
 1

Automating conceptual design of web warehouses

Boris Vrdoljak, Marko Banek
FER – University of Zagreb

Zagreb, Croatia

Stefano Rizzi
DEIS - University of Bologna

Bologna, Italy

Abstract—Web warehousing plays a key role in providing the
managers with up-to-date and comprehensive information about
their business domain. On the other hand, since XML is now a
standard de facto for the exchange of semi-structured data,
integrating XML data into web warehouses is a hot topic. In this
paper we propose a semi-automated methodology for conceptual
design of web warehouses from XML sources modeled by XML
Schemas. In our methodology, conceptual design is carried out by
first creating a Schema graph, then navigating the functional
dependencies expressed by its arcs in order to derive a correct
multidimensional representation. The problem of correctly
inferring the needed information is solved by querying the source
XML documents and, if necessary, by asking the designer’s help.
The approach is implemented in a prototype that reads an XML
Schema and produces in output the conceptual scheme for the
web warehouse.

Index terms—e-Commerce & e-Government, Data Warehousing,
Software Engineering, XML

I. INTRODUCTION
Data warehousing systems support the enterprises in the
process of extracting useful, concise and handy information
for decision-making out of the huge quantity of data stored in
their information systems. Since conventional design
techniques cannot be successfully applied to build data
warehouses, a substantial effort has been made to devise ad
hoc methodologies for seamlessly integrating data from
heterogeneous sources and putting them into multidimensional
form in order to feed them into the warehouse and make them
accessible to OLAP (On-Line Analytical Processing) and
reporting tools.

Recently, as the Internet has evolved into a global platform for
information exchange, and e-commerce has emerged as a
strongly competing reality, a large number of organizations
view the web as an integral part of their communication and
business. In this process, the possibility of integrating data
extracted from the web into data warehouses (which in this
case will be more properly called web warehouses [2]) is
playing a key role in providing the enterprise managers with
up-to-date and comprehensive information about their
business domain. On the other hand, the Extensible Markup
Language (XML) has become a standard for the exchange of
semi-structured data [1], and large volumes of XML data
already exist. Therefore, integrating XML data into web
warehouses is a hot topic.

XML documents can be associated with or validated against
either a Document Type Definition (DTD) [13] or an XML
Schema [14]. Although XML data are self-describing,
important information about their structure, that is necessary
for directly building a warehouse, cannot be obtained without
seeing their DTD or XML Schema.

XML Schemas considerably extend the capabilities of DTDs,
especially from the point of view of data typing and
constraining. In particular, the cardinality can be specified in

more detail. Furthermore, XML Schemas introduce more
powerful and flexible mechanisms for defining keys and their
references in the way that is similar to key and foreign key
mechanism in relational databases. Because of all its
advantages comparing to the DTD, XML Schema is becoming
more used than DTD.

In this paper we propose a semi-automated methodology for
conceptual design of web warehouses from XML sources
modeled by XML Schemas. Several conceptual models for
data/web warehouses were devised in the literature [3]; in this
paper we will adopt the Dimensional Fact Model (DFM)
described in [6]. We believe that conceptual design has a key
role in determining the quality of the warehouse in terms of
documentation, user satisfaction, and reusability; once a
conceptual scheme has been obtained, the logical and physical
schemes for the warehouse are mainly determined by the
target platform for implementation.

In general, conceptual design of data/web warehouses entails
transforming a schema that describes source operational data
into a multidimensional schema for modeling the information
that will be analyzed and queried by business users. For
instance, [5] discusses how this can be achieved by navigating
many-to-one relationships when the source operational data
are described by Entity/Relationship schemas. When the
sources are modeled by XML Schemas, two main issues arise:
firstly, since XML models semi-structured data, not all the
information needed for design can be safely derived; secondly,
two different ways of representing relationships in XML
Schemas are possible, each achieving different expressive
power. In our methodology, conceptual design is carried out
by first creating a Schema graph, then navigating the
functional dependencies expressed by its arcs in order to
derive a correct multidimensional representation. The problem
of correctly inferring the needed information is solved by
querying the source XML documents and, if necessary, by
asking the designer’s help. The approach is implemented in a
prototype which reads an XML Schema and produces in
output the conceptual scheme for the web warehouse.

