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On Temporal Grouping

Abstract

In this paper we address some of the concerns that have been expressed regarding the practicality
of the temporally-grouped, or history-oriented, data modeling approach. Specifically, we address the
concern over the lack of an algebra for this paradigm, by presenting such an algebra. In addition,
we examine a number of semantic notions, including FDs, keys, coalescing, and restructuring, from
a perspective of comparison between the temporally-grouped and temporally-ungrouped approaches.
paradigms.

1 Introduction

A large variety of extensions of the relational data model and query languages to include time have been
proposed in recent years (see [McK86, S0091, SS88] for references to the growing body of literature on
temporal databases). According to a fundamental structural property formalized in [CCT94], all the pro-
posals can be classified into two main categories: temporally ungrouped and temporally grouped models and
languages. In temporally ungrouped models, the temporal representation is realized at extensional level,
by means of timestamps added to data values as additional attributes to represent their temporal validity.
In temporally grouped models, the temporal dimension is implicit in the structure of data representation:
attributes are represented as histories considered as a whole and without the introduction of distinguished
attributes. Attribute histories can be regarded as functions which map time into attribute domains.

The most important property of temporally grouped models and languages concerns their formal ex-
pressiveness, which has been shown to be greater than the expressiveness of ungrouped ones [CCT94].
Moreover, it has also been shown [GST93] that history-oriented temporal query languages, providing a
“erouped” point of view on data, can be more “natural” and friendly for human users as they support the
concept of history as a first-class object of discourse.

A controversy regarding the two approaches was also brought up in the discussions of the ARPA/NSF
International Workshop on an Infrastructure for Temporal Databases, held in Arlington in 1993. The main
objective of the workshop was to establish a common foundation for the discipline of temporal databases
and to develop a consensus grounding for further research and development. In a few words, while grouped
models appeared more attractive from a logical perspective (being more expressive and also user-friendly),
ungrouped models seemed more amenable to implementation at the state-of-the-art of commercial database
technology, requiring almost minimal extensions of the 1NF relational model and SQL-92.

After the workshop, the definition of a system supporting temporal grouping has come together into
the history-oriented entry of the “consensus glossary of temporal database concepts” [JCE194]. According
to the final glossary definition, a DBMS is said to be history-oriented if:



1. Tt supports history unique identification (e.g. via time-invariant keys, surrogates or OIDs);

2. The integrity of histories as first-class objects is inherent in the model, in the sense that history-related
integrity constraints might be expressed and enforced, and the data manipulation language provides
a mechanism (e.g., history variables and quantification) for direct reference to object-histories.

Both terms, temporally grouped and history-oriented, will be freely used when appropriate in the rest
of the paper.

As another follow-up of the workshop standardization efforts, a committee was formed with the pur-
pose of designing a temporal extension of the SQL-92 language. The committee, gathering people from
both academia and industrial world, released a language specification, named TSQL2, in September 1994
[SAAT94, SAAT94]. In the cradle of the controversy between grouped and ungrouped approaches, TSQL2
was born as a compromise solution. To this end, TSQL2 is provided with a surrogate data type [JeSn94]
and special range variables [SnJe94]. Surrogates, which are system-generated identifiers, can be used to
simulate the history identity inherent to a temporal grouped data model as shown in [CCT94], but their
correct management is completely up to the user. TSQL2 range variables can be used as history and version
variables [GST93] in order to simulate history-oriented queries, but their correct use is not straightforward
and still is up to the user. Rather than being more clear and readable, history-oriented TSQL2 queries
may in fact be very complex and not very natural.

In spite of this, several objections to a temporally grouped approach have been raised. The principal
objections will be considered and discussed in this work.

First, a history-oriented DBMS seems too far removed from an SQL-92-based relational system to be
put into practice. For instance, even if a 1NF relational model with surrogates could be adopted, the
standard relational algebra would be inadequate for defining certain necessary operations (e.g. there are
difficulties in dealing with surrogates in Cartesian Products). Also temporally grouped extensions of SQL-
92 require the introduction of the notions of history and temporal object at the language level; notions
which are beyond the classical perspective of pure relational languages and would rather require features
of an object-oriented approach.

Second, perhaps the most severe objection is just the fact that, although logic- or SQL-based languages
have been defined, no algebra is available for grouped models yet. The most important consequence thereof
is the lack of an effective operational core on which any real language implementation (query processing
and optimization strategies) can be based on.

Finally, while grouped models impose a structure on data tables, i.e., the history of stored data objects
is the semantic criterion for grouping tuples, other temporal models and languages allow the restructuring
of a table on an arbitrary set of columns. In particular, the restructuring operator [Gad86), which has
been considered a desirable language feature and has been generalized by the TSQL2 variable mechanism,
has seemed to allow a change in the key of a temporal relation.

In this paper we try to make a step towards the resolution of the difficulties or objections that have been
raised concerning the grouped approach. We will present a history-oriented extension of SQL language as
an alternative to TSQL2. We will introduce an algebra for grouped models, on which our SQL extension



can effectively be based, and sketch a temporal completeness proof for it. Finally, we will discuss the
notion of regrouping, and some other assorted semantic notions, in the context of our approach.

2 An Algebra for Temporally Grouped Models

It is important to have an equivalent algebra for a query language or calculus because query evaluation is
typically done by mapping a query into an equivalent algebraic expression. Therefore, we have developed
an algebra for a temporally grouped model that is equivalent to the grouped calculus L, [CCT94], and
we present it in this section. Because of the space limitations, we cannot describe the language L, and
assume that the reader is familiar with this language, as described in [CCT94].

However, before describing a grouped algebra, we would like to point out some difficulties in developing
this algebra. To illustrate our points, consider the following safe L, query:

[e.A:tlR(e) ANt € el N—(Fe)(Tt)( Q') ANt € dlNR(e) Nt € el Ne.A(t) =€ .B(t))

where R and () are grouped historical relations, e and e’ are tuple variables, ¢ and ¢’ are temporal variables,
e. A : tis the target list, and e.l is the lifespan of tuple e (the lifespan is the property of a tuple because the
data model of L, is homogeneous). Typically, when a calculus expression is mapped into the equivalent
algebraic expression, this is usually done inductively on the number of operators in the calculus expression.
However, if we do this with the L; expression presented above, then the subformula

Q)N €€ lNR(e) Nt €elNeAlt) =€ .B(t)

depends on two tuple variables (e and €’) and two times (¢ and ¢'). This means that there cannot be any
equivalent algebraic expression because such an expression would return the relation that has two time
attributes in it and, thus, does not adhere to the data model of L.

