model
Maximum Average Maximum Average Maximum Average
% error % error % error % error % error % error
100 39.28 8.97 27.37 14.34 5,895 316.71
500 53.62 14.54 154.20 88.38 2,190 117.05
1,000 48.43 26.91 135.81 97.27 2,694 98.60
5,000 60.13 19.20 107.44 99.66 492.6 29.31

Comparison with the uniform model is included for reference because it would be chosen by
current design tools in the presence of totally clustered but not sorted attributes, as for
example attributes with a 1:1 functional dependency on the sorting attribute.

Table 3 summarizes the results of the experiments. In particular, the column ‘Average %
Errors’ contains a further average of the errors with respect to the number of retrieved key
values. These values can be used as merit figures for the global behaviour of the CF cost
model for physical design (global predictive power rather than adherence to a particular query
is privileged). It can be seen that, although the average percentage error of formula (31) can
exceed 20%, it outperforms the linear and the uniform models which are usually embedded in
current design tools. Cost models based on uniformity are useless for estimating access costs in
the presence of totally clustered and skewed attributes, as is clearly shown in the Table.

However, access costs estimated using the CF model are significant even though not very
precise also in the presence of very skewed data distributions. The methodology outlined in [6]
could be used to achieve a good database design (even if not the optimum). On the other
hand, better cost estimates could only be obtained at the expense of the management of much
more complex cost models [3,14]. Moreover, such models rely on detailed knowledge of data
distribution (e.g. KP, histograms) that may not be available in the design phase.

5. Conclusions

In this paper we have presented simple estimation formulas for the clustering factor of a
totally clustered attribute to be used for database physical design.

By means of simulation experiments we have shown that the new estimates are better than
the previously published Ciaccia—Maio estimate. Indeed our formula CF, and its approxi-
mations CF, and CF, are very accurate even in the presence of highly skewed distributions of
key values. In particular, the maximal prediction error provided by CF, and CF, never
reached 1% in all the effected simulation trials.

The rationale of the improvement introduced with respect to the Ciaccia—Maio model
consists in having taken into account the ‘border effect’ due to the fact that page boundaries
and change of key values very seldom coincide along the storage space.

Further experiments have been done to analyze the reliability for physical design of access
cost models based on the CF for skewed data. They have shown that even though access costs
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may be overestimated (with a percentage error exceeding 20%), their indications are however
significant and more precise than those provided by alternative and widely used models.

Future work should be devoted to the study of the ‘border effect’ also in secondary
clustering, that is to the estimation of the clustering factor of an attribute with a known
functional dependency on another attribute whose clustering factor is known (or can be
reliably estimated). As shown in [6], this would provide a very powerful physical design
methodology based on the clustering factors. To this purpose, new formulas should be derived
in order to improve the estimates proposed by Ciaccia and Maio, which do not consider the
’border effect’.
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