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Abstract 

This paper presents a genetic approach to the problem of map topological clustering. Maps are symbolically represented as 
graphs whose vertices are landmarks in the environment. Clustering is performed according to a fitness function which takes 
functional requirements into account. 
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I. Introduction 

The problem of clustering assumes a significant role 
in a variety of  research areas ranging from pattern 
recognition to computer vision. In the field of  auton- 
omous agents, an interesting application of clustering 
arises from the wish to emphasize the topological 
characteristics of  the environment maps, together 
with the need for decomposing path-planning tasks 
in order to reduce their complexity (Nitzan, 1985). 

In our work we consider the case in which agents 
are given no a priori topological or metric descrip- 
tion of the environment, so that they must learn it 
on-line by interpreting sensor data. Meta-knowledge 
of typical sensor patterns in the environment enables 
recognition of landmarks  through a sensor-based 
classification algorithm. 

Pursuing a hybrid approach to knowledge repre- 
sentation, in (Maio and Rizzi, 1994) we have pro- 
posed a layered architecture to represent environ- 
mental knowledge. On the symbolic layer, the 
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environment map is represented by a graph whose 
vertices are landmarks and whose edges are routes, 

that is, feasible inter-landmark paths. Clustering al- 
lows for the symbolic representation of the environ- 
ment to be distributed over different abstraction lev- 
els. At each level, clusters are represented by 
connected graphs; the connectivity constraint is nec- 
essary in order to make decomposition of path-plan- 
ning tasks feasible. If  no meta-knowledge for cluster- 
ing is available, aggregation must be based on 
topological and metric criteria. In (Maio and Rizzi, 
1993 ) we have presented a heuristic algorithm called 
clustering by discovery for topological clustering in a 
map being learned by exploration as the agent moves 
within the environment. Since at each exploration 
step new data may be acquired, clustering by discov- 
ery is an example of clustering for time incremental 
data (Chaudhuri, 1994). 

In this paper we define a fitness function which al- 
lows for evaluating a clustering with respect to differ- 
ent topological and metric criteria, and propose a ge- 
netic algorithm which determines a near-optimal 
clustering on a given map by maximizing its fitness. 
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The algorithm uses an encoding technique and ge- 
netic operators defined ad hoc. In general, the time 
complexity of genetic algorithms discourages their use 
for real-time applications; nevertheless, the genetic 
approach is essential in producing near-optimal so- 
lutions to be used as comparison terms for evaluating 
other heuristic approaches to clustering. 

2. Graph formalism for map representation 

Let Vand E be, respectively, the sets of landmarks 
and routes experienced at a given time. We define to 
be symbolic layer or map the non-directed connected 
graph J¢= (V, E)  whose vertices and edges corre- 
spond, respectively, to landmarks and routes. 

We will denote with pos (v) the vector representing 
the position of landmark v (for details on the metric 
of maps, see (Maio and Rizzi, 1992)), and with [v 

v'] the route connecting landmarks v and v'. 
Given the map o//= ( V, E), we define a clustering 

on J/¢ as a partitioning ( =  { V~, ..., Vp) of V. We call 
clusters the p sub-graphs ~ = ( Vt, El ), ..., ~ = ( V,, 
Ep), where 

Ei={[v*- - , v ' ]~E:wVi^v '~V,} ,  i= l , . . . , p .  

We call cardinality of a cluster Z~. the number of ver- 
tices it contains. We define the position of % as 

pos (~ / )=  1 Z pos(vj) 
ni vj~Vi 

where n~ is the cardinality of ~. 
Though J¢ is connected, one or more clusters in- 

duced on J / b y  a given clustering ~ may be non-con- 
nected. We will regard as legal only the clusterings 
whose clusters are connected. 

3. Fitness function 

In (Maio and Rizzi, 1993) we identified the set of 
clustering requirements summarized below. 

• Visibility. In order to ensure a good intra-cluster 
mobility to the agent, a bound p on the maximum 
radius of clusters should be placed. 

t The graph is necessarily connected if its vertices and arcs are 
learned by exploration. 

• Parallel efficiency. Clustering can be used to de- 
compose planning algorithms following a divide-et- 
impera policy. To this end, all clusters should have 
the same cardinality. 

• Predictability. High cluster cardinality leads to 
high management complexity; on the other hand, low 
cardinality strongly reduces the effectiveness of de- 
composing methods. Hence, the average cardinality 
of clusters should be equal to a given value q. 