For this reason, it has proven difficult to come up with a grouped algebra that it equivalent to the
temporally grouped query language L; which was proposed in [CCT94] as part of the canonical grouped
historical relational model T'G. To address this issue, we propose here a consistent extension to the data
model Mrq = (TG, Ly,), and make small corresponding adjustments to its query language L;, as described
in the next subsection.

2.1 An Inhomogeneous Historical Grouped Calculus Lj;
2.1.1 The Data Model TGj;

In [CCT94] the data model Myq = (T'G, Ly,) was presented, where TG is a canonical temporally grouped
data model and L its associated query language. The calculus L, is based on the data model Mpq =
(TG, L) that treats the domain of all of the attributes of a historical relation as functions from time to



values. The extended data model of My, = (I'Gpi, Lii) considers two other types of domains for attribute
values in addition to those of Mrq = (TG, L), i.e. temporal and atemporal (value-based) attributes. More
formally, Mrq,. = (T'Ghi, Lpi) is a three-sorted data model, with sorts:

e 7: a non-empty domain of times.
e V: a non-empty domain of values.

e F: is a set of functions F' : 7T— V.

An relation in Mrq,, = (T'Ghi, Li;) is defined similarly to a relation in Mrq = (T'G, L), except it
allows attribute values of all the three sorts, 7, V, and F, unlike the My¢ = (T'G, L) relations that allow
only attribute values of sort F. Attributes of sort V are used to model time invariant attributes, and
attributes of sort 7 are used to model user-defined time.

In addition to the three-sortedness extension, we relax the homogeneity assumption used in Mp¢, which
required that the lifespans of historical attributes in historical tuples must all be the same. In other words,
if A and B are attributes of sort F in relation R then lifespan(A) is not necessarily equal to lifespan(B).
By relaxing this assumption, we make the data model of Mg, inhomogeneous.

To summarize, Mrq,, = (T'Gpi, Lp;) is a consistent extension of the data model Mrq = (TG, Ly)
proposed in [CCT94]. The extensions make Mr,. multi-sorted and temporally inhomogeneous.

Example 1 Consider the following EMPLOYEE and DEPARTMENT relations. The first relation
has the schema EMPLOYEE (NAME, DOB, DEPT, SALARY), where attribute NAME has the sort V,
DOB has the sort T, and DEPT and SALARY have the sort F. The second relation has the schema
DEPARTMENT (DEPT, MGR), where attributes DEPT and MGR have the sort F. Instances of both
of these relations are presented in Figure 1. (Note that in these figures we use a shorthand notation
for functions; for example, instead of specifying completely the function {< 0,Sales >, < 1, Sales >, <
2, Sales >< 3, Sales >} we abbreviate the representation to {< [0,3), Sales >} to save space.)

2.1.2 The Language Lj;

The language Lj; is a consistent extension of the language Lj; the straightforward language extensions
address the extensions to the data model described above. First, Lj; is inhomogeneous, and, thus, the
lifespan is a property of an individual attribute of sort F. Therefore, a lifespan term in Lj; is of the
form e.A.l, where e is a tuple variable, and A is an attribute of sort F. Second, we extend L; by making
temporal terms to be not only temporal constants and variables but also terms of the form e.A, where
A is an attribute of sort 7. Third, we extend L, by making value terms to be not only value constants,
domain variables, and expressions e.A(t) for attributes A of sort F, but also terms of the form e.A, where
A is an attribute of sort V.
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]

[0,6] — Engrng
— Ashley
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[0,6] = Mktg
[0,6] — Sales

Figure 1: The Historical Grouped Relations EMPLOYEE and DEPARTMENT.

Finally, the definition of an Lj; query is extended from that of L,. An expression [aq, ..., a,]¢ is an
Ly; query if ¢ is an Ly; formula, and «;, 7 = 1,...,n, are expressions in one of the following forms. Either
«; is a free variable of sort 7 or V from ¢, or it is an expression of the form e.A : ¢, where e is a free tuple
variable from ¢, A is an attribute of a relation of sort F associated with e, and t is a free variable of sort
T, such that t € e.A.l. Moreover, only those variables appearing in «;, i = 1,...,n, are the free variables
in ¢. This definition says that the attributes in the answer to an Lj; query can be of any of the three
sorts F, 7, and V. In contrast to this, the attributes in the answer to an L, query are only of the sort
F. Furthermore, the notion of safety, as introduced in Lj, has to be adjusted in a straightforward way to
account for these changes to L.

To summarize, both the data model and the query language of Mr¢ = (T'G, Ly,) are special, restricted
cases of their consistent extension Mrq,, = (I'Gpi, Lp;).

We now introduce some examples of Lj;; queries. These examples are based on relations EMPLOYEE

and DEPARTMENT presented in Figure 1.

Example 2 The query “Find the names, dates of birth, salary and departmental histories of the people
who worked at time 5 in the Accounting department” can be expressed in Ly; as

[e. NAME,e.DOB,e.SALARY :t,,e. DEPT : t5]
EMPLOYEE(e) At € e SALARY.IN5 € e DEPT.L A
e.DEPT(5) = “Acentg” ANty € e DEPT'.1

6



Note that the answer to this query has attributes of all the three sorts T, V, and F.

Example 3 The query “What are the names of the managers for whom Tom has worked?” can be expressed
m Ly; as

[e1. NAME] EMPLOYEE(e;)A
e, 3t3d(EMPLOYEE(e;) At € e DEPT.I A
DEPARTMENT(d) At € d. MGRIAt € d.DEPT.IA
2. NAME = Tom A ¢ DEPT(t) = d.DEPT(t) A
d.MGR(t) = e,. NAME)

2.2 An Inhomogeneous Grouped Algebra Ag

Having described the calculus Lj; and its data model, we are ready to present the corresponding algebra.

