
EI~qEVIER

January 1995

Pattern Recognition Letters 16 (1995) 89-96

Pattern Recognition
Letters

Topological clustering of maps using a genetic algorithm

Dario Maio a,., Davide Maltoni b, Stefano Rizzi a
a DEIS - Facoltil di lngegneria, Universitit di Bologna, Viale Risorgimento 2, 40136 Bologna, Italy

b Corso di Laurea in Scienze dell'Informazione, Universit~ di Bologna, Sede di Cesena, Italy

Received 8 July 1994; revised 9 August 1994

Abstract

This paper presents a genetic approach to the problem of map topological clustering. Maps are symbolically represented as
graphs whose vertices are landmarks in the environment. Clustering is performed according to a fitness function which takes
functional requirements into account.

Keywords: Clustering; Fitness function; Genetic algorithms; Learning; Maps

I. Introduction

The problem of clustering assumes a significant role
in a variety of research areas ranging from pattern
recognition to computer vision. In the field of auton-
omous agents, an interesting application of clustering
arises from the wish to emphasize the topological
characteristics of the environment maps, together
with the need for decomposing path-planning tasks
in order to reduce their complexity (Nitzan, 1985).

In our work we consider the case in which agents
are given no a priori topological or metric descrip-
tion of the environment, so that they must learn it
on-line by interpreting sensor data. Meta-knowledge
of typical sensor patterns in the environment enables
recognition of landmarks through a sensor-based
classification algorithm.

Pursuing a hybrid approach to knowledge repre-
sentation, in (Maio and Rizzi, 1994) we have pro-
posed a layered architecture to represent environ-
mental knowledge. On the symbolic layer, the

* Corresponding author. Email: dario@deis64.cineca.it

environment map is represented by a graph whose
vertices are landmarks and whose edges are routes,

that is, feasible inter-landmark paths. Clustering al-
lows for the symbolic representation of the environ-
ment to be distributed over different abstraction lev-
els. At each level, clusters are represented by
connected graphs; the connectivity constraint is nec-
essary in order to make decomposition of path-plan-
ning tasks feasible. If no meta-knowledge for cluster-
ing is available, aggregation must be based on
topological and metric criteria. In (Maio and Rizzi,
1993) we have presented a heuristic algorithm called
clustering by discovery for topological clustering in a
map being learned by exploration as the agent moves
within the environment. Since at each exploration
step new data may be acquired, clustering by discov-
ery is an example of clustering for time incremental
data (Chaudhuri, 1994).

In this paper we define a fitness function which al-
lows for evaluating a clustering with respect to differ-
ent topological and metric criteria, and propose a ge-
netic algorithm which determines a near-optimal
clustering on a given map by maximizing its fitness.

0167-8655/95/$09.50 © 1995 Elsevier Science B.V. All rights reserved
SSD10167-8655 (94)00069-7

90 D. Maio et al. / Pattern Recognition Letters 16 (1995.) 89-96

The algorithm uses an encoding technique and ge-
netic operators defined ad hoc. In general, the time
complexity of genetic algorithms discourages their use
for real-time applications; nevertheless, the genetic
approach is essential in producing near-optimal so-
lutions to be used as comparison terms for evaluating
other heuristic approaches to clustering.

2. Graph formalism for map representation

Let Vand E be, respectively, the sets of landmarks
and routes experienced at a given time. We define to
be symbolic layer or map the non-directed connected
graph J¢= (V, E) whose vertices and edges corre-
spond, respectively, to landmarks and routes.

We will denote with pos (v) the vector representing
the position of landmark v (for details on the metric
of maps, see (Maio and Rizzi, 1992)), and with [v

v'] the route connecting landmarks v and v'.
Given the map o//= (V, E), we define a clustering

on J/¢ as a partitioning (= { V~, ..., Vp) of V. We call
clusters the p sub-graphs ~ = (Vt, El), ..., ~ = (V,,
Ep), where

Ei={[v*- - , v ']~E:wVi^v '~V,} , i= l , . . . , p .

