IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 19, NO. 7, JULY 1993 641

Block Access Estimation for Clustered
Data Using a Finite LRU Buffer

Fabio Grandi and Maria Rita Scalas

Abstract— Data access cost evaluation is fundamental in the
design and management of database systems. When some data
items have duplicates, a clustering effect which can heavily
influence access costs is observed. The availability of a finite
amount of buffer memory in real systems has an even more
dramatic impact. In this paper a comprehensive cost model for
clustered data retrieval by an index using a finite buffer is
presented. Our approach combines and extends previous models
based either on finite buffer or on uniform data clustering
assumptions. The computational cost of the formulas we propose
in this work is independent of the data size or of the query
cardinality and need only a single statistics per search key, the
clustering factor, to be maintained by the system. The predictive
power and the accuracy of the model are shown in comparison
with actual costs resulting from simulations.

Index Terms—Block accesses, buffer management, databases,
data clustering, indexed access, performance evaluation, physical
design, query optimization, relational database.

I. INTRODUCTION AND BACKGROUND

NALYTIC estimation of the number of blocks accessed
by a query is a key problem in the realm of databases.

Performance evaluation of database systems is strictly depen-
dent on the availability of reliable and accurate 1/O cost models
which are based on block access estimation. The application
field of these models ranges from physical database design, for
the choice of indexes ([10], for instance), to query optimization
at run-time, for access path selection ([17], for instance).

The applicability of cost models relies on their capability to
accurately capture the behavior of the processes they describe.
Such a constraint is even stronger in the case of design
and management of high-performance systems. Moreover, the
usefulness of a cost model is related to its economy, with
respect to the computational burden required, the memory used
for parameter storage and the related bookkeeping overhead.

In this paper we consider the evaluation of the I/O cost
paid to access data by an index in terms of the number of
accesses to disk pages (blocks). We consider the problem in a
relational perspective and use, for convenience, the related ter-
minology (namely “relation” instead of “file,” “tuple” instead
of “record,” “attribute” instead of “field,” etc.), although the
problem is general and the results can be applied in a broad
class of database management and file systems. A summary of

Manuscript received January 2, 1992; revised November 23, 1992.
Recommended by Matthias Jarke.

The authors are with Centro di studio per Plnterazione Opera-
tore—Calcolatore, Consiglio Nazionale delle Richerche and Dipartimento
di Elettronica Informatica e Sistemistica, Universita di Bologna, 1-40136

Bologna, Italy
IEEE Log Number 9208631.

the symbols used is reported in Table I. We use the term “key”
to denote the search attribute on which an index has been built,
and is used for access by queries. Indexes are assumed to be
B -trees or similar [9). In this framework, the cost estimation
problem for data access by an index can be stated as follows:

Estimate the number F'P of page fetches needed in order
to retrieve all the tuples matching a given number HK
of key values, using an index built on that key and with
B pages of the buffer pool available for the relation!

Early access cost models were based on simplifying assump-
tions which can be summarized as follows:

* Total uniformity. the relation has a constant number of
tuples per page and each tuple has the same probability
to be referenced by queries.

* Unlimited buffer: the pages accessed can be kept in main
memory till the end of the query and further references
to them do not give rise to additional I/O costs.

The first hypothesis leads to inaccurate estimates the more
the data distribution over the key space and over the pages
differs from the uniform distribution. The second hypothesis
is obviously never met in real systems and, in very common
situations, it can lead to such strong cost underestimations
that they are practically useless.> More sophisticated models
proposed so far loosened one of the two assumptions, but none
of them both. The aim of this work is to abandon both of them,
providing a cost model which can be applied to the retrieval of
data by an index using a finite buffer, with the total uniformity
assumption abandoned in favor of the following one:
* Uniform clustering: the relation has a constant number of
distinct key values per page and each key value has the
same probability to be referenced by queries.

Usage and maintenance of cost models based on uniform
clustering are not expensive, because they are based on a
single parameter per attibute: the clustering factor [3], [13],
which could easily be embedded in systems already in use.
Cost models based on this parameter give results that are
encouraging for their accuracy in a wide range of situations.
Notice that the term clustering is used to indicate the presence
of more than one tuple with the same key value on the same
page. Total clustering means all the tuples with the same

IWe disregard the buffer space and the /O traffic devoted to index
management.

2Notice that the finite buffer assumption is required only when retrieved
tuples have to be in sequential order of the keys (e.g., during a join operation).
Otherwise, if the page requests can be batched and the duplicate requests are
eliminated, cost models assuming an unlimited buffer are adequate.

0098-5589/93$03.00 © 1993 IEEE

642 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 19, NO. 7, JULY 1993

TABLE 1
THE SyMBoLs USED

B the dimension of the buffer in pages
R a given relation

NT number of tuples in R

NP number of pages of R

NK number of distinct key values in R

TP average number of tuples per page

K P average number of distinct key values per page

DK average duplication of key values

CF average clustering factor of the key attribute

HT number of tuples retrieved by a query

HK number of keys retrieved by a query

HP number of pages hit

FP number of pages fetched

with the constraints:
NT=NP-TP=NK-DK,KP-CF=TP

TID A Ay A A TID A Ay As A
11 ({a b d ¢ 41 [a e e f
12 (e e d ¢ 42 b f s f
13{b a b ¢ 431 d b e f
14 |d a d ¢ 44 ([f b a f
15[f e b ¢ 45 [¢ e e f
18lc b b ¢ 46 | e f a f
21 [f ¢ a e 51 (e f ¢ d
22 |d ¢ f e 52| b b ¢ d
23 | b f f e 53| f a ¢ d
24 | e d a e 54 |(d b f d
256] a f a e 55 c¢ a f d
286 |c d f e 56 [a f f d
31fc¢c ¢ b a 6l (c e e b
32| a a ¢ a 62 (b d d b
33(f d b 63]e d d b
34| e ¢ b a 64 | f ¢ d b
35 (d d ¢ s 65! a ¢ e b
36| b a b a 66 (d e e b

Fig. 1. The figure shows the six pages of a sample relation. The attributes
A1, A2, A3, A4 assume values uniformly distributed over the common
domain {abcdef} (DKs, = DKy, = DKy, = DKy, = 6).
Each attribute satisfies the uniform clustering model for queries uniformly
referencing key values (CF4, = 1, CFy, = 2, CFp, =3,CFy, =6).
In particular, A; fits total uniformity and A4 fits total clustering. The column
TID (not belonging to the relation) contains the Tuple IDentifiers in the format:
Page IDentifier . offset within the page.

key value are consecutive. Ordering is a special case of total
clustering in that the key values are sorted (See Fig. 1).

More sophisticated and costly models [5], [18] based on
complete page access profiles [14] are actually needed only
in extreme situations, since they are the only way to guaran-
tee accuracy in the presence of highly skewed distributions.
However, cost models for queries on one attribute, based on
uniform clustering, are only O(1) with respect to NP and
NK both in time and in space, whereas more accurate models
are at least O(NP) or O(NK) in time or in space.

The estimation problems dealt with in this paper are often
related to the combinatorial analysis of the selection of distinct
items (e.g., tuples, keys, key occurrences) from a “paged”
population (i.c., partitioned in granules). This analysis can be
based on exact models, enforcing selection without replace-
ment, or on approximated models, allowing selection with
replacement. In Section II the approximation problem is re-
examined in a general framework, introducing the concept of

Jfeasibility of a replacement-based approximation, which will
be applied throughout the paper. In Section III we present
our generalized I/O cost model for data access via an index,
which takes into account data clustering and finite buffer space.
Section IV is devoted to the description and discussion of the
simulation results based on the cost model proposed, showing
the relevance of the precision and the improvement introduced
with respect to the previous models which consider the two
aspects (clustering and finite buffer) separately.

The rest of this section provides an introductory review of
the access estimation formulas previously proposed, which
are extended by the model presented in this paper. They
are classified with respect to their applicability to the cost
estimation problem.

A. Cost Models for Total Uniformity and Unlimited Buffer

The exact formula for estimating the number H P of pages
hit by a query retrieving HT distinct tuples, under the fotal
uniformity assumption, is

(NT - TP)
HT
HP(HT) = NP |1~

()

which was independently derived by Yao [21] and Waters [20].
Considering the general access-by-an-index cost estimation
problem, formula (1) exactly applies, under the unlimited
buffer assumption, to the case of unique key, if we let
HT = HK. In the case of duplication, it also applies with
HT = HK - DK and the assumption of total uniformity
implies random placement of tuples on the pages and uniform
distribution of key values both in the tuples and in the query
references.

Two other formulas have been proposed to solve the same
problem. The first one:

HP(HT) = NP [1 - (1 - NLP)HT]

)

)

was independently derived by Cirdenas [4] and Karayan-
nis—Waters [20] and gives the exact expected cost for the
retrieval of HT tuples not necessarily distinct. The second

one:
TP
1- (1 - ﬂ)
NT
was independently derived by Waters [20] and Palvia—March
[15]. Both the above formulas can be used as good approx-

imations of Yao’s formula (1) as discussed, for instance, in
[15], [19], [20], [21] and in Section II of this paper.