• Homogeneity. Clustering should reveal the top- 
ological features of the map. Hence, density of ver- 
tices should be homogeneous within each cluster. 

• Regularity. Irregularly-shaped clusters cause de- 
composition techniques to generate non-optimal so- 
lutions. Therefore, clusters should be convex and 
regular. 

We formalize these requirements by defining, for a 
clustering ~ on map .J/i, a fitness function f as a 
weighted sum of five components: 

f(¢, p, q) =oq fvis (¢, P) + O~2Lar(¢) 

+ O/3Lre (¢, ~1) + o/4fhom (¢)  + OL5 freg (¢)  

where 0~<ai~< 1 for i= 1 .... , 5 and ~=1 c~i= 1. Each 
component f  ( ) expresses the degree to which ~meets 
one of the criteria listed above, and ranges from 0 (no 
adherence) to 1 (maximum adherence). 

4. Optimization techniques for map clustering 

The definition of a fitness function to evaluate how 
"good" a clustering is, turns the clustering problem 
into an optimization problem; nevertheless, the con- 
nectivity constraint imposed on clusters makes the 
application of operational research techniques to ob- 
tain optimal solutions very complex. Further diffi- 
culty arises from the impossibility of knowing a priori 
the optimal number of clusters and their approxi- 
mate location. Thus, we must focus on heuristic 
techniques. 

Hill-climbing is a local search procedure which, in 
its deterministic formulation, chooses at each step, 
among all possible moves in the state space, the one 
leading to the state with highest fitness. In the case of 
topological clustering, enumerating all possible moves 
in the state space means considering (and evaluat- 
ing) all clusterings which can be obtained from a given 
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clustering by applying one of three operators: 

(a) move vertex w % to cluster ~ (can be applied 
only if there exists a route [v *--, v'] such that v'~ ~j 
and if deleting v from 4) does not violate the connec- 
tivity constraint on ~J); 

(b) split cluster ~ in two without violating the 
connectivity constraint on both resulting clusters; 

(c) merge clusters ~ and ~ (can be applied only 
if there exists a route [ v ~ v'] such that w ~i and 
v'~ ~). 

If the number of clusters were fixed a priori, only 
operator (a) should be employed and enumeration 
would be feasible. Since also the number of clusters 
must be optimized, so that all three operators must 
be tried, the cost of enumeration becomes prohibi- 
tive. In particular, as to operator (b), note that a given 
cluster can be legally split in several ways; on the other 
band, most splitting (those producing two clusters 
whose numbers of vertices are strongly unbalanced) 
would never be executed since they would cause fit- 
ness to decrease. 

Some variants of hill-climbing have been proposed 
in order to avoid getting trapped into local maxima. 
The most interesting are iterative hill-climbing, which 
still suffers from the expense of enumerating all the 
adjacent points, and stochastic hill-climbing, which 
avoids enumeration and can be considered as a sim- 
ulated annealing with fixed temperature (Ackley, 
1987). 

Simulated annealing is an iterative probabilistic al- 
gorithm in which a deterioration of the objective 
function in an iteration step may be accepted with a 
given probability (Kirkpatrick et al., 1983). This 
technique, derived from statistical mechanics, has 
been applied successfully to a variety of optimization 
problems; it is, however, not always trivial determin- 
ing an effective method for generating configurations 
and selecting an efficient annealing schedule (Davis 
and Steenstrup, 1987). The application of simulated 
annealing to optimize clustering fitness raises some 
interesting issues. First of all, our fitness function may 
be very uneven, with the global maximum lying on 
top of a very narrow peak. This is especially true for 
strongly dishomogeneous maps, where reassigning 
even only one vertex in the optimal solution may 
cause the homogeneity criterion to decrease dramat- 
ically. In order to deal with uneven objective func- 

tions, simulated annealing requires a very slow cool- 
ing rate, thus increasing the time necessary to obtain 
a solution. Secondly, merging vertex reassignment 
and cluster creation/deletion in the definition of ad- 
jacency between clustering states would require an 
accurate tuning. In (Rose et al., 1990) clustering op- 
timization is performed through a deterministic an- 
nealing technique in which the cost function is deter- 
ministically optimized at each temperature. This 
approach cannot be adopted in topological clustering 
since, being the number of clusters not known a priori, 
deterministic optimization at a given temperature is 
not feasible. 