The grouped relational algebra, Ag, has five standard relational operators union, difference, Cartesian
product, selection, and projection extended to the temporal domain. In addition, Ag contains two operators
tdom and vdom that compute, respectively, the active temporal and value domains of a relation, and a
timeslice operator. The operators of union, difference, Cartesian product, and projection are defined
similarly to the standard relational case, and we use Lj; expressions to define them. Let R and () be two
L;,; relations.

1. Union. If R and ) are union-compatible, then RUQ = {e | R(e) V Q(e)}.

2. Difference. If R and () are union-compatible, then R — Q = {e | R(e) A =Q(e)}.

3. Cartesian product. R x Q = {(e,€') | R(e) N Q(€')}.

4. Projection. ma,.. 4, (R) = {e1,...,ex | (Fe)(R(e) AN e A; = e}

However, definition of selection is more involved in As than in the standard relational case.

5. Selection. Let R(Aq,...,A,) be an L;; relation. Then the syntax of selection is op o ap, (R) form > 1,

where each F; is defined in one of the following ways:

a. A, =¢ A;, where attributes A; and A; are of the sort F, and =y is the equality operator for functions.

'If A; is of sort F, then the expression e.4; = e; is not an L, expression; rather, it is a macro stating that e.4; and e;
are equal as functions over time. More precisely, this means that the lifespans of e.A4; and e; are equal and for any time ¢ in
this lifespan e.A4;(t) = e;(t).



b. A0, A; or A;0.c, where attributes A; and A; are of the sort 7, c is a constant of the sort 7, and 0, is
a comparison operator (=,>, >, <, <, #) for the temporal sort.

c. a16,a, where o; (i = 1,2) is either a constant of the sort V, or an attribute of that sort, or an expression
of the form A(T'), where A is an F attribute and T is a 7 attribute of R. Also, 6, is a comparison
operator (=, >,>, <, <,#) for the sort V.

d. A; €; Aj.7, where attribute A, is of the sort 7, A; is of the sort F, and €, is the membership operator
for the temporal sort. In this expression, A;.7 denotes the domain (lifespan) of the temporal attribute
A;.

e. A; €, Aj.v, where attribute A; is of the sort V, A; is of the sort F, and €, is the membership operator
for the value sort. In this expression, A;.r denotes the range of the temporal attribute A;.

If no confusion arises, we will drop the subscripts 7 and v in the comparison 6., 6, and in the membership
€, and €, operators and assume that their exact meanings can be judged from the context.

The meaning of op(R) is the set of tuples in R for which, when we substitute their values into the
formula F replacing attributes appearing in F' with the values of the tuples, F' becomes true.

Moreover, the algebra Ag contains two additional “twin” operators tdom and vdom that compute,
respectively, the active temporal and value domains of a relation.

6. Active-domain operators. Assume that R(Ay,..., A,) has only attributes of sort F. Then
tdom(R) = {t| (Je)(R(e) ANVi_,t € eApl)}

If R also contains attributes of sort 7, then their values should also be included in tdom(R). vdom(R) is
defined similarly to tdom(R): if R(A4,..., A,) has only attributes of sort F, then

vdom(R) = {d | (Fe)(Tt)(R(e) ANV (t € e. Al Ne Ai(t) =d))}
If R also contains attributes of sort V, then their values should also be included in vdom(R).

Note that operators tdom(R) and vdom(R) define mappings from relation R into a single attribute
relation on the sorts 7 and V respectively.

Finally, the algebra Ag contains an additional timeslice operator that restricts the lifespans of attributes
of sort F. More specifically,

7. Timeslice operator. Let R(Ay,..., A;,...,T,..., A,) be an Ly, relation, where attribute A; is of sort F
and attribute 7" is of sort 7. Then

Ta,7(R) = {eAq,...,e.A; 1,64, te Ay, ...,e. Ay | R(e)At € e.Ai N (T ) (R(e)Ne' A; = e AjNt =
e'.T)}

This expression says that the timeslice operator 74,.7(R) leaves all F attributes, except A;, intact, groups
together all the times T' corresponding to the same instance of attribute A;, restricts the lifespan of A; to
these grouped time instances, and projects the temporal attribute 7" out.



2.3 Equivalence of L;; and Ag

When converting Lj; expressions into Ag, we map R(e) At € e.A.l into the Ag expression ogcp a-(R X .S),
where S = tdom(ma(R)). However, the conversion becomes ambiguous for the L,; expression R(e) A
Q(e) At € e.A.l because it is not clear if e. A should be mapped into m4(R) or m4(Q). To solve this problem
and to make the mapping from L;; to Ag expressions easier, we normalize Lj; formulas by replacing Ly;
expressions of the form R(e) A Q(e) At € e. Al with (Fe’)(R(e) A Q(e') Ne =€ At € e.A.l). Similarly, we
replace expressions of the form R(e) AQ(e') At € e.A.LNt € ¢'.B.l with (3t')(R(e) ANQ(e') ANt € e, ALNT €
¢'.B.IL ANt =1t"). This discussion motivates the following definition.

A safe L;; expression ¢ is normalized if in every maximal conjunctive subformula of ¢

e a tuple variable can appear in one and only one relation;

e every temporal variable belongs to one and only one lifespan.
Lemma 1 FEvery safe Ly; formula can be converted to an equivalent safe normalized Ly; formula.