HP(HT) = NP ®3)

B. Cost Models for Uniform Clustering and Unlimited Buffer

The average clustering factor of an attribute was originally
introduced in [3] as
NT

F=~pp @

GRANDI AND SCALAS: BLOCK ACCESS ESTIMATION

where NPID represents the total number of different page
identifiers (PID ’s) which can be found in the leaves of an index
built on that attribute. This parameter takes into account the
actual placement of the different key values on the pages, since
it represents the average number of tuples with the same key
value on a page. The average is taken over the key values and
over the pages. If we define as cluster the set of occurrences
of the same key on a page, the C'F represents the average
dimension of a cluster.

Assuming a constant number of clusters per page and clus-
ters to be uniformly distributed over the pages, the following
formula:

NPID

NK ®)
was proposed in [13] to estimate the average number of pages
accessed to retrieve all the tuples matching a single key value

via an index. Using the C'F definition (4) and the identity
NT = NK - DK, formula (5) can also be rewritten as

DK

TF" ©)
The clustering factor was also used in [2] in order to predict

the optimal number of contiguous pages to be simultaneously

transferred from disk. In that paper also a naive extension of
formula (5) to cover the general case H K > 1 was proposed as

HP(1) =
HP(1) =

HP(HK) = HK - HP(1). 0]

This formula, which gives the total number of page references
generated by the query, clearly overestimates the expected
cost since it does not consider interleaving of different hit
clusters within hit pages. This formula represents a first order
approximation of the exact one [like HT - TP/NT [20]
represents a first order approximation of formulas (1), (2), and
(3)] and is valid only for a very low number of key values hit.

A more accurate cost model for the retrieval of all the tuples
matching H K keys via an index is given by Ciaccia—Scalas’
formula:

HK ®)

NK

HK
proposed in [6], which gives the expected number of accessed
pages, assuming a constant number of tuples per page and
a uniform distribution of key values on the pages and in the

query references in addition to the unlimited buffer assumption.
An approximated formula for the same problem:

HP(HK) = NP [1 - (1 _HP (1))HK] ©)

HP(HK)=NP|1- (NK ; TP/CF)

NP

was independently derived by Bonfatti—Maio—Spadoni—
Tiberio [3] and Ciaccia® [7]. This formula provides exact
expectations if the H K key values are not necessarily distinct.

3In the original paper, the term TP/NK - CF replaces HP(1)/NP. The
equivalence can be trivially shown by means of (6) and identity DK /NP =
TP/NK.

643

In Section II-B we show how these models can be used
under the more general hypothesis of uniform clustering (and
unlimited buffer). The uniform clustering assumption is less
restrictive than the assumptions on which formulas (8) or (9)
are based, since it does not require a constant number of tuples

per page.

C. Cost Models for Total Uniformity and Finite Buffer

All the formulas so far mentioned implicitly assume the
availability of an infinite amount of main memory. In fact,
they provide an estimation of the number of block hits, which
is only the lower bound (and often a very poor estimate) of
the number of block fetches required to answer the query in
a real environment. Accessed pages brought by the system
into the buffer are indeed subject to the LRU replacement
policy, so that, if they are further referenced by the query,
they may actually no longer be present in the buffer after the
last reference and may need to be repeatedly fetched.

A formula which considers a finite buffer space is Palvia’s
formula that appeared in [16]:

HP(HT) if HP(HT) < B

FP(HT) = (10)

B+4; if HP(HT)> B

where HP(HT) is computed with Waters’ formula (3). For
the term A;—representing the number of pages to be ac-
cessed after the buffer is full —three approximations have been
proposed:

A = (HT -ED)NE=B TP
NT - HT

NT — B-TP — (HT — HT)/2
NT —HT - (HT - AT)/2

Ay = (HT = HT)

A3 = (HT - HT)
N NT-B.TP- (HT-HT)/2+ @, - HT
NT - HT — (HT - HT)/2

B 1/TP
1- (1 - ﬁ) }
Q,=(HT +B-HT/HP(HT))/2.

These aproximations are based on three different degrees in
introducing selection without replacement in the evaluation of
the probability that a referenced page may already be found
in the buffer. Palvia’s formula (10) is based on the total
uniformity assumption and can be used to evaluate the access
cost by an index, if the key is unique (DK = 1), letting
HT = HK. In the general case, with HT = HK - DK when
DK > 1, it can provide an overestimation of the actual I/O
cost, since it does not take into account the actual clustering
of data. As a matter of fact, also when the fotal uniformity
hypothesis is met, duplication causes more than one tuple
with the same key value to be placed on the same page. We
call this phenomenon natural clustering induced by uniformity .
Formula (10) provides the same results either if the HT tuples

where

AT = HPY(B) = NT

LE 25,5.6,42,23,46,5.1 |
—bu, 1.5,6.6,1.2, 4.5, G.I—I
-«Ld: 63,26,33,24,62,35 |
H ¢ 34,64,2.1, 31,65, 22 |

H b: 16,52, 44, 1.1, 43, 54 |

—I a: 55,3.2, 14,13, 3.6, s.ﬂ

L 23,25,42,46,5.1,58 |
—bl.z, 15,4.1,45,6.1,66 |
-|ﬂ4, 26,33,35,62,63]
@ H e 21,22,31,34,6.4,65 |
—{ b 1.1, 1.6, 43, 44,52,5.4 |
% 13,14,32,36,53,55 |

®

®

23,8

Fig. 2. Unclustered index leaf organizations: I, with unsorted TID’s; >
with sorted TID’s; I3 with PID’s. The indexes are built on the attribute A,
of the relation in Fig. 1.

match the same key value or if they match different key values,
because it deals only with page references in tuple searching.
Natural clustering implies that multiple references to the same
page may be generated in retrieving all the occurrences of a
single key value. If the index leaves contain tuple identifiers
(TID’s, composed of a PID and an offset) and TID groups
corresponding to single key values are sorted by their PID
component, or if the index leaves contain only the PID’s (31,
then multiple references to the same page in retrieving the
occurrences of a single key are processed together and require
a single page access (See Fig. 2). Formula (10) considers
all the referenced pages to be distinct and subject to LRU
replacement in the buffer pool. Therefore, formula (10) is
accurate for an access by an index, when DK > 1, only
if the index is unclustered, organized with TID’s in the leaves
and with TID groups not sorted. Only in this case can the
same pages really be accessed, out of the buffer pool, more
than once, also when different tuples with the same key value
are retrieved.

Other access cost models proposed so far take into account
natural clustering induced by uniformity. Such models base
their cost evaluation on the number of page references gen-
erated by the use of the index rather than on the number of
referenced tuples like Palvia’s formula (10).

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 19, NO. 7, JULY 1993

A first cost model of this kind has been embedded in the
optimizer module of the relational DBMS System R [1]):

FP(HK)
min {HK[HP(DK)],NP} if NP< B
= @an
HK[HP(DK)] it NP> B

where the term HP(DK) is computed using Cardenas’ for-
mula (2) (where DK is the argument) and thus represents
the number of pages spanned by a single key value under the
total uniformity assumption. Formula (11) is pessimistic, since
it assumes a number of page fetches equal to the number of
page references generated by the query, which is estimated
as the product of the number of retrieved key values times
the round up number of pages spanned by a single key value.
In other words, formula (11) neglects the possibility of a key
value being found on a page already referenced by another key
value and that such a page can still be found in the buffer pool.

Two more precise cost models have been presented by
Mackert and Lohman. The Mackert—Lohman’s first formula:

FP(HK)
min {HK - NP(1 -), NP} it NP<B
B+[HK -NP(1-q)-B|Y-E if NP> B
12

where

(1-1/NP)PX it DK <TP

g= (13)
(1-1/NK)TP i TP < DK

was presented in [11]. It is still based on the number of
references generated by the index, but a nonnull probability
(NP — B)/NP that a page be found in the buffer is con-
sidered. The term N P(1 — g) represents the expected value
of the number of pages spanned by one key value, under the
total uniformity assumption, which is more accurate than the
approximation HP(DK) used by the System R cost model
(11). The Mackert—Lohman’s second formula:

FP(HK)
NP(1 - ¢HK)
if HK < HK

NP(I - qﬁ} +(HK — HR)NP(1 - q)q%F
if IK < HK < NK
(14)

where

HK =max{HK € {0,---,NK}|NP(1 - ¢""¥) < B}
(15)
was presented in [12]. The value of ¢ is the same value
(13) as that used in (12). This formula is the starting point

of our proposal and therefore will be discussed in detail in
Section III. The main difference between Mackert—Lohman’s

GRANDI AND SCALAS: BLOCK ACCESS ESTIMATION

two formulas is that the second one takes into account the
possibility that a page can be re-referenced without being re-
fetched even when the buffer is not yet full, whereas the first
one does not. Two less costly approximations of formula (14)
. were also proposed in [12].

II. FEASIBILITY OF REPLACEMENT-BASED APPROXIMATIONS

Consider the classical situation of b distinguishable balls
thrown into d distinguishable buckets of finite capacity c.
We can think of a bucket as consisting of ¢ distinguishable
boxes into each of which fits exactly one ball. Thus we have
a number a = cd of boxes in which a ball can be found after
the throw. The usual assumption is that all the boxes have the
same probability of being hit by a ball and all the outcomes
of the throw are equifrequent.

In particular, we are interested in the probability e that a
given bucket is not hit by any ball. In order to evaluate g,
we can consider the situation after the throw as if it were
produced by two different experiments involving selection of
boxes without replacement:

* Primal Experiment: Selection of the b boxes to be as-

signed to the thrown balls.

