
T-SPARQL: a TSQL2-like Temporal
Query Language for RDF

Fabio Grandi

Alma Mater Studiorum – Università di Bologna, Italy
fabio.grandi@unibo.it

Abstract. In this paper, we present a temporal extension of the SPARQL
query language for RDF graphs. The new language is based on a tempo-
ral RDF database model employing triple timestamping with temporal
elements, which best preserves the scalability property enjoyed by triple
storage technologies, especially in a multi-temporal setting. The pro-
posed SPARQL extensions are aimed at embedding several features of the
TSQL2 consensual language designed for temporal relational databases.

1 Introduction

When an RDF graph [11], representing for instance the specification of an on-
tology, is changed, some applications require the past version to be maintained
in addition to the new one. This is the case of the legal domain where ontologies
must evolve as a natural consequence of the dynamics involved in normative sys-
tems [4]. Agents in such a domain may often have to deal with a past perspective,
like a Court having to judge today on a fact committed several years ago. More-
over, several time dimensions are usually important for computer applications
in such domains [3].

In the design of semantics based information systems, triple store technology
[12] based on the RDF data model is supposed to provide scalability for query-
ing and retrieval. Several temporal extensions of the RDF data model have been
proposed [6, 10, 17], often in conjunction with special index structures which al-
low for efficient processing of temporal queries (e.g. tGRIN [10] and keyTree [17]).
In order to preserve the scalability property of the triple storage approach as
much as possible also in the presence of temporal semantics, we introduced in
[5] a temporal RDF data model aimed at preventing the proliferation of value-
equivalent triples even in the presence of multiple temporal dimensions. In par-
ticular, this has been accomplished through the adoption of temporal elements
[2, 7] as timestamps and a careful definition of the operational semantics of mod-
ification statements.

In this work, we complete the proposal in [5] by introducing a temporal
extension of SPARQL [16] which can be used as query language for the temporal
data model of [5]. The temporal extension is based on the lesson learned with
the design of the temporal query language TSQL2 [14], from which it inherits
part of the temporal expressiveness and user friendliness. The TSQL2 language

was born as a follow-up of the 1993 ARPA/NSF International Workshop on an
Infrastructure for Temporal Databases [9], after which Richard Snodgrass sent an
invitation to form a committee for the design of a consensual temporal extension
of the standard database query language SQL-92. The committee, gathering 18
people from the academic and industrial worlds, started its works in July 1993
and, after joint email discussions and voting on every aspect of the language,
produced a first draft in March 1994 [13]. The final specification and language
commentaries appeared in a book published in 1995 [14] (for a more detailed
history, see http://www.cs.arizona.edu/people/rts/tsql2.html).

The rest of paper is organized as follows. In Section 2, the main features
of the T-SPARQL query language are introduced and the TSQL2 heritage is
underlined. In Section 3, the use and functioning of the language is exemplified
through the presentation of a few temporal queries. Conclusions will be finally
found in Section 4.

2 T-SPARQL Definition

2.1 A multi-temporal RDF database model

We briefly recall here the base definitions of the underlying multi-temporal RDF
database model [5], starting from an N -dimensional time domain

T = T1 × T2 × · · · × TN

where Ti = [0,uc]i is the i-th time domain. Right-unlimited time intervals are
expressed as [t,uc], where uc means “Until Changed”, though such a symbol is
often used in temporal database literature [7] for transaction time only (whereas,
e.g. “forever” or ∞ is used for valid time). Such naming choice refers to the
modeling of time-varying data, which are potentially subject to change with
respect to all the underlying time dimensions.

A multi-temporal RDF triple is defined as:

(s, p, o |T)

where s is a subject, p is a property, o is an object and T ⊆ T is a timestamp
assigning a temporal pertinence to the RDF triple (s, p, o). We will also call the
(non-temporal) triple (s, p, o) the value or the contents of the temporal triple
(s, p, o |T). The temporal pertinence of a triple is a subset of the multidimen-
sional time domain which is represented by a temporal element [2, 7], that is
a disjoint union of multidimensional temporal intervals, each one obtained as
the Cartesian product of one time interval for each of the supported temporal
dimensions:

T =
⋃

1≤j≤m

Ij =
⋃

1≤j≤m

[tsj , t
e
j]1 × [tsj , t

e
j]2 × · · · × [tsj , t

e
j]N

where the unioned N -dimensional intervals are all disjoint (i.e. Ij ∩ Ik = ∅ for
all 1 ≤ j < k ≤ m).