Sketch of Proof: The proof is based on the observation that if a maximal conjunct of an Lj,; formula
is of the form R(e) A Q(e) A ..., then it is replaced with the expression (Je’)(R(e) AQ(e') Ne=¢€ A...).
Similarly, the Lj; expression R(e) A Q(e') ANt € e AlNt € ¢.B.A...in a maximal conjunct is replaced
with the expression (3t')(R(e) NQ(e') Nt € e AINt € . BANt=1N...). O

Using this lemma, we can prove the main theorem of this section.
Theorem 2 Safe Lj; calculus and the grouped algebra Aq are equivalent

Sketch of Proof: Since we defined the As operators using L,; calculus, then it is clear that any Ag
expression can be converted into an equivalent Lj; expression. To show that any safe Lj; query can be
mapped into an equivalent Ag expression, first normalize the Ljy; query. The crucial part in the proof
of this theorem is to show how to map a maximal conjunctive subformula of an Lj,; expression into Ag.
To do this, consider a maximal conjunctive subformula in this query. Consider all the terms of the form
R;(e;) and of the form ¢; € e;.A;.l in it. For each term t; € e;.A,.l create a single-attribute relation
Tr,,j = tdom(ma, - (R;)) (note that this is possible because the Ly; expression is normalized). Then take
the Cartesian product of all the R;’s and Ty, ;s and impose the following restrictions in the select operator
on it. Each term ¢; € e;.A;.l gives rise to the condition Tr,,j € R;.A;. Each term e;.A; = e;.A; gives rise
to the condition R;.A; =; R;.A; in the selection. Each term t; = ¢, where t; € ¢;.A;.l and t} € ;. A}l
gives rise to the condition Tr, j = Tx ;. Finally, each term e.A(t) = ¢’.A'(') gives rise to the selection

R.A(T) = R'.A(T"), where T and T" are the single attribute relations of sort 7 corresponding to the terms
teeAlandt € e'.A'l, and e and € correspond to relations R and R’ respectively. Finally, to convert the
resulting relation to the form of the data model, every attribute A; with an associated lifespan attribute
T}y, is timesliced to the set of times equal to the projection on attribute T'y;. O



To illustrate how the conversion between Lj; and Ag works, we provide some examples. Since we
expressed algebraic operators in terms of Lj,; formulas above, we concentrate on mapping Lj; expressions
to Ag. In the following examples, let R(A) and R(B) be two single attribute relations, where A and B
have the sort F.

Example 4 The L,; query
[e.A:t](3e)(F)(R(e) Nt € e ALNQ() Nt € €. BIlNe A(t) =€ .B(t))
has an equivalent Ag expression
TR.ATR (WR.A,TRA (O-TRAER.A.T/\TQB GQ.B.T/\R.A(TRA):Q.B(TQB)(R X QX Tg, X TQB)))

where Tg, = tdom(ma,(R)) and Tg, = tdom(ng.(Q)) are temporal domains of A and B attributes in
relations R and @) respectively.

O
Example 5 Consider the Ly; query
[e.A:t|R(e) Nt € e.ALN=(Fe)(Q(e') ANt € €.B.I)
Before mapping it into Ag, we convert it into an equivalent Ly; query
[e.A:t|R(e) Nt € e ALN—(T) (T Q)AL € d.BANR(e) Nt € e AlNt=1)
which is equivalent to
TR AT, (TRATR, (0T, er A (R X TR, )—
TR, (UTRAGR.A.TATQBEQ.B.T/\TRA:TQB (RxQ x Tk, X TQB))))
where Tr, and Tg, are defined as in Ezample 4.
O
Example 6 The Ly; query
[e.A:t](F)F)(R(e) Nt € e AINQ(E)NT €. BlNe=¢)
has an equivalent Ag expression
TR.ATg , (WR.A,TRA (OTRAER.A.TATQB GQ.B.T/\R.A:fQ.B(R X Q X TRA X TQB)))
where Tr, and Ty, are defined as in Example 4.
O
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3 SQL Extension

Of the many proposals offered to extend the relational model for handling temporal information, the recent
appearance of the TSQL2 language specification [SAAT94] is of considerable note. This specification is
the result of a major collaborative effort whose goal to present a standardized temporal extension to the
standard relational data model. Specifically, TSQL2 is presented as a temporally extended SQL-92, the
current relational standard.

In the TSQL2 specification several goals were enunciated by the design committee as design guide-
lines. These guidelines addressed issues relating to the data model: support of a valid-time dimension,
and based on homogeneous tuples; to the language: consistent extension of SQL-92, optional temporal
support, and operators that do no give special semantics to explicit attributes; and to the implementation:
implementable in some first normal form representational model, and have an efficiently implementable
algebra that is an extension of the snapshot algebra. The thrust (both explicit and implicit) of these and
many of the other features enunciated in the specification is that TSQL2 be a true or consistent extension
of SQL-92 that defaults to SQL-92 when no temporal semantics are intended.

One consequence of this upward compatibility is that legacy applications need not be modified to
accommodate a TSQL2-based database management system. This compatibility is achieved in the resulting
TSQL2 proposal largely through the appending of additional clauses and sub-clauses to the SQL-92 syntax
and by defining default semantics in the absence that is consistent with the SQL-92 clause that results by
removing the TSQL2-specific clauses.

Although most of the features of TSQL2 are intended to directly support the formal incorporation of
a temporal component to provide capabilities generally associated with database management systems,
there is one feature of particular interest. The TSQL2 proposal includes provisions for the specification
of a distinguished surrogate domain. This domain, and its associated attribute, provides a mechanism by
which a user (application) can coindentify (i.e., recognize as forming a cohesive “group”) a set of tuples,
these having the same surrogate value. Used in this way, the surrogate is used as a grouping mechanism.

TSQL2 provides little in the way of support of a surrogate. It provides a way of associating a surrogate-
based attribute with a relation (schema) and a mechanism for comparing for equality two surrogate values.
Users are responsible for most other aspects pertaining to their management and administration.

As shown in [CCT94] such a surrogate is necessary if an ungrouped (i.e., INF) historical model is to
have the expressiveness of a grouped (i.e., NINF) historical model. However, as is also shown, the effective
management of surrogates is considerably complex. This complexity can be embedded in the semantics
of the data language, the approach taken in [CCT94], or, alternatively, left as a user task, the effective
approach of TSQL2.

The appeal of the grouped approach to representing historical data is due in part to its relationship to
the goals, or at least the results of normalization in the standard relational model; that is, the ability to
model a single instance of an object (entity or relationship) by a single tuple in a relation. Achieving this
correspondence in a historical database where multiple values must be maintained for the attributes of an
object requires that a NINF model be used. Such an approach maintains the correspondence between a
semantic “object” and a tuple, although it might increase the complexity required to implement such a

11



model relative to that required to implement a 1NF model.