We call cardinality of a cluster Z~. the number of ver-
tices it contains. We define the position of % as

pos (~ /)= 1 Z pos(vj)
ni vj~Vi

where n~ is the cardinality of ~.
Though J¢ is connected, one or more clusters in-

duced on J / b y a given clustering ~ may be non-con-
nected. We will regard as legal only the clusterings
whose clusters are connected.

3. Fitness function

In (Maio and Rizzi, 1993) we identified the set of
clustering requirements summarized below.

• Visibility. In order to ensure a good intra-cluster
mobility to the agent, a bound p on the maximum
radius of clusters should be placed.

t The graph is necessarily connected if its vertices and arcs are
learned by exploration.

• Parallel efficiency. Clustering can be used to de-
compose planning algorithms following a divide-et-
impera policy. To this end, all clusters should have
the same cardinality.

• Predictability. High cluster cardinality leads to
high management complexity; on the other hand, low
cardinality strongly reduces the effectiveness of de-
composing methods. Hence, the average cardinality
of clusters should be equal to a given value q.

• Homogeneity. Clustering should reveal the top-
ological features of the map. Hence, density of ver-
tices should be homogeneous within each cluster.

• Regularity. Irregularly-shaped clusters cause de-
composition techniques to generate non-optimal so-
lutions. Therefore, clusters should be convex and
regular.

We formalize these requirements by defining, for a
clustering ~ on map .J/i, a fitness function f as a
weighted sum of five components:

f(¢, p, q) =oq fvis (¢, P) + O~2Lar(¢)

+ O/3Lre (¢, ~1) + o/4fhom (¢) + OL5 freg (¢)

where 0~<ai~< 1 for i= 1 , 5 and ~=1 c~i= 1. Each
component f () expresses the degree to which ~meets
one of the criteria listed above, and ranges from 0 (no
adherence) to 1 (maximum adherence).

4. Optimization techniques for map clustering

The definition of a fitness function to evaluate how
"good" a clustering is, turns the clustering problem
into an optimization problem; nevertheless, the con-
nectivity constraint imposed on clusters makes the
application of operational research techniques to ob-
tain optimal solutions very complex. Further diffi-
culty arises from the impossibility of knowing a priori
the optimal number of clusters and their approxi-
mate location. Thus, we must focus on heuristic
techniques.

Hill-climbing is a local search procedure which, in
its deterministic formulation, chooses at each step,
among all possible moves in the state space, the one
leading to the state with highest fitness. In the case of
topological clustering, enumerating all possible moves
in the state space means considering (and evaluat-
ing) all clusterings which can be obtained from a given

D. Maio et al. / Pattern Recognition Letters 16 (1995) 89-96 91

clustering by applying one of three operators:

(a) move vertex w % to cluster ~ (can be applied
only if there exists a route [v *--, v'] such that v'~ ~j
and if deleting v from 4) does not violate the connec-
tivity constraint on ~J);

(b) split cluster ~ in two without violating the
connectivity constraint on both resulting clusters;

(c) merge clusters ~ and ~ (can be applied only
if there exists a route [v ~ v'] such that w ~i and
v'~ ~).

If the number of clusters were fixed a priori, only
operator (a) should be employed and enumeration
would be feasible. Since also the number of clusters
must be optimized, so that all three operators must
be tried, the cost of enumeration becomes prohibi-
tive. In particular, as to operator (b), note that a given
cluster can be legally split in several ways; on the other
band, most splitting (those producing two clusters
whose numbers of vertices are strongly unbalanced)
would never be executed since they would cause fit-
ness to decrease.

Some variants of hill-climbing have been proposed
in order to avoid getting trapped into local maxima.
The most interesting are iterative hill-climbing, which
still suffers from the expense of enumerating all the
adjacent points, and stochastic hill-climbing, which
avoids enumeration and can be considered as a sim-
ulated annealing with fixed temperature (Ackley,
1987).