The paper is structured as follows. After briefly discussing
some related approaches in Section II and explaining
multidimensional modeling in Section III, in Section IV we
show how relationships are modeled in XML Schemas. In
Section V we propose our methodology for conceptual design
and show how an XML Schema can be converted into a
multidimensional schema that conceptually models a web
warehouse. Finally, in Section VI the conclusions are drawn.

II. RELATED LITERATURE
The approach described in [10] is focused on populating
multidimensional cubes by collecting XML data, but assumes
that the multidimensional schema is known in advance (i.e.,
that conceptual design has been already carried out). In [11],
the author shows how to use XML to directly model

 2

multidimensional data, without addressing the problem of how
to derive the multidimensional schema.

In [7] a technique for conceptual design starting from DTDs is
outlined. That approach is now partially outdated due to the
increasing popularity of XML Schema; besides, some
complex modeling situations were not specifically addressed
in the paper. In [8], DTDs are used as a source for designing
multidimensional schemas (modeled in UML). Though that
approach bears some resemblance to ours, the unknown
cardinalities of relationships are not verified against actual
XML data, but are always assumed to be -to-one. Besides, the
id/idref mechanism used in DTDs is less expressive than
key/keyref in XML Schema.

One alternative approach to design from XML sources
consists in first translating them into an equivalent relational
schema, then starting from the latter to design the warehouse.
Some approaches for translating XML documents into a
relational database are proposed in the literature, both leaning
on the DTD [9][12] or not [4], but insufficient emphasis is
given to the problem of determining the cardinality of
relationships, which instead has a primary role in
multidimensional design.

III. MULTIDIMENSIONAL MODELING
Data from heterogeneous sources are collected and integrated
into the data/web warehouse, which is aimed to support
complex data analysis and decision making process. In order
to make the data accessible to OLAP and reporting tools and
enable efficient analysis of a large amount of data, a
multidimensional data model is used in the warehouse.

The Dimensional Fact Model [6] is a conceptual model, in
which a data/web warehouse is represented by means of a set
of fact schemes. A fact scheme is structured as a rooted graph
whose root is a fact. The components of fact schemes are
facts, measures, dimensions and hierarchies. A fact is a focus
of interest for the decision-making process. It typically
corresponds to events occurring dynamically in the enterprise
world (such as sales or orders, for example). Measures are
continuously valued (typically numerical) attributes that
describe the fact. Figure 1 presents a fact scheme describing
purchase orders as a fact, with unitPrice, quantity and income
as measures. Dimensions are discrete attributes which
determine the minimum granularity adopted to represent facts.
The dimensions in the purchase order example are product,
customer and date. Hierarchies are made up of discrete
dimension attributes linked by -to-one relationship, and
determine how facts may be aggregated. In our example, there
are hierarchies: customerID → city → country, productID →
brand, and date → month. In other words, each hierarchy
includes a set of attributes linked by functional dependences;
for instance, city functionally determines country and
productID determines brand.

When building the fact scheme starting from an E/R scheme,
the fact scheme is constructed by navigating the functional
dependences starting from the chosen fact and by defining
dimensions, measures and hierarchies. A fact may be
represented either by an entity or by an n-ary relationship.

address

customerID

name

countrycity

date

PURCHASE
ORDER
unitPrice
quantity
income

month

productID

productName

productDesc

brand

zip

dayOfWeek

Figure 1. Fact scheme

The fact scheme, as a conceptual scheme, can be implemented
either in a relational database or in a proprietary structure
called multidimensional database. End users of OLAP tools
should never be concerned about the storage of data, and
should be able to treat the resulting database as a conceptually
coherent multidimensional structure.