A genetic algorithm (GA) is a stochastic algorithm 
used in optimization problems, based on an evolu- 
tionary biological model (Goldberg, 1989). The main 
strength of the genetic approach with respect to tra- 
ditional search techniques lies in its implicit parallel- 
ism. In fact, instead of evaluating and improving a 
single solution, a GA considers a population of solu- 
tions at the same time; thus, the search is directed by 
gathering information from different points in the 
state space. In particular, by adopting a genetic ap- 
proach, the problem of generating adjacent configu- 
rations in the state space is demanded to a proper en- 
coding scheme and ad hoc genetic operators. 

5. Applying genetic algorithms to map topological 
clustering 

Different alternatives for encoding the problem of 
object partitioning have been proposed in the GA lit- 
erature (Bhuyan et al., 1991; Jones and Beltramo, 
1990). Map clustering is more difficult than classic 
partitioning problems, since the connectivity con- 
straint makes most solutions unacceptable. The ap- 
proach based on rejection of the inconsistent solu- 
tions cannot be pursued due to the huge number of 
solutions that include non-connected clusters. This 
justifies choice of the ad hoc encoding scheme and 
genetic operators described in the following 
subsections. 

Encoding scheme 

The encoding scheme adopted resembles that pro- 
posed in (Davis, 1985 ). Given a map Jk'= ( V, E) in- 
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cluding n vertices, each chromosome in the popula- 
tion is represented by a string of length n consisting 
of a permutation of the first n integers, where each 
integer references a vertex in the map, and a separa- 
tor splitting the string in two. We call the two sub- 
strings to the left and right of the separator seed and 
growth, respectively. 

Every chromosome c maps into exactly one consis- 
tent solution to the clustering problem by means of a 
decoding procedure in which first each vertex in 
seed(c) is used to initialize a different cluster, and 
then the vertices in growth (c) are progressively added 
to the clusters created. If we denote with LJ(pos(e), 
pos(e ' ) )  the Euclidean distance between the posi- 
tions of entities e and e' (vertices or clusters), the 
decoding procedure ofc  may be sketched as follows. 

decode(c) 
{s=0; 
for each vieseed(c) 
{create new cluster %= ({v~}, 0); 
s = s u  { ~}; 
} 

orderly copy vertices from growth (c) to circular list 
£#; 

while length(L#) > 0 
{vj=next(  E'); 
H={ %~S: 3 [vj~ vk]e.g, v :  %}; 
ifH#¢ 
(find %~stsH: 

v ~ H  (~(pos(vj), pos(%°,0) 
< J(pos (vj), p o s ( ~ )  ) ); 

add vj to ~ , t ;  
for each [vj~--" vk] ~J/: vke cCb~t 

add [vj ,--, vk] to ~b~t; 
delete vj from L#; 

} 
} 
return ~=(Vi: ~i=(Vi ,  Ei), ~/~S}; 

} 

Fig. 1 shows the clustering associated to a sample 
chromosome on a map including 15 vertices. 

It is remarkable that, by adopting this encoding/ 
decoding technique, all possible strings consisting of 
a permutation of the first n integers and a separator 
position between 1 and n represent a consistent so- 
lution to the clustering problem. The number of clus- 
ters, p, is equal to the length of the seed, hence it is 
determined by the separator position. 

Genetic operators 

The selection operator builds a new population, 
Pnoxt, using the chromosomes belonging to the pre- 
vious one, P. The size of the population, z, remains 
unchanged. Two copies of the chromosome having 
maximum fitness in P are always included in/'next; 
the remaining z - 2  chromosomes of/'next are chosen 
randomly from P with probability proportional to 
their fitness. 

As a matter of fact, selection is not carried out us- 
ing the fitness function f ( ) ,  but a scaled funct ionf ' ( ) .  
Scaling is commonly used in GAs in order to nor- 
malize the fitness range in the different phases of 
evolution. In fact, the first generations usually con- 
tain few "good" chromosomes and a lot of"average" 
and "bad" ones; since good solutions quickly over- 
whelm the others, the advanced generations consist 
of chromosomes having similar (high) values of fit- 
ness, so that mediocre solutions have approximately 
the same probability as the best ones of being se- 
lected for reproduction. Linear scaling (Goldberg, 
1989), which we adopted in our GA, uses a linear 
transformation 