A grouped historical relational extension represents one example of the desirability of a relationally-
oriented model that supports complex objects. Recognition of this fact is evidenced by efforts currently
underway to develop a new standard, SQL-3, that will provide a complex object modeling capability.
The result of this effort may provide a modeling capability that is easily amenable to being extended to
incorporate a historical dimension. More specifically, it may provide a sound basis upon which to build
NINF relations corresponding to the normative group model associated with the group algebra that we
describe in the next section.

Any SQL extension that is intended to query, or otherwise manipulate, a grouped historical relational
database must be able to accommodate the basic distinction between grouped and ungrouped data mod-
els. In an ungrouped model the temporal dimension is incorporated, explicitly or implicitly, through the
addition of one or more distinguished temporal attributes. For each tuple, the value of these attributes
indicates the period of validity of the data in the other attributes of the tuple. An SQL extension intended
to accommodate such an ungrouped historical model need only provide facilities for dealing with temporal
attributes; the semantics of the tuple variables could remain largely unchanged from those of the standard

SQL.

In a grouped historical model a tuple represents the history of an entity (or relationship). More
specifically, an attribute of a tuple is a history of the values assumed by that attribute. A history can
thus be viewed as a pairing of traditional domain values and the times that those values are valid. This
aspect of a grouped historical model is what has to be accommodated by a grouped-based historical SQL
extension. The following SQL-based SELECT statement provides such a capability:

SELECT attribute-target-list
FROM tuple/temporal variable declaration list
WHERE restriction predicate

The SELECT construct supports both the traditional tuple variable, and history-oriented temporal
variables. As per the standard SQL, tuple variables are bound to relations, and range over the tuples of
the relation to which they are bound. Temporal variables are bound to tuple variables, and range over the
histories of tuples of the associated relation.

The FROM clause is used to declare both types of variables as well as to perform the necessary bindings.
It has the form:

FROM Tell tl . T1 s T6l2 tz . TQ,

which declares tuple variable ¢; and binds it to relation rel,,, and declares temporal variable 7; and binds
it to tuple variable ¢;. (Although not indicated, any number of tuple variables may be declared and bound
to a single relation. Likewise any number of temporal variables can be declared and bound to a single
tuple variable.)

The SELECT clause has the form:

12



SELECT tup-att-exp;, tup-att-expy, ..., tup-att-exp,

and as in the case of the standard SQL is used to specify the attribute values that are to be included in
the resulting relation. tup-att; is of the form ¢;.A; if the domain of A; is of sort Vor T, and ¢;.A; : T; if
its domain is of sort F.

The WHERE clause plays the same role here as it does in the standard SQL; it specifies a predicate
that is used to select those values, (tuple values and temporal values) over which the tuple and temporal
variables range, that together satisfy the predicate.

Example 7 Given the grouped historical relation EMPLOYEFE the query “Find the name and salary
(histories) of all employees who worked in the Toy department at time 4” is expressed in SQLyp; as:

SELECT E1.NAME, El.Salary:T1
FROM EMPLOYEE E1:T1,T2
WHERE E1.DEPT(T2) = "Toy" AND T2 = 4

O

In this example one tuple variable E1 was declared and bound to the relation EMPLOYEE, and two
temporal variables, T1 and T2, were declared and bound to this tuple variable. The first, T1, since not
otherwise constrained, was used to extract the complete histories of the SALARY attribute of EMP, and
the second, T2, was used to reference the DEPT history value at the specified time.

Example 8 The query “Find the names, dates of birth, salary and departmental histories of the people
who worked at time 5 in the Accounting department” can be expressed in SQLy; as:

SELECT E1.NAME, E1.D0OB, E1.SALARY:T1, E1.DEPT:T2
FROM EMPLOYEE E1:T1,T2
WHERE E1.DEPT(5) = ‘‘Accntg’’

Finally,
Example 9 “What are the names of the managers for whom Tom has worked?” can be expressed in in
SQL}M as:

SELECT E1.NAME
FROM EMPLOYEE E1, E2:T1, DEPT D:T1
WHERE E2.NAME = ‘‘Tom’’ AND E2.DEPT(T1) = D.DEPT(T1) AND D.MGR(T1) = E1.NAME

O

In the absence of temporal components, the grouped SQL SELECT statement described above degrades
to a standard SQL-2 SELECT statement, and has the same semantics.

13



4 Some Semantic Issues Revisited

In this section we look at a number of semantic issues which are familiar and well-understood in the case
of the static relational model, but which are more complex and appear to have generated some confusion
in the temporal database literature when they have been extended to the case of temporal relations.
In particular, we believe that it is worth revisiting the concepts of relation key, functional dependency,
normalization, and coalescing, in the context of the temporally ungrouped/grouped modeling approaches.
In addition, we look at an operation called regrouping, related to the concept of normalization, and discuss
its utility.

Functional Dependencies

The notion of functional dependency in a snapshot or static relation is well understood.

Let R be a (static) relation scheme on a set of attributes A = {4y, Ay,..., A,}, and let X,V C A.
Then X functionally determines Y, X — Y iff for all tuples ¢; and t5 in a relation r on R, #;(X) =

In the Temporal Database Glossary [JCE194], the notion of a functional dependency is defined for
the case of temporal relations. The definition relies on the notion of a “snapshot” of a temporal relation.
While this notion is never precisely defined, its meaning should be obvious — the snapshot of a temporal
relation at time t is the snapshot (i.e., non-temporal) relation with all and only those tuples which are
valid at time t.

Informally, two tuples are snapshot equivalent if the snapshots of the tuples at all times are identical.
Similarly, two relations are snapshot equivalent if at every instant their snapshots are equal.

A notion of functional dependency with respect to temporal databases, called a temporal functional
dependency, is defined in the glossary as follows:

Let X and Y be sets of explicit attributes of a temporal relation schema, R.
A temporal functional dependency, denoted X — Y, exists on R if, for all instances 7 of R, all
snapshots of r satisfy the functional dependency X — Y.