In the case of multidimensional database storage, data are
stored in an array structure similar to the programming
language array. On the other hand, when implementing the
fact scheme in a relational database, the star schema is
typically used. It is composed of one table with a multi-part
key, called the fact table, and a set of tables with a single-part
key, called dimensional tables. Figure 2 shows the star schema
for the purchase order example. Every element of the multi-
part key in the fact table is a foreign key to a single dimension
table.

customerID

date

productID

unitPrice

quantity
productID

productName

productDesc

date

month

customerID

name

street

TIME

PURCHASE_ORDER CUSTOMER

PRODUCT zip

city

countryincome

brand

dayOfWeek

Figure 2. Star schema

In this paper we focus on using XML Schema and XML data
as a source for designing web warehouses. To be able to
navigate the functional dependencies (i.e. to-one relationships)
and derive a correct multidimensional representation of the
XML data, different ways of expressing relationships in XML
Schema should firstly be examined.

IV. RELATIONSHIPS IN XML SCHEMA
An XML Schema consists of type definitions, which can be
derived from each other, and element declarations. The
possibility of separating an element declaration from the
definition of its type enables sharing and reusing of simple and
composite types. The structure of XML data can be visualized
by a Schema graph derived from a Schema describing the

 3

XML data source; the vertices of a Schema graph either
correspond to elements/attributes or describe cardinalities of
the relationships between them. The graph contains only data
that are relevant for conceptual design of a web warehouse.
Relationships precisely described in a Schema conform to
only four relationship types; attributes and elements are not
distinguished. The method has been adopted from [12], where
DTD has still been used as a grammar.

The basic principles for representing an XML Schema by a
Schema graph will be discussed with reference to the purchase
order example, taken from the W3C’s document [15]. A
portion of an XML document describing a purchase order is
presented in Figure 3.

Figure 3. XML data describing a purchase order

The purchase order document consists of a main element,
purchaseOrder, and the sub-elements shipTo, billTo, and
items. These sub-elements in turn contain other sub-elements.
orderDate is an attribute of the purchaseOrder element.

Elements that contain sub-elements or carry attributes have
complex types. On the other hand, simple type elements
contain numbers, strings, dates, etc. and are neither allowed to
have sub-elements nor attributes. Attributes always have
simple types. The document conforms to the XML Schema
presented in Figure 4.

The purchaseOrder element is defined as a complex type
PurchaseOrderType. In defining PurchaseOrderType, two of
the element declarations, for shipTo and billTo, associate
different element names with the same complex type, namely
USAddress.

Since our methodology for conceptual design is based on
detecting many-to-one relationships, in the following we will
focus on the way those relationships can be expressed in the
XML Schema. Two different ways of specifying relationships
exist: by sub-elements and by using key and keyref elements.

A. Modeling relationships by sub-elements
Relationships in XML Schema can be specified by sub-
elements with different cardinalities. An element is required to
appear in the document when the value of the minOccurs
attribute in its declaration is 1 or more. The maximum number
of times an element may appear is determined by the value of

a maxOccurs attribute. The default value for both the
minOccurs and the maxOccurs attributes is 1. On the other
hand, attributes may appear once or not at all. The occurrence
of an attribute can be declared by setting the value of the use
attribute in the Schema to required or optional.

Figure 4. Purchase order schema

In the Schema graph, we use the operators from the DTD
element type declarations because of their simplicity.
Concerning the greatest number of times the same sub-
element may appear within an element, we distinguish
between two general types of relationships: -to-one
relationship and -to-many relationship. On the other hand, if a
sub-element is optional, it might not appear at all.
Consequently, four general types of relationships are
distinguished:

• -to-one (the sub-element or attribute appears exactly
once within its parent element),

• optional –to-one (marked ?; the sub-element or
attribute may appear once or not at all),

• -to-many (marked +, the sub-element appears once or
more) and

• optional –to-many (marked *; the sub-element may
appear zero or more times).