A multi-temporal RDF database is defined as a set of timestamped RDF
triples:

RDF-TDB = { (s, p, o |T) | T ⊆ T }
with the integrity constraint:

∀(s, p, o |T), (s′, p′, o′ |T ′) ∈ RDF-TDB: s = s′ ∧ p = p′ ∧ o = o′ =⇒ T = T ′

which requires that no value-equivalent distinct triples exist.
The adoption of timestamps made-up of temporal elements instead of (multi-

temporal) simple intervals avoids the duplication of triples in the presence of a
temporal pertinence with a complex shape. In fact, we store different triple ver-
sions only once with a complex timestamp rather than storing multiple copies
of them with a simple timestamp as in [6, 10, 17]. The memory saving we obtain
grows with the dimensionality of the time domain, but it can even be appreciated
with a monodimensional time domain, when the temporal pertinence of a triple
is not a convex interval. For example, the temporal triples (s, p, o | [t1, t2]) and
(s, p, o | [t3, t4]), where t2 + 1 < t3, can be merged with temporal element times-
tamping into a single triple (s, p, o | [t1, t2] ∪ [t3, t4]). Whereas the same space
is basically required for globally storing the timestamps in both cases (i.e. the
space needed by four time points), the space required for storing one occurrence
of the triple contents (s, p, o) is saved in the latter case. Moreover, with element
timestamping, according to the integrity constraint introduced above, no two
temporal triples can have the same non-temporal contents and, thus, checking
of uniqueness and of functional properties constraints can be performed more
easily. As shown in [5], the semantics of modification operations can be defined
in such a way that the integrity constraints concerning temporal elements are
automatically preserved.

The controlled growth of value-equivalent triples made possible by tempo-
ral elements preserves, in a temporal setting, the scalability property of the
triple storage approach. Furthermore, since temporal elements are closed un-
der set union, intersection and complementation operations, they lead to query
languages that are more natural [2].

2.2 Time representation and manipulation

As in the TSQL2 model, time is considered discrete, with a minimal system-
dependent representation unit called chronon [7]. A mono-temporal chronon cor-
responds to an elementary interval on the time axis, whereas a multi-temporal
chronon corresponds to a unit hypercube in the N -dimensional time domain
(Cartesian product of one chronon per each dimension). As for SQL-92, three
base temporal types have been defined for TSQL2 at the conceptual level: date-
time, period and interval. The first one corresponds to an instantaneous event,
without duration, which can be conventionally represented via a single chronon.
The second one correspond to a set of consecutive chronons along the time axis
and is characterized by two datetime constants which represent its boundaries.
The third corresponds to a pure duration, non anchored on the time axis, and

can be represented as a multiple of the chronon. Whereas the first and the third
temporal types correspond to the XML Schema primitive datatypes xs:dateTime
and xs:duration [18], respectively, we assume for the second one a special data
type xs:period has been defined and a constructor function:

fn:period($arg1 as xs:dateTime, $arg2 as xs:dateTime) as xs:period

is available to build a monodimensional time period from two xs:dateTime (or
xs:date or xs:time) values representing the period boundaries. However, for
the sake of simplicity, we will also use in the rest of the paper period literal
expressions like:

"[2010-01-01,2010-01-31]"^^xs:period

as a shorthand for the use of the xs:period constructor like:
fn:period("2010-01-01"^^xs:date, "2010-01-31"^^xs:date)

We further assume compatibility between the xs:period datatype and the stan-
dard gYearMonth and gYear datatypes, which leads for example to the equiva-
lences:

"[2010-01-01,2010-01-31]"^^xs:period = "2010-01"^^xs:gYearMonth

and:
"[2009-01-01,2009-12-31]"^^xs:period = "2009"^^xs:gYear

Like in TSQL2, the xs:period datatype is equipped with two built-in functions:
fn:begin($arg1 as xs:period) as xs:dateTime

fn:end($arg1 as xs:period) as xs:dateTime

to extract the left and right period boundaries, respectively. For instance:
fn:begin("[2010-01-01,2010-01-31]"^^xs:period) = "2010-01-01"^^xs:date

and:
fn:end("2009"^^xs:gYear) = "2009-12-31"^^xs:date

Without entering into details, we assume a suitable datatype xs:temporalElement,
equipped with constructor and built-in functions, is available to manage tempo-
ral elements. In particular, like in TSQL2, we consider the two built-in functions:

fn:first($arg1 as xs:temporalElement) as xs:period

fn:last($arg1 as xs:temporalElement) as xs:period

to have been defined to extract the first and last period from a monodimensional
temporal element, respectively. For instance:

"[2008-06-01,2009-07-15]+[2009-11-01,2010-02-21]"

is a valid xs:temporalElement literal and
fn:first("[2008-06-01,2009-07-15]+[2009-11-01,2010-02-21]")

yields "[2008-06-01,2009-07-15]"^^xs:period. In order to extract the first (last)
chronon of a temporal element, we assume that the fn:begin() (fn:end()) func-
tion can also be directly applied to temporal elements (e.g. if T is a temporal
element, fn:begin(T) = fn:begin(fn:first(T))).

Other functions and operators defined for XQuery and XPath [19] to ma-
nipulate time and duration datatypes are assumed to be available. We further
assume that, as it happens for TSQL2, casting from another temporal datatype
to a duration can be used to calculate the overall duration of a time period or
element by means of, for instance, type constructor functions:

xs:duration($arg1 as xs:period) as xs:duration

xs:duration($arg1 as xs:temporalElement) as xs:duration

For example, the expression:
xs:yearMonthDuration("[2009-02,2009-07]+[2009-11,2010-03]")

which can also be written using the explicit cast operator as:
"[2009-02,2009-07]+[2009-11,2010-03]"^^xs:temporalElement

cast as xs:yearMonthDuration

yields 11 (months).
The TSQL2 language, which is based on a bitemporal data model, provides

for functions to access the valid and transaction time components from a times-
tamp. Likewise, we assume similar functions to be available also for T-SPARQL:
if T is a multi-dimensional time element, the expressions:

VALID(T)

TRANSACTION(T)

can thus be used to express conditions on the valid and transaction time com-
ponents of T , respectively. Similar functions can be defined for other time di-
mensions in a multi-temporal setting (e.g. EFFICACY() for efficacy time [3, 5]).
Notice that such functions do not imply a projection onto the corresponding
time axis with reduction of dimensionality of the timestamp: all the conditions
expressed on different time dimensions are to be matched concurrently against
the same multi-dimensional intervals composing the temporal element. For in-
stance, if T = [10, 20]t × [30, 40]v ∪ [30, 40]t × [10, 20]v, then T does not qualify
for the selection condition 12 ∈ TRANSACTION(T) ∧ 17 ∈ VALID(T).

2.3 Temporal selection

Temporal selection is the most qualifying feature of a temporal query language,
as it allows to select data on the basis of their temporal properties. In order
to add temporal selection capabilities to the SPARQL language, we extend the
syntax of the basic graph pattern in the WHERE clause of the SELECT statement.
As RDF triples are correspondingly augmented with the timestamp in the data
model, graph patterns to be used in the T-SPARQL WHERE clause are extended
with an optional fourth position where matching with the triple timestamps can
be specified. For instance, in the graph pattern

:e ex:Dept "Toys" | ?t

the variable ?t binds to the timestamp of a temporal triple representing the fact
that an employee denoted by the blank node :e has been working in the Toys
department. This syntax, matching the (s, p, o | t) triple structure in the temporal
RDF data model, seems more natural than introducing a distinguished variable
type to denote timestamps (like in [8]). If the fourth position (along with the ” | ”
separator) in the pattern is not used, that is a standard SPARQL three-position
pattern is used, the matching with a temporal triple is made regardless of its
timestamp.

In the T-SPARQL FILTER clause, TSQL2 temporal (binary infix) predicates
can be used, with the same semantics, to specify constraints over timestamp
variables. For instance, the clause:

FILTER (VALID(?t) CONTAINS "2009-06-01"^^xs:date)

only matches the timestamps bound to ?t whose (valid time) value contains the
date 2009, June 1st. The available comparison operators are the following:

Operator Definition
A PRECEDES B END(A) is earlier than BEGIN(B)
A = B A and B are identical (i.e. contain the same chronons)
A OVERLAPS B the intersection of A and B is not empty
A MEETS B END(A) immediately precedes BEGIN(B)
A CONTAINS B each chronon in B is also contained in A

They can be used to compare (monodimensional) temporal elements, periods
and time points. Since all temporal types can be reduced to sets of chronons,
such operators can also be used to compare operands with different temporal
types [14]. For instance, if A is an element and B is a period, then the expres-
sion “A PRECEDES B” is true if the last chronon belonging to A precedes the left
boundary of B. All the comparison operators can be implemented on the basis
of a primitive operator “Before()” which defines the relation order on the time
axis. It can also be easily checked that such operators guarantee the temporal
completeness of the resulting language, as they allow users to check the occur-
rence of all the possible relationships between two periods or events [1]. Such
operator set has been chosen for TSQL2 also considering the user-friendliness
of the language among the design principle. This lead to a non minimal set of
comparison operators which are closer to their meaning in natural language than
the artificial definition of operators which equip other temporal languages (e.g.
based on Allen’s algebra [1]).