* Dual Experiment: Selection of the ¢ boxes to be assigned

to the given bucket.

In the primal experiment, p can be evaluated as the proba-
bility that the selected boxes do not belong to the given bucket,
yielding the well known expression

(3)

In the dual experiment, p can be evaluated as the probability
that the selected boxes do not contain any ball, yielding

a-b
_ c
= ~
c
It can be easily shown that the two experiments, enforcing

nonreplacement of boxes, give rise to the same value of gp.
Moreover, since formulas (16) and (17) can be evaluated as

(16)

a7

c

ﬁa—c—j+1_Ha—b—j+1
ol a—j+1 ok a—j+1

o can be computed in O(min{b,c}) operations using the
product which has the lowest number of terms.

Instead of (16) or (17) less expensive approximations based
on experiments involving selection of boxes with replacement
could be preferable. In this case, the primal and the dual
experiments no longer provide the same results, since they
represent different approximated models of reality.

In the primal replacement experiment we allow the b boxes
hit by balls to be selected with replacement. All the selected
boxes have the same probability ¢/a of belonging to a given
bucket, which does not depend on the number of boxes already

645
selected during the experiment. Therefore, we can use for p
the approximation
e\ b
~(1-2)" 18
p(1-< (18)

The primal replacement experiment allows the same box to be
selected even b times. Since there is a total number of ¢ boxes
in a bucket, one box of the given bucket cannot be selected in
any case more than c times in assigning boxes to balls, unless
we allow the bucket capacity to be exceeded. Therefore, we
should consider (18) as a feasible replacement approximation
of p only if b < ¢, and unfeasible otherwise.

In the dual replacement experiment we allow the ¢ boxes
composing the given bucket to be selected with replacement.
All the selected boxes have the same probability b/a of
containing a ball, which does not depend on the number of
boxes already selected (i.e., assigned to the bucket) during the
experiment. Therefore, we can use for p the approximation

pz(l—é) .
a

The dual replacement experiment allows the same box to be
selected even c times. Since there is a total number of b boxes
containing a ball, a box containing a ball cannot be selected in
any case more than b times in assigning boxes to the bucket,
unless we allow the number of boxes hit in a bucket to be
greater than the number of balls thrown. Therefore, we should
consider (19) as a feasible replacement approximation of g
only if ¢ < b, and unfeasible otherwise.

Hence, a globally feasible replacement approximation for
the probability p is given by

<a;c>=(azb)
6 () loower e
(1 mhd) ™

which has a complexity O(1) with respect to a, b, and c.
Another interesting feature of the replacement approximations
is that linear functions of the exact ratio (16) or (17), regarded
as a dependence on b or ¢, cannot be solved in function of
their argument in closed form, whereas their approximations
(18) and (19) can easily be inverted. This peculiarity will be
used throughout the paper.

(19)

(1-c/a)® ifb<c

R

ifc<b

A. Applications of the Feasible Replacement Approximation

Referring to (20), we can assume, for instance, that the
buckets represent pages of a relation R (thus d = NP) and
the boxes to represent tuples (namely ¢ = TP and a = NT)
which are in this case all distinct (VK = NT, i.e., no key
values have duplicates). The throw of the balls corresponds
to a query issued on R, in which b = HT distinct tuples
have to be retrieved. Using (16) or (17), we can express
the exact probability that a given page is not hit under the
total uniformity assumption. If we use such a probability to
compute the expected number of blocks hit, Yao’s formula (1)

is derived. Considering, on the other hand, the replacement
approximations (18) or (19) we can derive Cardenas’ (2) or
Waters’ (3) formulas, respectively. However, according to our
definition of feasibility, the only globally feasible replacement
approximation of (1) must be derived using (20):

_ max{HT,TP}) min{HT,TP}:'

HP(HT) ~ NP [1 - (1 NT

@D

In particular, Cdrdenas’ formula is a feasible approximation if
HT < TP whereas Waters’ formula is a feasible approxima-
tion for HT > TP. Notice that although Cirdenas’ formula
is usually adopted as an approximation of Yao’s formula, the
only feasible approximation is given in most cases by Waters’
formula, since HT may range from 1 to NT whereas generally
TP < NT and thus HT will be frequently greater than
the feasibility upper bound 7P. Formula (21) is equivalent
to the formula proposed by Wang—Wiederhold—Sagalowicz
[19]: observing that both Cérdenas’ and Waters’ formulas give
underestimates of Yao’s formula, they proposed to take the
maximum between the two, which easily reduces to (21).
For mnemonic reasons, we will denote the approximations
d la Cirdenas or 4 la Waters the primal or dual feasible
replacement approximation, respectively.

Another example of the application of the feasible replace-
ment approximation can be given in considering the random
placement of uniformly distributed key values on pages of
constant capacity, when key values have duplicates. The
probability that a given page does not contain a given key
value can be evaluated as the probability that a given page is
not accessed in placing (or retrieving) all the DK occurrences
of the key, with individual occurrences of keys considered as
distinct tuples. This probability is therefore exactly [12]

(NTD—KTP)] (NTT—PDK)
(%) (%)

whose feasible replacement approximation is the q (13) used
in the Mackert—Lohman’ formulas (12) and (14).

(22)

B. Unlimited Buffer and Uniform Clustering Models Revisited

The uniform clustering assumption, as defined in the In-
troduction, implies that the number of different key values
(clusters) per page is constant and, thus, equals its average
value K P. In this case, we can exactly evaluate the probability
that a given page is not accessed in retrieving HK distinct

key values as
NK -KP
HK

(k)

where the denominator expresses the total number of query
instances with cardinality H K, while the numerator represents
the number of them not referencing the considered page.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 19, NO. 7, JULY 1993

Therefore, the expected number of pages hit under the uniform
clustering assumption can be computed as

NK - KP)

(HK
HP(HK)=NP|1- > _"—_ _ 7
(HK) NK

HK
Notice that the derivation of (23) rigorously requires neither
uniform distribution of key values in the tuples, nor a constant
number of tuples per page. However, if the number of tuples

per page is constant, uniform clustering implies that also the
clustering factor is constant, owing to

TP

K P —_— ﬁ .

Since identity (24) implies the equivalence of formulae (8) and

(23), if TP and CF are both constant, then Ciaccia—Scalas’

formula (8) exactly applies to the cost estimation problem
assuming uniform clustering and unlimited buffer.

When the number of different key values per page is
not constant, formula (23) provides in many cases a good
approximation if the average value K P is used, even if the
derivation of (23) can no longer be soundly justified from a
probabilistic point of view (e.g., higher order moments of the
number of different key values per page should be considered).
Formula (8) also provides the same approximation thanks to
identity (24) with the average values. The applicability of
formula (23) with the average KP only requires that the
underlying distributions— frequencies of key values and their
placement—are not highly skewed, as happens when different
nonuniformities partially compensate each other rather than
increase. Encouraging results about accuracy of cost models
based on (average) uniform clustering have already been
obtained in {7). The simulations reported in Section IV also
confirm the quality of the approximation, which will be further
investigated by the authors.

The feasible replacement approximation of (23) is

HP(HK)

A ma.x{HK,KP} min{ HK,K P}
. NK '

(23)

(24

(25)
Using identity (24) formula (25) becomes
HP(HK)

:Np[l_(l_

Notice that the approximation 4 la Cardenas, feasible for
HK < TP/CF, is the original form of Ciaccia’s formula),
whereas the approximation 4 la Waters, feasible for HK >
TP/CF, is

TP/CF
HP(HK)~ NP [1 - (1 - %) J 27

max{HK, TP/CF} min{ HK,TP/CF}
NK ’

(26)

and has not, to the authors’ knowledge, yet been proposed.

GRANDI AND SCALAS: BLOCK ACCESS ESTIMATION

In this framework, total uniformity can be considered as
a particular case of uniform clustering. First, the random
placement of tuples in the presence of duplication of key
values gives rise to what was defined natural clustering in
the Introduction. It is sufficient that DK > 1 in order to
have a nonnull probability that more than one tuple matching
the same key value be placed on the same page and, thus,
clusters be formed, even though the random placement causes
maximal scattering of the tuples with the same key value over
the pages. For instance, if DK ~ 2. NP, there is a high
probability that every page contains two tuples matching a
common key. In general, fotal uniformity implies a clustering
factor usually greater than the absolute lower bound CF =1
which is reached only if DK = 1. Secondly, formulas (23)
and (25) [or the equivalent ones (8) and (26) with the CF] can
be used with the average value of K P induced by uniformity.
This value does not depend on the page, as can be seen from
its expected value

KP=NK(1-q) (28)

where ¢ is the probability [exact (22) or feasible approximation
(13)] that a given key value is not found on a given page, which
depends neither on the page nor on the key.

Therefore, total uniformity is a sufficient but not necessary
condition for the applicability of a model based on uniform
clustering. As a matter of fact, if the number of tuples per page
is constant and the key values are uniformly distributed in the
tuples, the uniform clustering assumption is verified by a wide
class of placements of tuples over the pages, ranging from the
random placement to the case of sorted attribute.