The Schema graph for the Schema describing a purchase order
is shown in Figure 5.

The default cardinality is exactly one and in that case no
operator is shown. Element item is defined in the Schema as a
sub-element of the element items with the values of its
minOccurs and maxOccurs attributes set to 0 and
“unbounded”, respectively. Therefore, there is a “*” operator
assigned to the connection between items and item in Figure 5.
If the minOccurs attribute of an element is, for instance, set to
“2” and maxOccurs to “10”, the useful information we get
from these values is that the element must occur and it can
occur more than once, so there is a non-optional -to-many

<?xml version="1.0"?>
<purchaseOrder

orderDate="1999-10-20">
<shipTo country="US">

 <name>Alice Smith</name>
 ...
 </shipTo>
 <billTo country="US">
 <name>Robert Smith</name>
 ...
 </billTo>
 <items>
 ...
 </items>

</purchaseOrder>

<xsd:element name="purchaseOrder"
type="PurchaseOrderType"/>

...

<xsd:complexType

name="PurchaseOrderType">
<xsd:sequence>
<xsd:element name="shipTo"

type="USAddress"/>
<xsd:element name="billTo"

type="USAddress"/>
<xsd:element ref="comment"

minOccurs="0"/>
<xsd:element name="items"

type="Items"/>
</xsd:sequence>
<xsd:attribute name="orderDate"

type="xsd:date"/>
</xsd:complexType>
...

 4

relationship that will be represented by a “+” operator in the
Schema graph. The comment element is optional within
PurchaseOrderType because the value of the minOccurs
attribute in its declaration is 0. Therefore, it does not have to
appear in the XML document in Figure 3.

purchaseOrder

orderDate comment

USPrice

partNum

shipDate

items

productName
quantity

item

?

?

?

*

name

shipTo

city
street

state
zip

country

billTo

?

??

Figure 5. Schema graph for a purchase order

To derive a fact scheme and enable multidimensional analysis
of data, it is necessary to find -to-one relationships. The
presented classification with only four types of relationships
preserves the information about those relationships and
eliminates unnecessary details.

When creating a Schema graph from the Schema, only the
operators indicating the relationship in the direction from the
parent element to its child element can be marked. The
cardinality in the opposite direction cannot be found out by
exploring the Schema. Only by exploring the data that
conforms to the Schema or by having some knowledge about
the domain described by the Schema, it can be concluded
about the cardinality in the direction from a child element to
its parent element.

B. Modeling relationships by key and keyref elements
In XML Schema the key and keyref elements are used for
defining keys and their references. The key element indicates
that every attribute or element value must be unique within a
certain scope and not null. If the key is an element, it has to be
of a simple type. By using keyref elements, keys can be
referenced. The advantage of this mechanism is that not just
attribute values, but also element content and their
combinations can be declared to be keys. Further, key and
keyref elements are specified to hold within the scope of
particular elements.

Figure 6 presents a part of a Schema graph where the number
attribute is defined as a key for the part element and, for each
value of the partNum attribute, there must exist a number
attribute with the same value. part and partNum attributes
must be of the same simple type.

.

.

.

.

.

.

USPrice

partNum

shipDateproductName

quantity

item part

number

key

keyref

?

Figure 6. Schema graph with key and keyref

Figure 7 shows a part of the declaration of the parent element
of the part element. XML Schemas allow specifying the scope
for each key by means of an XPath expression [16]. In the
example in Figure 7, the key element is named partKey. The
number attribute of the part element is specified as the key by
means of the selector and the field sub-elements of the key
element. The selector element specifies an XPath expression
relative to instances of the element being declared. In our
example, the selector specifies that the key is a descendant of
the part element. The field element specifies XPath expression
relative to each element selected by a selector.

Figure 7. The key element

The value of the refer attribute of a keyref element should be
the name of the key it references. By using selector and field
elements, the partNum attribute of the item element is
specified in Figure 8 as a reference to the partKey, i.e. to the
number attribute that is defined as a key.