The OVERLAPS and CONTAINS operators can also be defined to work on multi-
dimensional timestamps in a straightforward way.

2.4 Temporal projection

Temporal projection is the operation which specifies the value of the timestamps
to be assigned to the retrieved data. TSQL2 supports a VALID clause to specify
valid-time projection, as the transaction time assigned to query results is always
the current time and cannot be changed by the user. In T-SPARQL, temporal
projection is only relevant where the query result has to be a temporal RDF
graph consistent with the underlying data model. Otherwise, temporal data can
simply be mixed with other data by putting temporal variables in the target list
(e.g. see the first example in the next section). In the former case, the basic and
most important operation is the construction of a new (temporal) RDF graph as
a temporally consistent subset extracted from the multi-version RDF database,
which takes the form of a snapshot query or timeslice query [7].

Snapshot queries are used to extract a single temporal version from a multi-
version RDF graph. For instance, if the temporal RDF database encodes the
definition of a multi-version ontology, the result of a snapshot query is a stan-
dard (non-temporal) RDF graph, which can be interpreted as a consistent single

ontology version valid at a given time point. Given a multidimensional time point
t̄ = (t1, t2, . . . , tN) ∈ T , we can define the snapshot valid at t̄ as:

RDF-TDB(t̄) = { (s, p, o) | (s, p, o |T) ∈ RDF-TDB ∧ t̄ ∈ T}
In T-SPARQL, the snapshot query above could be expressed via the following
statement:

CONSTRUCT { ?s ?p ?o }
WHERE { TGRAPH <http://myExample.org/tGraph> { ?s ?p ?o | ?t } .

FILTER ?t CONTAINS "(t1, t2, . . . , tN)" . }
where the URI http://myExample.org/tGraph denotes a multi-temporal RDF
triple store. The results make up a non temporal RDF graph.

Timeslice queries are used to extract a temporally consistent set of consec-
utive temporal versions from a multi-version RDF graph. If the temporal RDF
database encodes the definition of a multi-version ontology, the result of a times-
lice query is a temporal RDF graph, which can be interpreted as the collection
of all the temporally consistent ontology versions valid in a given period. Given
a multi-dimensional time period Ī = I1 × I2 × · · · × IN ⊆ T , we can define the
timeslice valid in Ī as:

RDF-TDB(Ī) = { (s, p, o |T ′) | (s, p, o |T) ∈ RDF-TDB ∧ T ′ = T ∩ Ī 6= ∅}
In T-SPARQL, the snapshot query above could be expressed by means of the
statement which follows:

TCONSTRUCT { ?s ?p ?o | INTERSECT(?t, "I1 × I2 × · · · × IN") . }
WHERE { TGRAPH <http://myExample.org/tGraph> { ?s ?p ?o | ?t } }

The timestamps assigned to the triples in the result are computed as the inter-
section of the timestamp of the retrieved triples with the query period Ī. If the
intersection is empty, the triple does not contribute to the results (and, thus, no
additional temporal selection conditions are required in the WHERE clause).

Within the WHERE clause that can be added to such CONSTRUCT or TCONSTRUCT

statements, temporal and non-temporal selection (via graph pattern matching)
can be combined with temporal projection in a single statement.

3 Query Examples

Due to space limitations, the syntax and semantics of the T-SPARQL language
is just illustrated by means of a few example queries shown in this section. We
assume that ex: is a prefix referencing a namespace involving the definition of
employee data:

@prefix ex: <http://myExample.org/employee/> .

The following is an example of query involving both temporal selection and
projection, although the result is not organized as a temporal RDF graph:

SELECT ?salary INTERSECT(?t,"[2007-01-01,2009-12-31]") WHERE {
?emp rdf:type ex:emp ;

ex:Name "Tom" ;

ex:Salary ?salary | ?t .