In the case of total uniformity, we can use the K P value
(28) in order to estimate page hits with formula (23), obtaining

(')

HP(HK)=NP|1- NK 29)
(k)
and the replacement-based approximation
HP(HK)~ NP
» [1 _ (1 _ max{HK,NK(1 - Q)})min{HK’NK(l—q)}])
NK
(30)

In the next section we show how Mackert—Lohman’s second
formula (14) can easily be understood by means of this
equation.

III. A SOLUTION TO THE COST ESTIMATION PROBLEM

The purpose of this work is the derivation of a correct
solution to the problem of I/O cost estimation for data access
by an index in the presence of clustering and using a finite
buffer space. In this section we present a comprehensive cost
model which provides such a solution. Our model is based on
an extension of Mackert—Lohman’s formula (14) which takes
into account buffer finiteness and natural clustering induced
by uniformity. The extension is obtained by generalizing the

647

original model to any actual value of the clustering factor. A
more detailed characterization of the expected cost after the
buffer is full and of the instant in which the buffer becomes
full up are also provided. This detailed characterization is
necessary since the introduction of the general clustering factor
in the model makes it more sensitive to the estimation of this
cost and instant. Moreover, simplifications are introduced in
the generalized model in order to derive formulas which are
O(1) with respect to the problem dimension. Two different
versions of the simplified cost model are finally proposed.

Let us extract from (30) the approximation 4 la Cirdenas
of equation (29):

HP(HK) ~ NP(1 - ¢"¥) (31)

which takes into account the natural clustering induced by
uniformity if (13) is used for g. By means of (31), we can
rewrite Mackert—Lohman’s formula (14) as

HP(HK) if HK <HK
FP(HK) =\ yp®E)+ (HK - BR)HP(1)¢FX 2
it IK < HK < NK
with

HEK = max{HK € {0,---,NK}|HP(HK) < B}.

The meaning of (32) can be explained as follows:

* HP(HK) represents an approximation of the number of
pages containing H K distinct key values;

« if HP(HK) < B then all the accessed pages fit in the
buffer without being replaced during the query execution.
In this case FP(HK) = HP(HK);

» if HP(HK) > B then some of the accessed pages could
be fetched more than once. HK is just the number of keys
whose occurrences can all be always retrieved without
exceeding the buffer capacity, thus without forcing blocks
out of the buffer;

+ HP(HK) is the number of fetches required to read the
first HK keys (in the transient during which the buffer
is filled with HP(HK) pages);

+ HK—HK is the number of key values left to be retrieved
(in the steady-state during which the buffer is already full
with HP(HK) pages);

¢ HP(1) is the number of pages spanned by the occur-
rences of one key value (no page can be requested twice
in retrieving all the occurrences of one key if we are using
a PID-based index or a TID-based index with sorted TID
groups);

« (HK — HEK)HP(1) is the total number of page requests
issued during the steady-state (successive requests of the
same page can be issued in retrieving occurrences of
different key values);

e HP(HK)/NP is the probability that any page of the
relation is found in the buffer during the steady-state (hit-
in-buffer probability), assuming selection of key values
with replacement;

» ¢HK = (1 — HP(HK)/NP) is the probability that a
given page of the relation is not found in the buffer
during the steady-state;

648

+ (HK — HE)HP(1)q"¥ is therefore the expected num-
ber of fetches required to complete the retrieval (namely
page requests which do not find the page already in the
buffer).

Two related remarks can be made. First, if B > NP, the
whole relation fits into the buffer and thus HK = HK for
any HK. In all the other cases, HEK must be calculated from
the definition. In [12] the iterative calculation was pointed out
as one of the drawbacks of formula (32). It can be avoided by
solving for HK the inequalities

HP(AE) = NP(l - qﬁ) <B
HP(HK +1) = NP(l - qH_K+1) >B

with the constraint that H K is an integer, yielding

K = |HP~(B)|
o -5

Secondly, when HP(HK) < B strictly, formula (32) is
conservative, since the hit-in-buffer probability is computed
with a reduced buffer capacity (i.e., HP(HK)), whereas the
buffer management policy is able to use the whole buffer
of B pages. However, this fact is counterbalanced by the
optimistic assumption of a constant hit-in-buffer probability
HP(HK)/N P, which does not take into account that the tu-
ples already retrieved can no longer be referenced. Both these
facts have been considered by Palvia for the nonclustering
case (fotal uniformity with DK = 1). This author took into
account the correct buffer capacity and transient length and,
by the terms A; in the formula (10), tried to evaluate a correct
hit-in-buffer probability. In Mackert—Lohman’s first formula
(12) the correct buffer capacity is used to express the hit-in-
buffer probability B/N P, which is the exact value for key
selection with replacement and gives rise to an optimistic cost
estimation, whereas a conservative estimation is adopted for
the transient length, which gives rise to a pessimistic cost
estimation. The two approximations still try to counterbalance
each other. In our model these two aspects are not neglected
and a globally complete characterization of the query behavior
is introduced. We actually need more accurate estimations for
both the transient length and the steady-state hit-in-buffer
probability in order to obtain a cost model whose accuracy
be uniform with respect to different values of the clustering
factor. In particular (for long queries), the expected cost is
more sensitive to the estimation of the hit-in-buffer probability
when CF is small, because the transient will be short in this
case and its contribution to the global cost lower, whereas the
expected cost is very sensitive also to an accurate estimation
of the transient length when the C'F is high.

In the following, we no longer consider the case B > NP,
which is equivalent to dealing with an infinite buffer and
therefore leads to FP(HK) = HP(HK).

_ llog(l ;);/NP)J'

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 19, NO. 7, JULY 1993

A. Fixing the Useful Buffer Capacity and Transient Length

In order to take into account the whole buffer capacity B,
an improvement of the formula (32) is given by

HP(HK) if HK <HK (or B> NP)

FP(HK) = (33)

B+ (HK - HK)HP(1)(1 - &)
if HK < HK < NK

where HK is the real number of key values required to fill
the buffer, and the hit-in-buffer probability is evaluated as
B/NP. Notice that in a replacement approximation context,
the pages in the buffer should be considered as a truly random
subset of the NP pages of the relation due to the LRU
replacement policy, regardless of tuples previously referenced
in them (as in Mackert—Lohman’s original formulas). The
value HK includes an integer number of key values (i.e.,
HK) and a fractionary part which represents the (HK + 1)th
key occurrences, whose retrieval fills the buffer. This value
can be simply estimated as

HK ~ HP™'(B)

B
= logq (1 - —N—P)

using the formula (31) also for a noninteger number of
retrieved key values.

A further improvement consists in adopting the globally
feasible replacement approximation (30) for HP(HK). In
this case, the structure of (33) remains formally unchanged
but a more appropriate value of HK' must be calculated by
inverting the feasible approximation (30) as follows:

_ log(1 - B/NP)
- log g

AEK = HP~\(B)
log (1 - &5)/logq
if this value is < NK(1 — q)

1
NK[1 - (1 -)™
if this value is > NK(1 — q)
(34)

This definition is unambiguous, becal’lse it could be verified
that the two candidate values of HK are equal or both less
or both greater than NK(1 —¢) = KP.

B. Extension of the Model to the Uniform Clustering Case

Let us describe the introduction of the clustering factor in
order to generalize the Mackert—Lohman cost model. The
validity of formula (33) and of the original one (32) is not
formally restricted to the case of total uniformity (natural
clustering). As a matter of fact, the steps followed in its
derivation are not contradicted by the usage of a probability
g—that a page does not contain a given key value—different
from (13) estimated in the presence of total uniformity. The
only requirement is that ¢ has a constant value per key and per
page as ensured, by definition, under the uniform clustering
assumption which is a generalization of total uniformity.

GRANDI AND SCALAS: BLOCK ACCESS ESTIMATION

Hence, if KP is constant:

KP
NK
since the ratio K P/NK represents the constant probability
that a randomly chosen key value is present on a randomly

chosen page. In terms of the clustering factor CF, g can also
be expressed as

g=1- (35)

™ . DK
CF-NK =~ CF-NP’
Therefore, a straightforward extension of (33) and (34) capable

to cover the general case of uniform clustering consists in using
the value of ¢ (35) or (36) instead of (13).