Due to the connectivity constraint, it may happen 
that the vertices in the growth cannot be orderly as- 
signed to clusters. When a vertex cannot be assigned 
to any cluster, the algorithm momentarily leaves it 
apart and tries again to assign it at the next iteration. 
Since ~ '  is a connected graph, we are guaranteed that 
all vertices are assigned in a finite number of steps. 

separ~ 

I1 I101 81 51 51 61 91131 ,I 31 711111 11511,1 
• v "  ~ v "  J 

seed growth 

Fig. I. Clustering associated to a sample chromosome on a map 
including 15 vertices. 
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f ' ( ) = k l f ( ) + k 2  

to adjust f a t  each generation. 
Reproduction is based on the crossover operator, 

which is applied to pairs of chromosomes chosen 
randomly (parents) and combines them to create new 
pairs with similar features (offspring). The ad hoc 
crossover operator we designed entails the two phases 
described below. 

The first is a partial crossover of the seeds and gen- 
erates offspring chromosomes in which the number 
of clusters is the average of that of their parents. Let 
c~ and c2 be the parent chromosomes, and c', and c~ 
the offspring chromosomes. The position of the sep- 
arator in the offspring is 

sep (C'l) = sep (c~) = (sep(c,) + sep(c2) ) /2  

if sep(c, ) +sep(c2) is even; 

sep (c'l) =[_(sep (c,) + sep (c2)) /2J ,  

sep (c~) = sep (c'~) + 1 

otherwise. 
The compositions of the offspring seeds are deter- 

mined by the following constraints: 

seed(c', ) w seed(c~) _~ seed(c, ) w seed(c2) , 

seed(c, ) c~ seed(c2) c_ seed(C'l) , 

seed (c,) c~ seed (c2) _ seed (c~) . 

The seed of each offspring consists of all the vertices 
belonging to the intersection of the parents' seeds plus 
other vertices taken randomly from the union of the 
parents' seeds. Since one or more vertices not belong- 
ing to the intersection of the parents' seeds may be 
inserted in both offspring, one or more vertices of the 
parents' seeds may not be present in any of the off- 
spring's seeds. Each chromosome must contain a 
consistent permutation, hence, including a vertex in 
the seed really means inverting the positions of two 
vertices in the chromosome. An example of seed 
crossover is shown in Fig. 2. 

The second crossover phase is substantially equiv- 
alent to the Partially Matched Crossover (PMX) 
(Whitley et al., 1989) applied to the growths. First, 
two positions a and b of the growths ofc'~ and c~ are 
chosen randomly from the interval [ sep (c~), n ]. The 
substrings of the growths of c', and c~ enclosed be- 

tween a and b are called matching sections, and in- 
clude ( b - a )  vertices. Secondly, the matching sec- 
tions ofc', and c~ are exchanged by inverting vertices 
as necessary. Occasionally, one of the vertices to be 
replaced may belong to the seed; in this case the re- 
placement is not executed, in order to prevent ver- 
tices from crossing the separator and isolate the seed 
from the growth. Fig. 3 shows an example of growth 
crossover. 

Each chromosome c generated by reproduction has 
a given probability (mutation rate) of mutation. In 
order to keep vertex reassignment and cluster crea- 
tion/deletion conceptually separate and mutually in- 
dependent, we adopt two different mutation opera- 
tors which can be applied separately or jointly on the 
same chromosome. 

The first (permeability) modifies the number of 
clusters by moving the separator one position back- 
wards or forwards. If the separator is moved from 
sep(c) to s e p ( c ) - 1 ,  the vertex in position sep(c) 
becomes part of the growth; otherwise the vertex in 
position sep(c)+  1 becomes part of the seed. In or- 
der to avoid the vertices in positions sep(c) and 
sep(c) + 1 being the only candidates to this muta- 
tion, the vertex involved is inverted with the one in a 
position chosen randomly within the same substring 
before the separator is moved. By doing so, all the 
vertices in c have the same probability of being moved 
from one substring to the other. An example is shown 
in Fig. 4(a).  

The second mutation operator (scrambling) leaves 
the seed unchanged, but inverts the vertices in two 
random positions of the growth (Fig. 4 (b) ) .  since 
our decoding technique considers the order in which 
vertices appear in the growth, this operator alters the 
structure of clusters. 