FILTER (VALID(?t) OVERLAPS "[2007-01-01,2009-12-31]"^^xs:period) . }

The (current) history of the the Tom’s salary from 2007 to 2009 is retrieved. Fol-
lowing the same rule of TSQL2, a default TRANSACTION(?t) CONTAINS fn:current-

date() conjunct in the FILTER clause is implied and, thus, can always be omitted
when we are interested in current data. Indeed, an explicit condition involving
transaction time must be specified when we want to roll-back the RDF database
to a past point in time, as in the query:

SELECT ?salary INTERSECT(?t,"[2007-01-01,2009-12-31]") WHERE {
?emp rdf:type ex:emp ;

ex:Name "Tom" ;

ex:Salary ?salary | ?t .

FILTER (VALID(?t) OVERLAPS "[2007-01-01,2009-12-31]"^^xs:period

&& TRANSACTION(?t) CONTAINS "2008-01-01"^^xs:date) . }
which retrieves the history of the the Tom’s salary from 2007 to 2009, as of the
beginning of 2008.

The query which follows, which retrieves the name of the employees who have
worked in the Toys department longer than Ann has made $20,000, performs a
sort of temporal join involving durations between two employees’ data:

SELECT ?ename WHERE {
?emp1 rdf:type ex:emp ;

ex:Name "Ann" ;

ex:Salary ?salary | ?ts .

?emp2 rdf:type ex:emp ;

ex:Name ?ename ;

ex:Dept "Toys" | ?tt .

FILTER (?salary > 20000

&& xs:duration(VALID(?tt)) > xs:duration(VALID(?ts))) . }
An optional modifier PERIOD, which corresponds to the partitioning unit which

can be associated to tuple variables in the FROM clause of TSQL2 [15], can be
specified in the declaration of temporal variables. When used, the timestamp
bound to the variable is partitioned into maximal periods over which the variable
ranges, yielding triple timestamping with periods. As many queries are interested
in maximal periods, being able to partition a temporal element into such periods
is highly useful. For instance, the query:

SELECT ?ename WHERE {
?emp rdf:type ex:emp ;

ex:Name ?ename ;

ex:Dept "Sales" | ?t .

FILTER (xs:duration(VALID(?t)) > "P2Y"^^xs:duration) . }
which retrieves the names of the employees who worked in the Sales department
for more than two years (altogether), can be modified as follows:

SELECT ?ename WHERE {
?emp rdf:type ex:emp ;

ex:Name ?ename ;

ex:Dept "Sales" | ?t PERIOD .

FILTER (xs:duration(VALID(?t)) > "P2Y"^^xs:duration) . }

to retrieve the names of the employees who worked continuously in the Sales
department for a period longer than two years. Hence an employee who worked
in the Sales department from January 2006 to July 2007 and from March 2009
to April 2010 qualifies for the former query but not for the latter, since he/she
worked in Sales for 20 months altogether but at most for 17 consecutive months.
This powerful tool also allows us to reference consecutive periods within the
same data history as in the following query:

SELECT ?ename ?job WHERE {
?emp rdf:type ex:emp ;

ex:Name ?ename ;

ex:Job ?job | ?t1 PERIOD ;

ex:Job "Director" | ?t2 PERIOD ;

ex:Job ?job | ?t3 PERIOD .

FILTER (VALID(?t1) MEETS VALID(?t2)

&& VALID(?t2) MEETS VALID(?t3)) . }
which retrieves the name of the employees who returned to their previous job
(which is also retrieved) after having been directors for some time.

4 Conclusions

In this paper, we presented T-SPARQL, a temporal SPARQL extension suited to
the temporal RDF database model employing triple timestamping with temporal
elements introduced in [5], which best preserves in the multi-temporal setting
the scalability property enjoyed by triple storage technologies.

The language T-SPARQL is equipped with the basic temporal constructs
which have been designed for the well-known TSQL2 relational query language
[14] and work with an extended set of the temporal datatypes, functions and
operators already present in the SPARQL specification [16, 18, 19]. Advanced
TSQL2 features (e.g. involving temporal aggregates, granularities, indetermi-
nacy) could also easily be added to the T-SPARQL specification, provided that
they can be supported by an underlying query engine.

In future research, we will consider the design and implementation of a query
engine supporting the execution of T-SPARQL queries (possibly via the exten-
sion of a canonical SPARQL engine) and the adoption of suitable index and
storage structures to facilitate the execution of T-SPARQL queries on temporal
RDF graphs.

References

1. J.F. Allen. Maintaining Knowledge about Temporal Intervals, Communications of
the ACM, 26(11):832–843, 1983.

2. S. Gadia. A homogeneous relational model and query language for temporal
databases, ACM Transactions on Database Systems, 13(3):418–448, 1998.