Let us explore the notion of “functional dependency” in the context of the distinction between the
temporally grouped and ungrouped data modeling paradigms. In the discussion that follows, we will
consider three different generic temporal data models: M, will refer to a temporally grouped model, M,
will refer to a temporally ungrouped model, and M, will refer to a temporally ungrouped model with
surrogates.

There are three different natural extensions to the static notion of an FD to the temporal case:

Let R be a temporally grouped relation scheme on a set of attributes A = {A;, As,..., A,}, and let
X,Y C A. (Recall that in M, the value of an attribute A in a tuple ¢ is a partial function from the set of
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times into some set of values.). Then:

o X —», YViff
th,tQ € T[tl(X) = tQ(X) = tl(Y) = tQ(Y)]

Intuitively, this constraint says that if two tuples have the same function value for their X-attribute,
then they must have the same function value for their Y-attribute.

o X — YV iff
Vi, ta € VT € Tt1(X)(1) = to(X) (1) = t1(Y) (1) = t2(Y) (7)]

Intuitively, this constraint says that if two tuples agree at some time 7 on their X-attribute, then
they must agree at the same time 7 on their Y-attribute.

o X 3 Y iff
Vi, te € r,V1, 70 € Tt (X)(11) = 62(X)(12) = 6:1(Y)(11) = t2(Y)(12)]

Intuitively, this constraint says that if two tuples agree at any times 71 and 7, on their X-attribute,
then they must agree at the same times 71 and 7 on their Y-attribute.

The following semantic relationships among these three types of dependencies follow immediately from
their definitions:

X—>3Y ):X—>2Y ):X—>1Y

Moreover, these consequences are proper, as the following examples demonstrate. It is also clear that
when the universe of times T consists of a single point in time, i.e., in the static case, all three of these
notions are equivalent and reduce to the standard relational definition of FD without any change to their
definition.

The following relation, for example, satisfies the temporal FD A —, B, but not A —3 B:

R1,
A | B
1 — a 1 — ¢
2 = a — d
-1—>c_ _1—>:E_
2 — 2 — d
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and the following relation satisfies the temporal FD A —; B, but not A —5 B (and thus not A —3 B):

R2,

A | B | C

_1—>a_ -1—>x_ _1—>cl_
2 — b 2 — oy 2 = e
_1—>a_ -1—>x_ _1—>c3_
2 = b 2 =y 2 = ¢y
_1—>a_ _1—>z_ _1—>c5_
2 = ¢ 2 = vy 2 = cg

Thus, there are at least three possible extensions to the static notion of FD which are all different, and
which are expressible as constraints on valid relations in the model M.

In M,, it is clear that both —,, and —3 are expressible; in fact, it should be clear that —, corresponds
to the Glossary’s notion of temporal functional dependency, above. However, there is no analog to —,
since there is no notion of a “group” to quantify over.

The definitions of these dependencies in M, , however, is not a straightforward extension of the def-
initions in the static case. The definitions involve a kind of hidden quantification over time; to be more
precise, this quantification ought to be “unhidden”, and then the differences between these two approaches
become more apparent. For M,,, these three notions of FD are:

e X 1 Y

(There is no analog to this.)

o {X,Time} —, YV iff
th, iy € T[tl (X) = tQ(X) Nt (sze) = tg(sze) =1t (Y) = tQ(Y)]

This is the notion of temporal functional dependency in the Glossary.

Intuitively, this constraint says that if two tuples with the same timestamp 7 agree on their X-
attribute, then they must agree on their Y-attribute.

o X ;Y iff
th,tQ € T[tl(X) = tQ(X) = tl(Y) = tQ(Y)]

Intuitively, this constraint says that if two tuples, regardless of their timestamp, agree on their
X-attribute, then they must agree on their Y-attribute.
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Finally, in M, these three notions of FD are:

.X—>1Y

(There is no analog to this.)

o {X,Time} —, YV iff
Vi, te € r[t1(X) = to(X) Aty (Time) = to(Time) = t1(Y) = to(Y)]

This is the same notion as in M,4; the Surrogate is not involved.

o X — YV iff
th,tQ € T[tl(X) = tQ(X) = tl(Y) = tQ(Y)]

Again, this is the same notion as in M,,4; the Surrogate is not involved.

This information is summarized in the following table:

Constraint | M, | M,, | M, | Glossary
XY Y |N N | N

X =Y Y |Y |Y |X3BY
X —=>3Y Y |Y Y [N

Keys

The notion of a key in the standard relational model is definable in terms of the more primitive notion of
an FD:

Let R be a (static) relation scheme on a set of attributes A = {4y, Ay,..., A,}, and let X,V C A.
Then a set of attributes K, K C A is a key for R if K — A, and K is minimal.

How does this notion extend to the case of temporal relations in both the temporally grouped and
temporally ungrouped paradigms?

In My, corresponding to the three kinds of FD, we can derive three notions of key, key:, key,, and keys.
The definition of each of these 3 notions is exactly analogous to the standard notion, with the substitution
of one of the 3 types of FD. In HRDM ([CC87]) e.g., the notion of key was keys, which seems to be a

natural choice.

In M,,, the notion of key is slightly more complicated, and is not a straightforward extension of the
notion of a static key. Moreover, there are only two possible notions of key, keys, and keys. For example,
consider the following relation in M, with attribute A being a keys:
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Rg

A \B
_1—>a_ _1—>b1_
2 = a 2 — b
_2—>c_ -2—>bg_
3 — d 3 — by

The closest approximation to this relation inM,,is the following relation:

R34,
A ‘ B H Time
a b1 1
a bg 2
C b3 2
d | by 3

In this relation, A is no longer a key; the key is the set of attributes { A, Time}. Clearly the notion of a
temporal functional dependency is strictly stronger that that of a functional dependency; in effect it involves
a “hidden” universal quantifier over all times. This stronger notion, temporal functional dependency, is
what motivates the Glossary’s notion of the key of a temporal relation:

A set of attribute K C A is said to be a key for R iff for every valid relation r on scheme R,
K — R, ie., K temporally functionally determines every attribute in R.

Note that this definition tends to obscure the role of the Time attribute, which in fact is a crucial part
of the key. Our definition, above, makes this explicit. In fact, in models using two additional timestamping
attributes, e.g. Start-Time and End-Time, the explicit definition is not even straightforward.