6. Experimental tests and conclusion 

We carried out several simulations on maps with 
different topologies using populations of size 20, since 
we experimented that the advantages deriving from 
a larger population do not compensate for the in- 
creased computational complexity. The starting pop- 
ulation consists of a family ofz  strings generated ran- 
domly. The separator position is chosen randomly in 
the interval [ 1, n ] ; the distribution function used has 
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C 1 C' 1 

I I 
c 2 e'2 

Fig. 2. An example of seed crossover. Vertex 1 is common to both parent seeds, hence it must be included in the seed of both offspring 
chromosomes. For each offspring chromosome, the vertex for filling the seed is chosen randomly from the set {9,4}. Inserting 4 in the 
seed ofc', entails inverting it with 3; inserting 1 in the seed of c[ entails inverting it with 4. 

c, 1 a b c,, 1 a b 

111 9 [ 4 1 6 1 1 0 1  8 I 21111 71 3 I 5 I 119J  41 2 I l l l  8 I 6 1101 7 I 3 1 5  I 
c' 2 ' ' c "  I , ! 

2 

Fig. 3. Example of growth crossover. Exchanging the matching sections ofc~ and c[ requires inverting vertices 11 and 10, 9 and 8, 6 and 
2 in c~, and vertices 10 and 11, 8 and 9, 2 and 6 in c[. Vertices 8 and 9 are not inverted since 9 belongs to the seed of c[. 

11,3181,,11, ol ol 5,1ol 2, 71 

! 

I 
(a) 

I11318],111191  15110151 71 

I 

(b) 

Fig. 4. Example of application of the permeability (a) and scrambling (b) operators. 

(a) (b) 
Fig. 5. Clusterings obtained on two maps: (a) a regular square-meshed map (values used for parameters: p = 0.4, r/= 35; fitness obtained: 
f =  0.99 ) and (b) a typical urban map (p = 0.5, t/= 30; f =  0.86 ). The maximum radius p is expressed as a fraction of the map global size. 
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~ 0.8 

0.7 
0 

(a) 

I I I i I I I 

g g g g g ~ g 

generations 

(a) 

0.9T ~ ' " " - ' -  l 

i 0.8 V',' 
'-~ 0.7 (b) 

0 . 6  I I I I I I I 
0 0 0 0 0 0 0 ~ 0 

generations 

Fig. 7. Fitness during evolution for the clusterings in Figs. 5(a) 
and 5 (b). The fitness displayed for each generation is that of the 
best chromosome in the current population. 

(b) 
Fig. 6. Clusterings obtained on the same map with different val- 
ues ofp and r/. (a) p=0.5, r/=20 (fitness obtained:f=0.88); (b) 
p=0.6, r/=35 (f= 0.88). 

a peak in position n/q, corresponding to the desired 
number of clusters. 

Fig. 5 shows the clusterings obtained on two sam- 
ple maps, and reports the corresponding fitness val- 
ues. In particular, the clustering in Fig. 5 (a) points 
out the good behaviour of  the algorithm in terms of 
adherence to parallel efficiency and regularity; Fig. 
5 (b) shows how discontinuities in the density of ver- 
tices are revealed. 

In some cases the five requirements outlined in 
Section 3 may contrast with each other so that the 
optimal clustering expresses a trade-off between them; 
the weights c~, used in the fitness function as well as 
the values chosen for parameters p and q, are crucial 
in determining the trade-off point. Fig. 6 shows how 
clustering is influenced by p and q. 

Though experimental evidence suggests that GAs 
converge to the optimum in most cases, no formal 
demonstration has been given yet in the literature. 
The diagrams in Fig. 7 show how the fitness varied 
during the evolutionary process corresponding to the 
clusterings in Fig. 5. Even after a relatively small 
number of  generations (100-200),  the solutions 
yielded are usually very good. 

The main drawback ofa  GA is that, due to its time 
complexity, it can hardly be used in real-time appli- 
cations. In autonomous agents clustering is carried 
out using exploration, so that new data to be imme- 
diately clustered are acquired continually. At present 
we are studying how, when a new vertex v is discov- 
ered during exploration and clustering must be recal- 
culated, the starting population can be derived by 
properly extending with v the final population at the 
previous step. Since it seems reasonable to assume 
that in most cases the local perturbation caused by 
discovering a new vertex will not greatly alter the near- 
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optimal clustering, we expect that the derived start- 
ing population will be exceptionally "good", so that 
the number of generations necessary for convergence 
may greatly decrease. 
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