Figure 8. The keyref element

In conclusion, using key and keyref elements not only enables
referencing other elements and attributes, but it also provides
functional dependencies. The key/keyRef mechanism may be
applied to any element and attribute content, as well as their
combinations, and the scope of the constraint can be precisely
specified.

<xsd:element name="item"
 minOccurs="0"
 maxOccurs="unbounded">
 <xsd:complexType>
 ...
 <xsd:attribute name="partNum"
 type="SKU" use="required"/>
 </xsd:complexType>

 <xsd:keyref name="part_fKey"

refer="partKey">
 <xsd:selector xpath=".//"/>
 <xsd:field xpath="@partNum"/>
 </xsd:keyref>
</xsd:element>

<key name=”partKey”>
 <selector xpath=”part”/>
 <field xpath=”@number”/>
</key>

 5

V. FROM XML SCHEMA TO MULTIDIMENSIONAL SCHEMA
In this section we propose a semi-automatic approach for
building the conceptual schema of a web warehouse starting
from an XML Schema. The methodology consists of the
following steps:

1. Preprocessing the XML Schema.
2. Creating and transforming a Schema graph.
3. Choosing facts.
4. For each fact:

4.1 Building an attribute tree from the Schema graph.
4.2 Rearranging the attribute tree.
4.3 Defining dimensions and measures.

The attribute tree is an intermediate structure used to move
towards a multidimensional representation of data. After the
attribute tree has been built from the Schema graph, it can be
rearranged, and dimensions and measures are defined.
However, this phase of conceptual design necessarily depends
on the user requirements and cannot be carried out
automatically. The goal of this paper is to describe only the
steps of conceptual design that can be performed
automatically or semi-automatically.

A. Preprocessing the Schema
The relationships in the Schema can be specified in a
complicated and redundant way. Therefore, we transform
some structures to simplify the Schema, similarly as DTD was
simplified in [7]. There are also many Schema structures that
are neither relevant in detecting relationships nor carry any
data content, so they have no impact on the later steps of our
algorithm and can be excluded from the Schema.

The transformations for simplifying a Schema include
converting a nested definition into a flat representation. For
instance, if there is a choice element in an element declaration,
exactly one of the sub-elements declared inside the choice
element must appear in a document conforming to that
Schema. An example is shown in Figure 9. Using the choice
element, it is defined that the price of an ordered item can be
expressed either in US dollars or in euros. From our point of
view, the important information here is only that both
elements are optional, and they cannot appear more than once.
The fact that exactly one of them must occur as sub-element of
item has no significance, as it is unknown which one. The
resulting simplified structure, although not being equal with
the choice expression, preserves all the needed information
about the cardinalities of relationships.

Figure 9. The choice element of the Schema

Figure 10 shows the same part of the schema after its
simplification. The choice element is removed from the
schema and a minOccurs attribute is added to each of the two
prices elements: priceUSD and priceEUR, always with value
“0”.

Figure 10. Schema preprocessing

As another example of Schema preprocessing, when an
element contains many identical sub-elements on the same
level, they are all merged into one sub-element with the
maxOccurs value “unbounded”.

B. Creating and transforming a Schema graph
After the Schema has been simplified, a Schema graph
representing its structure can be created. Our prototype for
conceptual design from XML sources presents the graph to the
designer as shown in Figure 11. The Schema graph describing
the purchase order, presented in Figure 4, is used as an
example.

Figure 11. Prototype for conceptual design – schema graph presented

After the designer has seen the initial Schema graph, the next
step of the algorithm consists in eliminating “containers”. A
container is an element that has only one sub-element of a
complex type and no attributes, and the relationship between

<xsd:element name="item"
...

<xsd:element name="priceUSD"
type="priceType"
minOccurs="0"/>

<xsd:element name="priceEUR"
type="priceType"
minOccurs="0"/>

...

<xsd:element name="item"
...