3. F. Grandi, F. Mandreoli, and P. Tiberio. Temporal modelling of normative docu-
ments in XML format. Data & Knowledge Engineering, 54:327–354, 2005.

4. F. Grandi, and M.R. Scalas. The Valid Ontology: A simple OWL temporal ver-
sioning framework. In Proc. of SEMAPRO Conf.. IEEE Computer Society, 2009.

5. F. Grandi. Multi-temporal RDF Ontology Versioning. In Proc. of IWOD Work-
shop. CEUR-WS, 2009.

6. C. Gutierrez, C. Hurtado and A. Vaisman. Introducing time into RDF. IEEE
Transactions on Knowledge and Data Engineering, 19(2):207–218, 2007.

7. C.S. Jensen, C.E. Dyreson (eds.), M. Böhlen, J. Clifford, R. Elmasri, S.K. Gadia, F.
Grandi, P. Hayes, S. Jajodia, W. Käfer, N. Kline, N. Lorentzos, Y. Mitsopoulos, A.
Montanari, D. Nonen, E. Peressi, B. Pernici, J.F. Roddick, N.L. Sarda, M R. Scalas,
A. Segev, R.T. Snodgrass, M.D. Soo, A. Tansel, P. Tiberio, and G. Wiederhold.
The consensus glossary of temporal database concepts - February 1998 version. In
O. Etzion, S. Jajodia, and S. Sripada, editors, Temporal Databases — Research
and Practice. Springer-Verlag, 1998. LNCS No. 1399.

8. M. Perry, A.P. Sheth, and P. Jain. SPARQL-ST: Extending SPARQL to Support
Spatiotemporal Queries. Tech.Rep. KNOESIS-TR-09-01. Kno.e.sis Center, http:
//knoesis.org/students/prateek/sparql-st-www09-tr.pdf

9. N. Pissinou, R.T. Snodgrass, R. Elmasri, I.S. Mumick, M.T. Özsu, B. Pernici,
A. Segev, B. Theodoulidis and U. Dayal. Towards an Infrastructure for tempo-
ral Databases: Report of an Invitational ARPA/NSF Workshop. ACM SIGMOD
Record 23(1):35–51, 1994.

10. A. Pugliese, O. Udrea, and V.S. Subrahmanian. Scaling RDF with Time. In Proc.
of WWW Conf.. ACM Press, 2008.

11. Resource description framework. W3C Consortium, http://www.w3.org/RDF/.
12. K. Rohloff, M. Dean, I. Emmons, D. Ryder and J. Summer. An evaluation of triple-

store technologies for large data stores. In Proc. of OTM Workshops. Springer-
Verlag, 2007. LNCS No. 4806.

13. R.T. Snodgrass, I. Ahn, G. Ariav, D.S. Batory, J. Clifford, C.E. Dyreson, R. El-
masri, F. Grandi, C.S. Jensen, W. Käfer, N. Kline, K. Kulkarni, T.Y.C. Leung,
N. Lorentzos, J.F. Roddick, A. Segev, M.D. Soo, S.M. Sripada. TSQL2 Language
Specification. ACM SIGMOD Record 23(1):65–86, 1994.

14. R.T. Snodgrass (ed.), I. Ahn, G. Ariav, D. Batory, J. Clifford, C.E. Dyreson, R.
Elmasri, F. Grandi, C.S. Jensen, W. Käfer, N. Kline, K. Kulkarni, T.Y. Cliff Leung,
N. Lorentzos, R. Ramakrishnan, J.F. Roddick, A. Segev, M.D. Soo, S.M. Sripada.
The TSQL2 Temporal Query Language. Kluwer Academic Publishers, 1995.

15. R.T. Snodgrass, C.S. Jensen, and F. Grandi. The From Clause. In [14], Ch. 12.
16. SPARQL query language for RDF. W3C Consortium, http://www.w3.org/TR/

rdf-sparql-query/.
17. J. Tappolet, and A. Bernstein. Applied temporal RDF: Efficient temporal querying

of RDF data with SPARQL. In Proc. of ESWC Conf.. Springer-Verlag, 2009. LNCS
No. 5554.

18. XML Schema Part 2: Datatypes. W3C Consortium, http://www.w3.org/TR/

xmlschema-2/.
19. XQuery 1.0 and XPath 2.0 Functions and Operators. W3C Consortium, http:

//www.w3.org/TR/xpath-functions/.