1

g=1 (36)

C. A More Accurate Estimation of the Hit-in-Buffer Probability

We already observed that formulas (32) and (33) are op-
timistic in assuming replacement of keys in the evaluation
of the hit-in-buffer probability. Therefore, we are interested
in a more accurate and realistic estimation. The hit-in-buffer
probability represents the probability that a page is found in
the buffer pool given that it can be hit by the next key value
to be retrieved during the steady-state. We assume that H K*
key values (with HK < HK* < HK) have been retrieved
and we are looking for the tuples matching the (HK™* + 1)th
key value. Considering the events:

* hit: a given page can be hit by the next key, that is, it
contains tuples which can match the (HK™ + 1)th key
value;

* b: a given page is found in the buffer pool;

we are thus interested in evaluating the conditioned probability

Priblhifl k- 37

The subscript indicates that H K™ key values have already
been retrieved and that the hit-in-buffer probability explicitly
depends on that number (i.e., is further conditioned by the fact
that HK™* keys have been retrieved). Let Ap be the event that
a given page has been hit by any of the first HK™* key values.
We can also consider the events:

» hp Nb: a given page has been hit by the first HK* key

values but is not in the buffer;

* hp: a given page is not yet hit;
Since the pages hit by the first HK™* keys represent a subset of
HP(HK?*) out of the N P pages of the relation and the pages
in the buffer represent a subset of B out of the HP(HK*)
pages hit, the events b, hp N b and hp are mutually exclusive
and exhaust all the possible states of a page. Therefore we can
apply Bayes’ formula [8] to calculate the probability (37):

Pr [blhit] HK*
Pr{hit|5] Pr[B]

~ Prlhit|b] Prib] + Prlhit|sprb] Pr[hprb] + Prlhit[hp) Pr[hp]”

(38)

The probability that a page can be hit conditioned by its
state—which resumes the past history—depends only on the
number of key values already hit on the page. In particu-
lar, Prlhitjhp] = 1 because the pages not yet hit contain

649

only key values which can all be hit, whereas Prhit|b] =
Prihitjhpnb] = Prlhit|hp] because we can assume a constant
(average) number, say HK P(HK*), of key values hit per
page hit, due to the LRU replacement policy. Indeed the pages
in the buffer can be reasonably considered as a random subset
of the pages hit so far and the distribution of the hit key values
hit over the pages hit can be considered uniform as well. As
a matter of fact, pages which are kept in the buffer for a long
time seem to contain more key values hit than the other pages
hit on the disk but, when a page fault occurs, the page swap
has a re-balancing effect, since in general a page of the buffer
with several key values hit is replaced by a page with fewer
key values hit (possibly just one) and vice versa. Moreover,
since Pr[hp] = Pr[b] + Pr{hp N], (38) becomes

Prlhit|hp] Pr[b]

Prblhitl g+ = . 39
riblhit] s Prlhit|hp] Prihp] + Pr[hp) ©9)
Substituting the values
B
_ HP(HK™)
_ HP(HK*)
PI'[E] =1 —T
. _ HKP(HK*)
Pr[hlt]hp] =1- __K.P_
and simplifying we obtain
B(l _ HKI;(gI}:IK'z)
Prblhidl gk = (40)

NP — HP(HK*)HKPHK")

where the average number HK P(H K*) of key values hit per
page hit can be computed as

HK*.HP(1)
N e 41
HKP(HK") HPHE") (41)
since the numerator represents the total number of key values
hit (on the pages hit), given by the retrieval of HK* key
values.

On the basis of the hit-in-buffer probability evaluated in
(40), we can come back to the problem of estimating the
number of page fetches required by the query. If

HP(1)(1 — Priblhiflgk-)

is the expected value of the fetches required to retrieve all the

tuples matching the (H K* + 1)th key value, a correct formula
—_—

to estimate the I/O cost of the query when HK > HK [as

in the second branch of formula (33)] can be evaluated as

FP(HK)
=B+ ([AK'| - K) HP(1)(1 - Prlblhitlgre)
+ Z— HP(1)(1 — Prlblhif| g k). “42)
HK'=|-WI]

650

The first term represents the cost of the transient (with whole
buffer dimension B considered). The second term approxi-
mates the cost of retrieving the remaining duplicates (if any)
of the (HK + 1)th key value at the beginning of the steady-
state. The third term represents the cost due to the retrieval of
the remaining key values which completes the query. Formula
(42) clearly requires O(HK) steps to evaluate the summation
in the third term. In order to obtain a cost model with global
complexity O(1) with respect to NP, NK, and HK, we
must approximate this summation. Two approximations, called
the “mean” and the “stepwise” approximation, are used in
this work; they ensure satisfactory accuracy in a wide range
of combinations of buffer dimension and data clusterings.
The derivations of the two approximations are shown in the
Appendix. The two resulting versions of the cost model are
the following ones.

“MEAN” APPROXIMATION OF THE MODEL:
FP(HK) =
HP(HK) if1< HK <HK
(or B> NP)

(1~ (1 - 0.55)]
if K <HK < NK

B+ (HK - HK')RK

where
HP(HK)
el (1 max{HK, TP/CF} min{HK,TP/CF}
NK
B DK
log (1 - wp)/log (1 - CENT)
, if this value is < %
HK = oF
NE[1- (1- &) 7]
. . . TP
if this value is > &F
“STEPWISE” APPROXIMATION OF THE MODEL:
FP(HK)
(HP(HK) if1<HK < "K'
(or B> NP)
T \DK NK HE'
B+ (HK - HKE(W i+)
= if HK < HK < HK
T _ T \DK B NK HK'
B+(HK -HK)ﬁ(l_ NP NK-BR | NK-TR)
S\ DK
+(HE -HE") 2K (1- &
ifHE' < HK < NK

where HP(HK) and HK are the same as the “mean”
approximation and

0.5)%

=
HK = NK[I - (ﬁ

is the real number of key values retrieved for which almost
1

all the pages of the relation (HP(HK) = NP - 0.5 indeed)

have been hit.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 19, NO. 7, JULY 1993

TABLE 11
CONSTANT PARAMETERS OF THE RELATIONS
USED IN EXPERIMENTAL ERROR ANALYSIS

NP TP
1000 150

NT
150000

HK
25% NK

It is evident that the “stepwise” approximation of the model
is slightly more complex than the “mean” approximation. In
the next section, the precision of the two approximations is
discussed in comparison with simulation results.

IV. VALIDATION OF THE MODEL

In this section we analyze the validity of the two approx-
imations of the model proposed for the prediction of data
access cost by an index in a uniformly clustered relation.
Analytic estimations provided by the model are compared
with the results of retrieval simulations using an LRU buffer.
The first subsection concerns the error analysis of our model
in the presence of total uniformity. Our predictions are also
matched against Macket—Lohman’s ones. The second subsec-
tion applies the error analysis to the more general case of
higher clusterings. The third subsection takes into account
the effectiveness of the model with very large relations,
providing a comprehensive “taste” of its behavior in a real
world situation. Errors are computed without taking absolute
values: negative values mean underestimation.

A. Error Analysis with Natural Clustering

In this subsection we present simulation results involving
the retrieval of 25% of the keys from a thousand-page relation
presenting the natural clustering induced by uniformity. Table
II reports the constant parameters of the relations used for
experiments in this subsection and in.the next ome. Vari-
able parameter values will be introduced in the experiment
descriptions.

In the first experiment, index scan cost models are tested
against varying buffer dimensions for a relation containing
NK = 1000 distinct key values. Fig. 3 shows the relative
errors provided by the “mean” and the “stepwise” approx-
imations of our model and by Mackert—Lohman’s formula
(32) plotted versus increasing buffer dimensions (from 0.5%
to 100% of the relation). The errors are averaged over a run
of five randomly generated queries. The curves corresponding
to Mackert—Lohman’s model predictions are not marked by
any symbol in the figures. The improvement provided by our
model with respect to Mackert—Lohman’s model is apparent.
It is mainly due to the more accurate estimation of the situation
at the end of the transient (the rounding up of the HK
value accounts for the saw-toothed course of the error of
Mackert—Lohman’s model). It can be noticed that the error
of the “stepwise” approximation is always very small, while
the error of the “mean” approximation increases slightly with
increasing buffer dimensions.

The second experiment analyzes the prediction errors for
relations with varying key duplication. Fig. 4 shows the
results of experiments involving several relation classes, with
a number of distinct key values NK ranging from 100 to

GRANDI AND SCALAS: BLOCK ACCESS ESTIMATION

16.00

651

8.00

Ul

0.00 oW vALiy-rA

AnDad AR AAAA,
W AAPRAAY

AMAR

-8.00

24 N

x - "Mean" Approximation
o - "Stepwise™ Approximation
B/NP

0.01 0.26

+ : + + —

0.51 0.76 1.00

Fig. 3. Percentage errors of the estimations provided by the “mean” and “stepwise” formulas—compared with those of Mackert—Lohman’s formula—for
varying buffer dimensions. Parameter values are NK = 1000, CF = 1.077 (total uniformity).

100.00
x - “Mean" Approximation
0 - "Stepwise" Approximation
50.00
0.00 . /\AA —
DK
-50.00 + + + + + +
1500.00 334.08 73.21 15.97

Fig. 4. Percentage errors of the estimations provided by the “mean” and “stepwise” formulas—compared with those of Mackert—Lohman’s formula—for
varying duplication degrees. Parameter values are B = 800, C'F as induced by total uniformity.

12 000. Two relations per class have been generated and used
to run three queries each. The error values plotted in Fig. 4
are averages over the six runs. A buffer of B = 800 pages has
been used. The behavior of our cost model can be appreciated
both in Fig. 4, compared with Mackert—Lohman’s, or in Fig. 5,
with an enlarged scale. The lack of significance of the Mack-
ert—Lohman prediction formula for high duplications (error
near 100%) is due to a poor estimate of the effective transient
length: as a matter of fact, the plot of the relative error on the
transient length estimation between the Mackert-Lohman and
our model—(HK — HK)/HK —would present the same
shape as the cost error in Fig. 4.

B. Error Analysis with Higher Clustering

In this subsection our attention is focused on the more
general case of uniform clustering. In this case, no previous
reference model exists for comparison. The simulation exper-
iments considered here are similar to those illustrated in the
previous subsection, apart from the clustering factor of the
relations used, which is higher.