<choice>
<element name="priceUSD"
type="s:priceType"/>
<element name="priceEUR"
type="s:priceType"/>

</choice>
...

 6

the container and its sub-element is -to-many. Since the
container does not store any value itself and gives no
information other than that it contains other elements, it
should neither be chosen as a fact, nor be included into the
dimensional hierarchy in the conceptual model of the web
warehouse. Therefore, in our algorithm the containers are
eliminated. In the purchase order example, the items element
is marked as a container in Figure 11 (marked “C”) and
eliminated from the Schema graph, as shown in Figure 12.
The parent of the container gets all the container’s children
and the relationship between them has the same cardinality as
it was between the container and its children.

Further, all the key and keyref attributes or elements are
located and the transformation of the “primary key” part of the
Schema graph is done. The example is shown in Figure 13.

The number attribute is defined as the key. The part element
has its own value too (it is “Monitor” in the line presented
above). part and number are swapped after the transformation.
In case the part element had not its own value, it would be
dropped from the graph and only the number attribute would
remain. In both cases, all the necessary information would
remain in the graph.

purchaseOrder

...

*

items

productName

item

...

purchaseOrder

...

*

productName

item

...

Figure 12. Container elimination

part

number

key

number

part

... ...

<part number="5735">Monitor</part>

Figure 13. Key transformation

C. Choosing facts
Our prototype for conceptual design of web warehouses
starting from XML Schemas allows the designer to choose the
fact among all the vertices and arcs of the Schema graph. In
order to obtain a meaningful fact scheme, it is crucial that the
fact is chosen properly. It is up to designer to decide what the
event of interest for the decision making process is. Vertices

or arcs representing frequently updated archives are good
candidates for defining facts. When arcs are chosen as facts,
they generally represent many-to-many relationships.

For the purchase order Schema graph (Figure 4), after the
items element has been eliminated as a container (Figure 12),
the many-to-many relationship between purchaseOrder and
item is chosen as a fact, as shown in Figure 14.

fact

purchaseOrder

orderDate

USPrice

partNum

shipDate

productName
quantity

item

?

*...

...?

Figure 14. Choosing a fact

By choosing this relationship as a fact, once a web warehouse
is made, it will be possible to find out how many items of a
certain kind (products) have been ordered in a given order,
what is the revenue for a product on a given date, etc.

D. Building the attribute tree
Given a Schema graph and a fact F chosen by the designer, we
call attribute tree the tree such that:

1. the root corresponds to the vertex or arc representing the
fact F in the Schema graph;

2. every other vertex corresponds to a vertex of the Schema
graph;

3. for each vertex v, the corresponding attribute in the
Schema graph functionally determines all the attributes
corresponding to the descendants of v.

The vertices of the attribute tree are a subset of the element
and attribute vertices of the Schema graph. The attribute tree is
initialized with the fact vertex F; then, it is enlarged by
recursively navigating the functional dependencies between
the vertices of the Schema graph. Each vertex v inserted in the
attribute tree is expanded as follows:

1. For each vertex w that is a child of v in the Schema graph:
When examining relationships in the same direction as in
the Schema graph, the cardinality information is expressed
either explicitly by “?”, “*” and “+” vertices, or implicitly
by their absence. If w corresponds to an element or
attribute in the Schema, it is added to the attribute tree as a
child of v; if w is a “?” operator, its child is added to the
attribute tree as a child of v; if w is a “*” or “+” operator,
no vertex is added.

2. For each vertex z that is a parent of v in the Schema
graph: When examining relationships in this direction,

 7

vertices corresponding to “?” and “*” and “+” operators
are skipped since they only express the cardinality in the
opposite direction. Since the Schema yields no further
information about the relationship cardinality, it is
necessary to examine the actual data by querying the XML
documents conforming to the Schema. This is done by
counting the number of distinct values of z corresponding
to each value of v using the XQuery language [17]. If a -to-
many relationship is detected, z is not included in the
attribute tree. Otherwise, we still cannot be sure that the
cardinality of the relationship from v to z is -to-one. In this
case, only the designer can tell, leaning on her knowledge
of the business domain, whether the actual cardinality is
-to-one or -to-many. Only in the first case, z is added to the
attribute tree.