A final notion that bears comment is that of a constant-valued key. This seems like a perfectly valid
constraint that an application may wish to impose. In M, it can be expressed as follows, for an arbitrary
temporally grouped relation scheme R with key K:

Vit € r,Nr,m € T[H(K) (1) = t(K)(m)]

Thus in M, it is possible to have some relations where this constraint is imposed on the key, and others
where it is not. This constraint is not expressible in M,,, precisely because M,, in the way it implicitly
assumes that tuples with the same key values are related, implicitly enforces it. In M, it can be expressed
as follows:

Vi, ty € r[ti(Surrogate) = to(Surrogate) = t1(K) = to(K)]

18



Normal Forms
Here is what the glossary ([JCE"94]) says about functional dependencies and normal forms:

A pair (R, F) of a temporal relation schema R and a set of associated temporal functional
dependencies F' is in temporal Boyce-Codd normal form (TBCNF) if

VX5Y eFF(YCXVX S R)
where F'™ denotes the closure of F and X and Y are sets of attributes of R.

Similarly, (R, F') is in temporal third normal form (T3NF) if for all non-trivial temporal func-
tional dependencies X — Y in F't, X is a temporal superkey for R or each attribute of Y is
part of a minimal temporal key of R.

Because three different notions of FD can be supported in M, there are three possible versions of those
normal forms which are based on the primitive notion of FD. These need to be further explored.

Moreover, there is the concept of “time normalization” in [NA93]. An ungrouped relation on scheme
(ENO SAL MANAGER T; Tg) is used as the example. Because the non-key attributes do not change
“in synch”, the recommendation of their “time normalization” design methodology is to split the relation
scheme into two schemes:

(ENO SAL 7, Tr) and (ENO MANAGER T, T%)

While not uncommon, it is extremely rare for the values of attributes to change in a temporally

synchronized manner. Therefore this design methodology would tend to spilt every relation scheme
(K A; Ay ... A,) into n separate relation scheme (K A;), (K Ay), ... (K A,).

We believe that this is not best viewed as a normalization issue. Clearly, it is an artifact of the model
itself, which associates temporal information with entire tuples. The “ design methodology” discovers that
this is in fact inappropriate, and then recommends that each individual tuple be split into n separate tuples
in n relations. Far better, we believe, would be a model which associated the temporal dimension with
each attribute, but kept intact the notion of a normalized tuple as representing all of the information about
some semantic object. Thus, in a grouped approach, the temporal relation on scheme (K A; Ay ... A,) is
normalized if it satisfies the standard definitions based on functional dependencies. No additional notion
of “temporal normalization” is needed.

Coalescing

Another notion that appears in a number of temporal data models is that of the “coalescing” of tuples.
This concept is defined in the glossary as follows:

The coalesce operation takes as argument a set of value-equivalent tuples and returns a single
tuple which is snapshot equivalent with the argument set of tuples.
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This definition relies on the auxiliary notion of value-equivalence:

Informally, two tuples on the same (temporal) relation schema are value equivalent if they have
identical non-timestamp attribute values.

This concept appears to have been introduced in [Snod87] and it has reappeared in a number of other
papers, including [NA93] (where it is called “compress”) and [JSS94].

The concept of coalescing is an artifact of INF models, since it’s function is to try to “merge” (or
“coalesce”) into a smaller number of tuples information about “the same object” which is spread across
a larger number of tuples. Furthermore, it appears to be relevant only to ungrouped models using two
timestamps, such as StartTime and EndTime as its timestamping mechanism. For example, the first two
tuples in relation on the left, below, ought to be “coalesced”, yielding the relation on the right.

‘ A ‘ B H StartTime H EndTime ‘ ‘ 1 ‘ B H Stari Time H EndTime ‘

a4 bl 1 2 a b1 1 5
a| b 3 0 c b 3 6
¢ | by 3 6 2

Coalescing is an unnecessary (indeed, meaningless) operation in temporally grouped models. In M,
the information in the above relations would be represented as follows:

Furthermore, it is not clear under what circumstances the coalesce operator ought to be performed.

Consider the following relation

A B |
l—all—b
2—=al|2—=bh
3—>al|3—=>bh
4—ald—b
5—aldb—b
3—=>c¢c|3—b
4—=c|4— by
5—=c|d—b
6 —>c|6—b

‘ EMPLOYFEFE ‘ SALARY H StartTime H EndTime ‘

a 30,000 1 2
a 35,000 3 3
c 35,000 6 7

and consider a query that projected this relation onto the SALARY column. Two different results are
obtained depending on whether tuples are not coalesced (left) or are coalesced(right):
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‘ SALARY H StartTime H EndTime ‘

30,000 1 2
35,000 3 5
35,000 6 7

‘ SALARY H StartTime H EndTime ‘

30,000

1

2

35,000

3

7

In a grouped model, the information would be as shown on the left, and the result of the query as
shown on the right. The issue of “coalescing” never arises.

| EMPLOYEE | SALARY | | SALARY |
[1,2] — a [1,2] — 30,000 [1,2] — 30,000
3,5] » a [3,5] = 35,000 [3.5] = 35,000
[6,7] — ¢ [6,7] — 35,000 [6.7] — 35,000
Regrouping

A final semantic issue which needs to be clarified is that of the “regrouping” of a temporally grouped
relation. This appears to be a virtually meaningless operation, except in certain cases that arise infrequently
in practice. Consider the following relation in M, with the key EMP serving as the basis for grouping:

EMPLOYEE
EMP ‘ DEPT ‘ SALARY
(1 — John (1 — Toy 1 — 20K |
2 — John 2 — Toy 2 — 20K
3 — John 3 — Clothing 3 — 30K
(1 = Henry [ 1 — Linen 1 — 20K |
— Henry 2 — Linen 2 — 30K
3 — Henry 3 — Housewares 3 — 35K

Now, the operation of regrouping is supposed to take a temporally grouped relation, which is grouped
by some attribute(s), and regroup it by some different attribute(s). Suppose we try to apply such an
operation to the employees relation, and try to regroup it by the SALARY attribute.