The average relative errors measured in the first experiment
(NK fixed to 1000; buffer dimensions ranging from 0.5% to
100% of the relation) are plotted in Fig. 6, whereas the average
errors measured in the second experiment (N K ranging from

1000 to 12 000; B fixed to 200) are plotted in Fig. 7. Relative
errors do not exceed 6% in both simulations.

The third experiment highlights the error dependence on the
clustering factor. It is aimed to fill the gap between the first two
experiments of the previous subsection (minimum clustering)
and of the present subsection (maximum clustering). For a
fixed number of key values N K = 1000, relation classes have
been generated for increasing clustering factors (C'F' ranging
from 1.25 to 30). Cost models have been tested with three
queries on two relations per class and with a buffer of 200
pages. Fig. 8 shows the simulation results, where errors have
been averaged over the six runs.

C. Validation for Large Relations and Concluding Remarks

The sample relation R—with schema R(A;, A, - - -)—used
for further simulations is characterized by the parameter values
reported in Table IIl. The parameters NK and DK refer to
the queried attribute, say A;, on which the index is built. In
particular, the values of A; are uniformly distributed over the
domain both in the tuples of the relation and in the set of the
key values concerned by the queries. High values were chosen
for TP and DK in order to obtain very different clustering
configurations on the same data.

652 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 19, NO. 7, JULY 1993

o /ﬁ/\/h/\//\ Vs mv/\/\/\f\
2/,
I LA A\ /\ A
Aane Taad
T -

Fig. 5. Percentage errors of the estimations provided by the “mean” and “stepwise” formulas for varying duplication degrees (zoom of the plots in Fig. 4).

2.00

0.00

-2.00 t
WWJV\. x - "Mean" Approximation
o - "Stepwise” Approximation
BNP
-4.00 + + + + + + + +
0.005 0.255 0.505 0.755 1

Fig. 6. Percentage errors of the estimations provided by the “mean” and “stepwise” formulas for varying buffer dimensions. Parameter values are
NK = 1000, CF = 149.55 (total clustering).

x - "Méan" Approximation
o - "Stepwise" Approximation

3.00 A

o) /\v/\\Jf\ /\]\ A
R

0.00

//\
Vi

b
-3.00 V\[\/\] \/V\/V\X\/ N
X
DK
-6.00 t + + + + + + + +
150.00 92.40 56.90 35.00 21.50 13.20

Fig. 7. Percentage errors of the estimations provided by the “mean” and “stepwise” formulas for varying duplication degrees. Parameter values are
B = 200, CF as induced by total clustering.

TABLE III Three different values of the clustering factor, corresponding

PARAMETERS OF THE RELATION R. NK and DK REFER T0 THE ATTRIBUTE A1 ¢4 different placements of the tuples on the pages, have been

NT NP P NE DK considered, as resumed in Table IV. The lowest clustering
1500000 10000 150 10000 150

corresponds to the case of natural clustering induced by
uniformity of the attribute A; in R, which is, for instance,
a consequence of the random placement of the tuples on

Two buffer capacities have been used in the simulations:
a small buffer of B = 4000 pages (equal to 40% of the

dimension of R) and a large buffer of B = 8000 pages (equal
to 80% of the dimension of R).

the pages. The highest clustering corresponds to the case
of total clustering of the attribute A;, which occurs, for

GRANDI AND SCALAS: BLOCK ACCESS ESTIMATION

653

9.00

x - "Mean" Approximation

0 - "Stepwise” Approximation
6.00 ﬁ Rv'

m \4 N
3.00
N ‘ ‘1 v |
X
MY
°'°° KA
CF
-3.00 + t + t + t t + +
1.26 7.75 14.25 20.7% 27.28

Fig. 8. Percentage errors of the estimations provided by the “mean” and
NK = 1000,

1000000 T FP(HK)
900000 T
800000 +
700000
600000
500000 1
400000 1
300000 T
200000 T
100000 +

[*]

“stepwise” formulas for varying clustering factors. Parameter values are
B = 800.

x - "Mean” Approximation
o - "Stepwise” Approximation

HK

[1000 2000 3000

Fig. 9.

TABLE IV
DIFFERENT CLUSTERINGS OF R CONSIDERED IN SIMULATIONS
Clustering Placement KP CF
Highest Ordered 1.99 75.25
Medium Dependent 9.68 15.50
Lowest Random 149.98 1.01

instance, if the relation R is sorted on the same column. The
medium clustering corresponds to an intermediate value of
the CF, which can occur in several situations. For instance,
we assumed that R is sorted on a second column Ay and
presents the functional dependéncy A; — Ao with five
different values of A; mapped onto a common value of A,
on average. The combined effect of the ordering on A2 and of
the functional dependency produces the desired clustering of
the first attribute. Notice that the three clusterings considered
give a representative sample of the possible clusterings which
can be found in a relational database. In particular, the ordered
placement gives rise to the theoretical maximum clustering of
an attribute uniformly distributed over the domain, while the
random placement gives rise to the minimum.

The application range of our cost model refers both to the
cases of indexes used for set queries issued on an ordered
attribute or used for range and set queries issued on a
unordered attribute (even if totally clustered). The only case

4000 5000

8000 10000

+

6000 7000 8000

+ t +

1/O cost simulations compared with the “mean” and “stepwise” formulas (B = 4000 and CF = 1.01).

excluded is that of indexed range queries on an ordered
attribute, whose cost can be fairly well approximated by
considering a fraction of accessed pages, equal to the fraction
of selected keys. This cost is not influenced by the available
buffer space since no data page is reused in a single index
scan. The curves of the actual cost (not marked by any symbol
in figures) are in some cases difficult to distinguish from the
predictions of the “mean” and “stepwise” formulas.

The odd-numbered figures from 9 to 19 show the I/O costs
due to the number of page fetches F'P(H K') needed to retrieve
all the tuples matching HK key values, as results from the
simulation and from the application of the two approximations
of our cost model, for pairs of buffer capacity (4000 and 8000)
and clustering degree (lowest, medium, highest).

The even-numbered figures from 10 to 20 display the
percentage errors of the previous estimations with respect to
the measured I/O cost. Characteristic error values are also
summarized in Tables V and VI. Both the figures and the
tables show that the percentage error of these trials never
reaches 7%. The best approximation is reached sometimes
by the “mean,” sometimes by the “stepwise” approximation,
both proving to be accurate. In any case, the more complex
“stepwise” approximation is also shown to be more uniform,
ensuring an error always lower than 4% in these experiments.

654 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 19, NO. 7, JULY 1993

35 T % Error
31 x - "Mean” Approximation
25 o - "Stepwise™ Approximation
2
1.5
|i S N v
1+
0.5
o+ t t + -—
DO 0.20 0.40 0.60 0.80 1.00
-0.5
HK/NK

Fig. 10. Percentage errors of the estimations provided by the “mean” and “stepwise” formulas with respect to the actual costs (B = 4000 and CF = 1.01).

70000 .’, FP(HK)
60000 |
50000 |
40000 1
30000 1
20000

10000 +

] + +

x - "Mean™ Approximation
0 - "Stepwise” Approximation

HK

0 1000 2000 3000 4000 5000 6000 7000 8000 8000

10000

Fig. 11. 1/O cost simulations compared with the “mean” and “stepwise” formulas (B = 4000 and CF = 15.50).

10 1 % Error

X - "Mean®" Approximation
o - "Stepwise” Approximation

0 yf\%‘l\'\h
0,

-2 XMMX

4

—

0.60 1.00

HK/NK

Fig. 12. Percentage errors of the estimations provided by the “mean” and “stepwise” formulas with respect to the actual costs (B = 4000 and CF = 15.50).

TABLE V
PERCENTAGE ERROR OF THE ‘‘MEAN’’ AND ““STEPWISE”> APPROXIMATIONS
OF THE COST MODEL WITH A SMALL BUFFER (B = 4000)

TABLE Vi
PERCENTAGE ERROR OF THE ‘‘MEAN’’ AND ‘“STEPWISE”’ APPROXIMATIONS
OF THE CoST MODEL WITH A LARGE BUFFER (B = 8000)

Retrieved CF =1.01 CF =15.50 CF =175.25 Retrieved| CF =1.01 CF =15.50 CF =175.25
Keys | ““Mean” “‘Step.”” | ““Mean” ‘Step.”” | ““Mean” “‘Step.” Keys | ““Mean” | ““Step.” | ““Mean”’ ‘Step.”” | ““Mean”’ | “‘Step.”’
25% 1.42 1.28 —1.94 —0.54 -0.21 0.61 25% -2.29 —3.24 2.39 1.91 0.18 0.18
50% 1.33 1.14 -1.95 —-032 | —-451 0.49 50% -233 —3.4 1.97 0.87 0.87 0.87
75% 1.27 1.07 —1.61 —0.63 | —6.06 0.44 75% —2.38 —-3.56 2.51 —-0.67 | —0.66 1.28
100% 1.31 1.11 —1.79 —-1.86 | —6.75 0.39 100% —2.28 —3.47 2.62 =359 | =227 1.04

A cost model which does not take into account the buffer
dimension [e.g., formulas (8) and (25)] always estimates

a number of fetches less than or equal to NP, which is
inaccurate and becomes meaningless, the lower the clustering.

GRANDI AND SCALAS: BLOCK ACCESS ESTIMATION

16000 T FP(HK)
14000 +

12000 +

655

x - "Mean" Approximation
o - "Stepwise” Approximation

HK

0 + + + +

] 1000 2000 3000 4000 5000

Fig. 13.