An XML Schema that describes the analysis of web site
traffic can be taken as an example for examining relationships
in the direction from the fact to its ancestors. In this example,
the site is a hierarchical directory of web pages consisting of
categories such as “World News”, “Sport” etc., where a URL
can belong to more than one category. For instance, the
“Olympic Games” page, www.fastestnews.com/olympics, can
belong to both the “Sport” category and the “World News”
category. It is supposed that the web administrator wants to
organize XML files containing the access data for every
category separately. In the Schema graph, category will be
parent of url and the chosen fact will be a descendant of url.
When building the attribute tree in the upwards direction, the
relationship from url to category should be examined by using
XQuery since we have no information about the relationship
cardinality. Since in our example each URL can belong to
many categories, the relationship from url to category is -to-
many. Therefore, the resulting attribute tree will not contain
the category vertex.

In some cases it may happen that two attributes in the attribute
tree are connected by two or more directed paths. This is
called a convergence and in this case the attribute tree is
actually becoming a graph. As an example, there can be two
different hierarchies for the store dimension: store → city →
region → state and store → sales district → state. It is
supposed that there is no inclusion relationship between sales
district and regions and that every district makes a part of only
one state. No matter how the aggregation is done, each store
always belongs to one state. Therefore, the two directed paths
starting from the store vertex will converge in the state vertex.

On the other hand, it often happens that whole parts of
hierarchies are replicated two or more times. For instance,
there can be two or more different temporal dimensions in the
same attribute tree and all of them can have a month → year
hierarchy. This can be emphasized by introducing a specific
graphical representation called shared hierarchy.

For every complex type that has more than one instance in the
Schema graph, where all of the instances have a common
ancestor vertex, it is necessary to understand whether this
implies a convergence or a shared hierarchy. The examination
is made by using the available XML documents conforming to
the given Schema. All the instances of the common ancestor
vertex should be found in the documents. For each of them it

should be examined, by using XQuery, whether every pair of
the complex type instances has the same content. If the content
is always the same, we still cannot be sure that it is a
convergence. It is possible that documents in which the
contents of the complex type instances are not equal exist, but
we do not have them. Therefore, we ask the designer if it is a
convergence. If there is no convergence for that complex type,
than we have a shared hierarchy.

As already mentioned, in the purchase order example the
relationship between purchaseOrder and item is chosen as a
fact. From the fact, following a -to-one relationship, the
purchaseOrder vertex is added to the attribute tree. It has two
children, shipTo and billTo (Figure 4), that have the same
complex type USAddress. All the instances of the
purchaseOrder elements have to be found in the available
XML documents. For each of them the content of shipTo and
billTo is compared. It is found that shipTo and billTo have
different values in some cases. The two sub-trees are shown as
a shared hierarchy with a special symbol in our prototype, as
shown in Figure 15. The vertex is named after the complex
type USAddress. In our presentation of the attribute tree, arcs
with the line across them represent optional arcs.

Figure 15. Prototype - shared hierarchy

Coming from the same fact in another direction, the item
vertex is added to the attribute tree. The partNum vertex is a
child of item (Figure 6) and is defined as a key reference to the
number attribute. After the transformation presented in Figure
13, part and number are swapped. Then, during the creation of
the attribute tree, part becomes a child of the partNum
attribute, since partNum is referencing the number attribute.
The resulting attribute tree is presented in Figure 16. Using the
relational model terminology, descendants of the primary key
attribute become descendants of the foreign key (keyref).
Without this procedure the information about part description
(the part attribute) would be lost. This operation of replacing
the foreign key attribute with the primary key attribute and its
sub-tree is similar to the natural join in the relational model,
and it prevents from losing the attributes that can be
interesting for making useful aggregations of data.