There are several problems with this operation, as this example makes clear. First, if there is to be
a regrouping on the attribute SALARY, there needs to be some basis for forming the new salary groups.
Absent any other information, it must be that the basis for the regrouping is the salary values, and thus
this operation will automatically impose a time-invariant key constraint on the resulting relation, which
may or may not be appropriate for the application. We assume that this is the intended meaning of the
operation, and hence the result is the following:
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EMPLOYEE
SALARY EMP ‘ DEPT
1 — 20K 1 — {John,Henry} 1 — {Toy, Linen}
2 — 20K 2 — John 2 = Toy
| 2 — 30K | 2 — Henry | 2 — Linen
3 — 30K 3 — John 3 — Clothing
3 — 35K 3 — Henry 3 — Housewares

A second problem, as this example clearly shows, the resulting object may not be a valid relation. In

this case, for example, there are two employees who had the salary 20K at time 1, and so the resulting
object must have a set of values for the remaining (non-grouping) attributes.

Finally, it is not at all clear what these new tuples represent. It might seem at first that they would
represent “temporal portions of actual employee’s salary histories.” On closer examination, this turns out
not to be the case. Consider the third tuple in the result: no employee had any such salary history.

Thus the operation is fraught with problems.

The classic example of this operation is the following management relation. According to [GN93], «
Its key is DEPT. This key is possible because it is the key of the snapshots of the management relation.”

Thus, the notion of key here appears to be that of snapshot key, and the authors correctly point out that
there is a case where such a regrouping operation might be useful.

management

DEPT

[ MANAGER

[11,49] — Toys]

[11,44] — John
[45,49] — Leu

[41,47]  — Clothing
[71,now] — Clothing

[ [4147) — Tom
[71,now] — Inga

[45,60] — Shoes

[45,60] — John

In [GN93] this relation is restructured (the operation is not formally defined, but it is intuitively obvious
and is the one we used, above) into the following “management-2” relation, with key MANAGER:
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management-2
MANAGER ‘ DEPT
' [ [11,44] — Toys |
i [11,60] — John] [45,60] — Shoes
[45,49] — Leu [45,49] — Toys
[ 4147] — Tom | | [ [41,47] — Clothing
[Tlnow] — Inga [41,47) — Clothing

Notice first of all, as we pointed out above, that this restructuring operation, defined in terms of equality
of values, incorporates the strong assumption that a Manager cannot change names and be considered the
same Manager. It is also important to note, as [GN93] does, the underlying assumption at work here,
“that DEPT and MANAGER functionally determine each other. In fact, without this assumption, no
such restructuring is possible, as our SALARY example, above, demonstrated. For instance, consider the
following relation, only slightly changed from this example:

management-3

DEPT ‘ MANAGER
[11,49] — Toys [11,44] — John
[45,49] — Leu

[41,47] — Clothing | [41,47] — Tom
[71,now] — Clothing | [71,now] — Inga
[40, 60] — Shoes [40, 60] — John

Here, DEPT — MANAGER but not the inverse. It is clearly not semantically meaningful to restruc-
ture this relation, since it is not about managers, it is about departments. The result of an attempted
restructuring would be the following;:

management-4
MANAGER ‘ DEPT
[11,60] — John | [11,39] — Toys
[40, 44] — {Toys,Shoes}
[45,60] — Shoes
[45,49] — Leu | [45,49] — Toys
[
[

[41,47] — Tom | [41,47] — Clothing
[71,now] — Inga | [71,now] — Clothing

This is not a valid relation — note the set of values for the DEPT relation. Note that here it is not
possible to do the regrouping, since MANAGER / DEPT.

So what exactly is this regrouping operation, and how general is it?
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Note that when normalized, relations typically have the property that they represent information either
about some real-world entity, or about an association (relationship) between or among some number of
entities. In either case, it is the key attribute(s) which identify the thing being modeled, and its lifespan
represents the maximal period of time during which information is known about the object. The other
attributes are descriptive attributes which give additional, non-identifying information about the objects;
the temporal dimension of this information is some subset (possibly all) of the lifespan of the object being
modeled. In some cases these descriptive attributes are foreign keys, i.e., “references” to objects which are
modeled in some other relation.

Consider, for example, the EMPLOYEE relation, which models employees with grouped tuples. The
notion of regrouping here can only apply to the non-key attributes, i.e., either to the attribute DEPT, which
is a foreign key, or the attribute SALARY, which is not. In either case, there are problems. In the case of
DEPT, where the operation might at first glance appear to make sense semantically, the operation, as we
have seen, is only well-defined for the rare case when the 2 attributes are mutually FD (DEPT < EMP),
i.e., when the attribute to be regrouped on is itself a candidate key for the relation.

Thus, a regrouping operator for temporally grouped relations does not appear to be a useful one, and
the lack of it is not a valid criticism of the temporally grouped approach to temporal relational databases.
Should such an operation be deemed desirable, in the case of multiple candidate keys, its definition is
straightforward and can be included in any temporally grouped relational data model.

5 Conclusions

In this paper we have addressed the two principal concerns that have been raised with respect to the tem-
porally grouped, or history-oriented, approach to modeling temporal information in a temporal relational
data model. Specifically, we presented an extension to the temporally grouped data model and query lan-
guage proposed in [CCT94], a data model and query language which is also quite similar to that proposed
in [GST93]. These consistent extensions, motivated by the desire to define an equivalent algebraic query
language, in fact provide greater modeling capability by allowing for the representation of three different
sorts of information: constant values, times, and value histories. In addition, these extensions relax the
temporal homogeneity requirement for the attributes of a given tuple. Having extended the data model
and calculus in this fashion, we presented an equivalent algebraic query language, Ag,thereby addressing
one of the major concerns about this approach.

In addition, we addressed a number of other semantic issues in the context of the temporally grouped /tempo
ungrouped modeling distinction , and argued that in all cases the temporally grouped approach appears
to have significant advantages.

Our conclusion is a strong recommendation that the effort to develop a temporal extension to the
SQL-3 standard, dubbed TSQL3, be based upon the temporally grouped model if it is to better meet the
modeling needs of temporal information.
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