6 1 % Error

+ + + + 1

6000 7000 8000 9000 10000

1/0 cost simulations compared with the “mean” and “stepwise” formulas (B = 4000 and CF = 75.25).

x - "Mean” Approximation
o - "Stepwise" Approximation

A
o 1 }
.Y 0.20 0.40
'Z -+
41
8+

-8 ._

WN%VW

0.80 0.80 1.00
HK/NK

\‘\\'—\“vx

T—————

Fig. 14. Percentage errors of the estimations provided by the “mean” and “stepwise” formulas with respect to the actual costs (B = 4000 and CF = 75.25).

350000 T FP(HK)
300000 T
250000 +
200000 T
150000 + X - "Mean" Approximation
0 - "Stepwiss" Approximation
100000 T
50000 +
HK
[+ + + + + + + t +——
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Fig. 15. 1/O cost simulations compared with the “mean” and “stepwise” formulas (B = 8000 and CF = 1.01).

This fact is evident from Figs. 9 and 15, since the actual costs
are of higher orders of magnitude with respect to NP. On
the other hand, cost models which account for a finite buffer
but disregard the actual clustering [e.g., formulas (10), (11),
and (14)], in the presence of highly clustered data, give huge
overestimations since they implicitly consider fotal uniformity.
They produce results similar to those we obtained in Figs. 9
and 15 rather than correct cost estimations as in Figs. 11 and 17
or as in Figs. 13 and 19. Both the approximations of our model
are meaningful both in the presence of clustering and when a

finite buffer is used; their predictions are also very accurate
when the clustering is uniform, as shown by the simulations
and the resulting error figures.

APPENDIX
DERIVATION OF THE APPROXIMATIONS USED IN THE MODEL

In this Appendix the “mean” and “stepwise” approximations
of formula (42), that is the part of the cost model valid when
the number of pages referenced by the query exceeds the buffer
capacity (HK > HK'), are presented. The approximations

656

3T

% Error

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 19, NO. 7, JULY 1993

x - "Mean" Approximation
o0 - "Stepwise™ Approximation

0.60

27 VV\\\V‘@WW'
4
Fig. 16. Percentage errors of the estimations provided by the “mean” and “stepwise” formulas with respect to the actual costs (B = 8000 and CF = 1.01).
30000 1 FPHK)
25000 T+ /
20000 +
15000 +
x - “Mean" Approximation
10000 + o - "Stepwise" Approximation
5000 T
HK
0 + + + + + + + + + 1
] 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Fig. 17. /O cost simulations compared with the “mean” and “stepwise” formulas (B = 8000 and CF = 15.50).

10 T % Emor

~

0 + +

x - "Mean" Approximation
0 - "Stepwise” Approximation

Mo SRR T

0.20 0.40

t t 1

0.60 80

Fig. 18. Percentage errors of the estimations provided by the “mean” and “stepwise” formulas with respect to the actual costs (B = 8000 and CF = 15.50).

consist in replacing the summation in (42) by one or two terms.
Also the second term of formula (42) will be included in the
summation replaced. To this end we rewrite formula (42) as
follows:

HK-1
> HPQ1)(A-Pr]plhitluk-). (43)
HK*=HK

FP(HK) =B+

Notice that such a notation is slightly improper since HK ’,
the first value to be assigned to the summation index, is in

general noninteger. Nevertheless, this notation highlights the
real-valued number of terms which will be replaced.

A. The “mean” Approximation

Our first solution is to replace the summation in (43) with
the mean between the first and the last term times the number
(HK — HK) of terms replaced. Formula (43) becomes

FP(HK) =B + (HK - HK)HP(1)
2

. (44)

GRANDI AND SCALAS: BLOCK ACCESS ESTIMATION

657

12000 T FP(HK)
=
10000 -
8000 +
6000 T
x - "Mean" Approximation
0 - "Stepwise” Approximation
4000 1
2000 T
HK
1] + + + + + + + t + i
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Fig. 19. 1/O cost simulations compared with the “mean” and “stepwise” formulas (B = 8000 and CF = 75.25).

2 + % Error

0 WOUN W

o.b& A V\/J_,é.zo 0.40
LY

!

24 w

q0d

0.60 \\n{\l_oo

x - "Mean" Approximation
0 - "Stepwiss" Approximation

Fig. 20. Percentage errors of the estimations provided by the “mean” and “stepwise” formulas with respect to the actual costs (B = 8000 and CF = 75.25).

Further simplifications are then applied to both probabilities
in (44).

The term Pr[b|hét] g, which represents the hit-in-buffer
probability at the end of the transient, being HP (W’) = B,
from (40) becomes

1— HKPgW’Z)

KP

5(
Pr{blhitlgg = . (45)

_ pHKPHEK')’
KP

Since HK > HK , we know that the buffer is smaller than
the relation and therefore B/N P < 1. Moreover, the number
of key values hit on a buffer page at the end of the transient is
smaller than the total number of distinct key values per page*
and therefore HK P(W') /KP < 1. Hence, in general, we
can suppose B/NP - HKP(HK)/KP < 1 and neglect the
second term in the denominator of (45):

Pt ~ 05 (1- R,

KP
If we further suppose one single key value hit per page during
—_—
the transient, we can simply underestimate HK P(HK) as 1

*Actually, HK P(H_Kl) < KP but the only case in which the equality
holds is when all the tuples in the buffer have been hit. In general, this occurs
when executing a range query over an ordered attribute, but this case has been
excluded from the application domain of the model. Otherwise the equality
occurrence is quite impossible under the uniform clustering assumption.

in (46), which yields

. B 1

The term Pr{b|hit]gx—1 of (44), representing the hit-in-
buffer probability just before the last step of the steady-state,
when HK* = HK — 1, from (40) is

B(l _ HKPgHK—Q)

(47)

KP

Pr[bjhitlpx-1 = .
it = e P (K - 1) EREED

(48)

If we suppose that during the query execution almost all the
pages of the relation have been hit, we have HP(HK — 1) =~
N P. This hypothesis becomes valid the longer the query (i.e.,
referencing a high fraction of key values) and the more widely
the key values are spread over the relation (i.e., in the presence
of high duplication and low clustering). Thus we can write

. B
Priblhitlgx—1 > NP

Finally, by substituting (47) and (49) into (44), we obtain the
very simple expression of the “mean” approximation of (42):

49

FP(HK)~B+(HK-HK)HP(1) [1- ‘1\7]'313 (1— %25]0)

658 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 19, NO. 7, JULY 1993

B. The “stepwise” Approximation

An alternative approximation of (43) consists in dividing
the steady-state into two periods in which the hit-in-buffer
probability is supposed constant. Hence the summation in (43)
can be replaced by the sum of the two terms corresponding to
these periods. In the first period, which immediately follows
the transient, we assume a constant hit-in-buffer probability
equal to Pr[b|hit]y5, whereas in the latter we assume a
constant hit-in-buffer probability equal to B/N P. If we denote

. E=—=>_0
with HK the separation point between the two periods, we
can write our “stepwise” approximation of (43) as

FP(HK) =B+ (HK" - HE')HP(1)(1 - Pr[blhit|gz')

+ (HK - HEK")HP(1) (1 - 1%) 1)

where HK and HK are noninteger values.

When all the pages of the relation have been hit (at least
once), the pages in the buffer contain about the same number
of key values hit as the pages virtually returned to the disk.
As a matter of fact, we can see from (40) that the hit-in-
buffer probability differs from B/N P until all the pages of
the relation have been hit. Thus the separation point HK'
between the two periods can be the real-valued number of key
values, for which almost all the pages of the relation have
been hit. In particular, we choose the number of key values
hit for which the expected number of pages hit (also real) is
NP —¢ (e.g., € = 0.5 has been used in the model). The value
of HK' can be computed with the approximation 4 la Waters
for HP(HK) in the equation:

HP(HK')=NP —¢

which yields

" e \1/KP
HK' = NK [1 - (N—P)] (52)
From (41), since HP(HK') = B, considering (6) and
identites TP = KP - CF, DK = NT/NK, and TP =
NT/NP we can write

HKPHK) HK E
KP " NK B~
Therefore, the term Pr[b|hst]zz of (51), which can be

calculated with (40) and (53), with simple manipulations
becomes

(3)

—_——

B _ HK'
1- Rk
B NK K

= - . (54
NP NK -HK NK-HK ©4

Substituting (54) in (51) we obtain the following expression
for the “stepwise” approximation of the I/O cost, valid for
HK > HK'

FP(HK) =B+ (HK' - HK)HP(1)

«(i_ B __NK K
NPNK -HK NK -HEK
e | B
+(HK -HEK)HP(l)(l - ﬁ) (55)

in wlhich the value I’I K’ of (52) must be used. Clearly, if
HK < HK <HK' , only the first period exists and formula
(55) reduces to

FP(HK) =B + (HK - HK)HP(1)

«(1_ B __NE HK
NPNK _-HE NK-HK)
(56)

Introducing in (50), or in (55) combined with (56), the
dependence of HP(1) and K P on the clustering factor CF,
we obtain the final version of the “mean” and “stepwise”
approximations, respectively, of the cost model which have
been presented in Section III and tested in experiments in
Section IV.