 8

item

quantity

FACT

partNum
shipDate

productName

USPrice
...

part

Figure 16. Replacement of keys

Probably, not all of the attributes represented in the attribute
tree are interesting for the web warehouse. Thus, the designer
can rearrange some parts of the tree or eliminate the
unnecessary details. The final steps of building a fact scheme
include the definition of dimensions, measures and hierarchies
as described in [5].

VI. CONCLUSIONS
In this paper we have presented a semi-automated approach
for conceptual design of web warehouses from XML
Schemas. After transforming the XML Schema into a Schema
graph, this graph is navigated starting from a vertex/arc in
order to detect the functional dependencies to be modeled
within the conceptual schema for the warehouse. The
algorithm proposed also takes into account the existence of
attributes shared between two or more hierarchies and the
presence of attributes where two or more paths of functional
dependencies converge.

The algorithm has been implemented within a prototype which
thus acts as a valuable support for conceptual design of web
warehouses.

REFERENCES
[1] S. Abiteboul, P. Buneman, and D. Suciu, “Data on the Web: From

Relations to Semistructured Data and XML”, Morgan Kaufman
Publishers, 2000.

[2] S. S. Bhowmick, S. K. Madria, W.-K. Ng, and E. P. Lim, “Web
Warehousing: Design and Issues”, Proc. DWDM'98, Singapore, 1998.

[3] M- Blaschka, C. Sapia, G. Hofling, and B. Dinter, “Finding Your Way
through Multidimensional Data Models”, Proc. DWDOT, Wien, 1998.

[4] D. Florescu and D. Kossmann, “Storing and Querying XML Data using
an RDBMS”, IEEE Data Engineering Bulletin vol. 22, n. 3, 1999.

[5] M. Golfarelli, D. Maio, and S. Rizzi, “Conceptual design of data
warehouses from E/R schemes”, Proc. HICSS-31, vol. VII, Kona,
Hawaii, pp. 334-343, 1998.

[6] M. Golfarelli, D. Maio, and S. Rizzi, “The Dimensional Fact Model: a
Conceptual Model for Data Warehouses”, International Journal of
Cooperative Information Systems, vol. 7, n. 2&3, pp. 215-247, 1998.

[7] M. Golfarelli, S. Rizzi, and B. Vrdoljak, “Data warehouse design from
XML sources”, Proc. DOLAP’01, Atlanta, pp. 40-47, 2001.

[8] M. Jensen, T. Moller, and T.B. Pedersen, “Specifying OLAP Cubes On
XML Data”, Journal of Intelligent Information Systems, 2001.

[9] D. Lee and W.W. Chu, “Constraints-preserving Transformation from
XML Document Type Definition to Relational Schema”, Proc. 19th ER,
Salt Lake City, 2000.

[10] T. Niemi, M. Niinimäki, J. Nummenmaa, and P. Thanisch, “Constructing
an OLAP cube from distributed XML data”, Proc. DOLAP’02, McLean,
2002.

[11] J. Pokorny, “Modeling stars using XML”, Proc. DOLAP’01, 2001.

[12] J. Shanmugasundaram et al., “Relational Databases for Querying XML
Documents: Limitations and Opportunities”, Proc. 25th VLDB,
Edinburgh, 1999.

[13] World Wide Web Consortium (W3C), “XML 1.0 Specification”,
http://www.w3.org/TR/2000/REC-xml-20001006.

[14] World Wide Web Consortium (W3C), “XML Schema”,
http://www.w3.org/XML/Schema.

[15] World Wide Web Consortium (W3C), “XML Schema Part 0: Primer”,
http://www.w3.org/TR/xmlschema-0/.

[16] World Wide Web Consortium (W3C), “Xpath Specification 1.0”,
http://www.w3.org/TR/xpath.

[17] World Wide Web Consortium (W3C), “XQuery 1.0: An XML Query
Language (Working Draft)”, http://www.w3.org/TR/xquery/.