C. An Estimation of the Error Introduced

The probability Pr[b|hit]m k-, which is expressed in (40),
is an increasing function of H K*, as can be understood from
its formulation. From the analytical point of view, if we
consider the approximation ¢ la Waters of HP(HK™*) given
by (25), we can rewrite this probability, after making simple
manipulations, as

A KP-1
. B 1-(1-%%
Pr[b|hit] g+ = NP n ((1 HK'))KP
“\" 7T 'NK

Both the numerator and the denominator of the last fraction are
increasing functions of HK*. The numerator is smaller than
the denominator but their difference decreases for increasing
values of HK™ (the difference vanishes for HK* = NK).
Therefore, globally the ratio increases with HK*. Letting

. . . _ B 1
Pr[blhit]o = HKll‘u_l.0+ Prib|hitlgk- = NP (1 - ﬁ)

. B
Pl‘[blh'lt]NK = ﬁ

we obtain

Pr[b|hit]o < Pr[blhit]gx- < Pr[blhit]nk (58)
for any HK* € (0, NK]. Notice that the final expression
(50) of the “mean” approximation of the cost model could
be derived from scratch by assuming a constant hit-in-buffer
probability equal to

Prfb|hitlo + Priphit]nk B (0.5

1- ﬁ), (59)

that is, equal to the average between its absolute lower and
upper bounds, dependent on the buffer dimension and on the
data clustering but regardless of the number of key values
HK actually retrieved.

2 NP

GRANDI AND SCALAS: BLOCK ACCESS ESTIMATION

Hence we are able to derive an upper bound for the absolute
error introduced by the “mean” approximation:

HK-1
En=| Y. HPQ1)(1-Prlb|hitjuk-)
HK*=HEK
—(HK - HK)HP(1)
% 11— Pr[blhlt]o + Pl‘[blhit]NK
2
HK-1
_ Pr[blhit]o + Pl‘[b|hit]NK
= HP(1) Z_, (>
HK*=HK
- Pl’[blhit]HK*) l
HK-1
Priblhitlo + Pr{blhit] vk
<
SHPM) 3, 5
HK*=HK
- Pr[b|hit]HK* .

By means of inequality (58), each term in the summation
is smaller than the value®

Prlb|hit]yx — Pr[blhitly B 0.5
2 " NPKP
and thus we can finally write
B 0.5
E,. < ~FR)— =22
<HP(1)(HK - HK)NP %P
1(HK HEK
=3\~nx "~k)P 60)

Therefore, the error E,, will be small if the fraction of key
values retrieved in the steady-state is small and, in every case,
E,, does not exceed half of the buffer dimension, B/2. The
error of the “mean” approximation is ensured to be small when
the available buffer space is small. On the other hand, when the
buffer space is large, the error could be high whereas actual
costs are very low. Although a high relative error could be
reached in this case, a reliable decision process based on I/O
cost comparisons (e.g., access path or index selection) can be
correctly supported by the mean approximation of the model:
even a poor estimation of the low cost in the presence of a
large buffer would never exceed a precise estimation of the
cost in the presence of a small buffer, which is higher by
orders of magnitude.

As far as the “stepwise” approximation is concerned, we
can derive the following upper bound for the absolute error
(when HK > W’):

p—y) _—
HK HK
<|=—-=—|B-A..
E. < NK NK)B A 61)

The second term A, corresponds to the error due to the
second period of the steady-state and can be made negligible

3 Note that the error introduced in approximating the hit-in-buffer probabil-
ity is inversely proportional to K P.

659

by choosing a small value of e, whereas the first term, which
corresponds to the first period, increases when ¢ decreases
since HK ' approaches N K. Therefore, an appropriate choice
of a not too small value of ¢ can lead to a good tradeoff
between the two error components which can compensate each
other. The value ¢ = 0.5 was a reasonable choice in our
experiments. The discussion of the dependence of the error
on the buffer capacity, which was introduced for the “mean”
approximation, applies also to the “stepwise” approximation
as well.

However, the experiments described in Section IV clearly
demonstrate that the actual errors can be much lower, in
realistic situations, than the theoretical upper bounds (60) and
(61) just derived.

REFERENCES

[1] M. M. Astrahan, W. Kim, and M. Schkolnick, “Performance of the
system R access path selection mechanism,” in Inform. Processing 80:
Proc. IFIP Congress 80, Tokyo, Japan, Oct. 1980, pp. 487-491.

[2] S. Bergamaschi and M. R. Scalas, “Choice of the optimal number of
blocks for data access by an index,” Inform. Syst, vol. 11, no. 3, pp.
199-209, 1986.

[3] F. Bonfatti, D. Maio, M. Spadoni, and P. Tiberio, “An indexing
technique for relational data bases,” in Proc. 4th IEEE COMPSAC Int.
Comput. Software & Appl. Conf., Chicago, IL, Oct. 1980, IEEE, New
York, pp. 784-791.

[4] A.F. Cardenas, “Analysis and performance of inverted database struc-
tures,” Commun. ACM, vol. 18, no. 5, pp. 253263, May 1975.

[5] S. Christodoulakis, “Estimating block selectivities,” Inform. Syst., vol.
9, no. 1, pp. 6979, 1984.

[6] P. Ciaccia and M. R. Scalas, “Optimization strategies for relational
disjunctive queries,” IEEE Trans. Software Eng., vol. 15, no. 10, pp.
1217-1235, Oct. 1989.

[7] P. Ciaccia, “Block access estimation for clustered data,” IEEE Trans.
Knowledge Data Eng., 1993, to be published.

[8] A. B. Clarke and R. L. Disney, Probability and Random Processes for
Engineers and Scientists. New York: Wiley, 1970.

[9] D. Comer, “The ubiquitous B-tree,” ACM Comput. Surveys, vol. 11,
no. 2, pp. 121-137, June 1979.

[10] S. Finkelstein, M. Schkolnick, and P. Tiberio, “Physical database design
for relational databases,” ACM Tran. Database Syst., vol. 13, no. 1, pp.
91-128, Mar. 1988.

{11] L. F. Mackert and G. M. Lohman, “Index scans using a finite LRU
buffer: A validated I/O model,” IBM Res. Rep. RJ4836, San Jose, CA,
Sept. 1985.

, “Index scans using a finite LRU buffer: A validated 1/O model,”
ACM Trans. Database Syst., vol. 14, no. 3, pp. 401-424, Sept. 1989.

[13] D. Maio, M. R. Scalas, and P. Tiberio, “On estimating access costs

in relational databases,” Inform. Processing Lett., vol. 19, no. 3, pp.

157-161, Oct. 1984.

M. V. Mannino, P. Chu, and T. Sager, “Statistical profile estimation in

database systems,” ACM Comput. Surveys, vol. 20, no. 3, pp. 191-221,

Sept. 1988.

[15] P. Palvia and S. T. March, “Approximating block accesses in database
organizations,” Inform. Processing Lett., vol. 19, no. 2, pp. 75-79, Aug.
1984.

[16] P. Palvia, “The effect of buffer size on pages accessed in random files,”
Inform. Syst., vol. 13, no. 2, pp. 187-191, 1988.

[17] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and
T. G. Price, “Access path selection in a relational database system,” in
Proc. ACM SIGMOD Int. Conf. Management of Data, Boston, MA, May
1979, ACM, New York, pp. 23-34.

[18] B. T. Vander Zanden, H. M. Taylor, and D. Bitton, “A general frame-
work for computing block accesses,” Inform. Syst., vol. 12, no. 2, pp.
177-190, 1986.

[19] K.-Y. Wang, G. Wiederhold, and D. Sagalowicz, “Estimating block
accesses in database organizations: A closed noniterative formula,”
Commun. ACM, vol. 26, no. 11, pp. 940—-944, Nov. 1983.

[20] S.J. Waters, “Hit ratios,” Comput. J., vol. 19, no. 1, pp. 21-24, 1976.

[21] S. B. Yao, “Approximating block accesses in database organizations,”
Commun. ACM , vol. 20, no. 4, pp. 260-261, Apr. 1977.

[12]

(14]

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 19, NO. 7, JULY 1993

Fabio Grandi received the Laurea in clectronics
engineering from the University of Bologna, Italy,
in 1988.

Since 1989 he has worked at the C.1.O.C. center
of the Italian National Research Council (CNR),
Bologna, ltaly, supported by a fellowship from the
CNR, in the field of neural networks and temporal
databases. He is currently a Ph.D. student at the
Department of Electronics, Computer Science and
Systems of the University of Bologna. His research
interests include databases, storage and access struc-

tures and information retrieval systems.

Maria Rita Scalas received the Laurea in physics
from the University of Bologna, Italy, in 1974.

From 1975 to 1979 she worked at the Universities
of Pisa and Bologna supported by a four-year fel-
lowship from the Italian Ministry of Education. In
1980 she became a Research Associate in Computer
Science at the University of Bologna and a con-
sultant at the C.1.O.C.-CNR center of the National
Research Council in Bologna. In 1986 she was a
visiting scientist at the IBM Scientific Center in
Heidelberg, Germany, where she took part in the
AIM-P project. In 1987 she became an Associate Professor at the University
of Trieste, Italy. She is presently with the Department of Electronics, Computer
Science and Systems, University of Bologna. Her scientific interests are in the
area of databasec management systems, temporal databases, access structures,
optimizers, and database design.