Simulated annealing is an iterative probabilistic al-
gorithm in which a deterioration of the objective
function in an iteration step may be accepted with a
given probability (Kirkpatrick et al., 1983). This
technique, derived from statistical mechanics, has
been applied successfully to a variety of optimization
problems; it is, however, not always trivial determin-
ing an effective method for generating configurations
and selecting an efficient annealing schedule (Davis
and Steenstrup, 1987). The application of simulated
annealing to optimize clustering fitness raises some
interesting issues. First of all, our fitness function may
be very uneven, with the global maximum lying on
top of a very narrow peak. This is especially true for
strongly dishomogeneous maps, where reassigning
even only one vertex in the optimal solution may
cause the homogeneity criterion to decrease dramat-
ically. In order to deal with uneven objective func-

tions, simulated annealing requires a very slow cool-
ing rate, thus increasing the time necessary to obtain
a solution. Secondly, merging vertex reassignment
and cluster creation/deletion in the definition of ad-
jacency between clustering states would require an
accurate tuning. In (Rose et al., 1990) clustering op-
timization is performed through a deterministic an-
nealing technique in which the cost function is deter-
ministically optimized at each temperature. This
approach cannot be adopted in topological clustering
since, being the number of clusters not known a priori,
deterministic optimization at a given temperature is
not feasible.

A genetic algorithm (GA) is a stochastic algorithm
used in optimization problems, based on an evolu-
tionary biological model (Goldberg, 1989). The main
strength of the genetic approach with respect to tra-
ditional search techniques lies in its implicit parallel-
ism. In fact, instead of evaluating and improving a
single solution, a GA considers a population of solu-
tions at the same time; thus, the search is directed by
gathering information from different points in the
state space. In particular, by adopting a genetic ap-
proach, the problem of generating adjacent configu-
rations in the state space is demanded to a proper en-
coding scheme and ad hoc genetic operators.

5. Applying genetic algorithms to map topological
clustering

Different alternatives for encoding the problem of
object partitioning have been proposed in the GA lit-
erature (Bhuyan et al., 1991; Jones and Beltramo,
1990). Map clustering is more difficult than classic
partitioning problems, since the connectivity con-
straint makes most solutions unacceptable. The ap-
proach based on rejection of the inconsistent solu-
tions cannot be pursued due to the huge number of
solutions that include non-connected clusters. This
justifies choice of the ad hoc encoding scheme and
genetic operators described in the following
subsections.

Encoding scheme

The encoding scheme adopted resembles that pro-
posed in (Davis, 1985). Given a map Jk'= (V, E) in-

92 D. Maio et al. / Pattern Recognition Letters 16 (1995.) 89-96

cluding n vertices, each chromosome in the popula-
tion is represented by a string of length n consisting
of a permutation of the first n integers, where each
integer references a vertex in the map, and a separa-
tor splitting the string in two. We call the two sub-
strings to the left and right of the separator seed and
growth, respectively.

Every chromosome c maps into exactly one consis-
tent solution to the clustering problem by means of a
decoding procedure in which first each vertex in
seed(c) is used to initialize a different cluster, and
then the vertices in growth (c) are progressively added
to the clusters created. If we denote with LJ(pos(e),
pos(e ')) the Euclidean distance between the posi-
tions of entities e and e' (vertices or clusters), the
decoding procedure ofc may be sketched as follows.

decode(c)
{s=0;
for each vieseed(c)
{create new cluster %= ({v~}, 0);
s = s u { ~};
}

orderly copy vertices from growth (c) to circular list
£#;

while length(L#) > 0
{vj=next(E');
H={ %~S: 3 [vj~ vk]e.g, v : %};
ifH#¢
(find %~stsH:

v ~ H (~(pos(vj), pos(%°,0)
< J(pos (vj), p o s (~)));

add vj to ~ , t ;
for each [vj~--" vk] ~J/: vke cCb~t

add [vj ,--, vk] to ~b~t;
delete vj from L#;

}
}
return ~=(Vi: ~i=(Vi , Ei), ~/~S};

}

Fig. 1 shows the clustering associated to a sample
chromosome on a map including 15 vertices.

It is remarkable that, by adopting this encoding/
decoding technique, all possible strings consisting of
a permutation of the first n integers and a separator
position between 1 and n represent a consistent so-
lution to the clustering problem. The number of clus-
ters, p, is equal to the length of the seed, hence it is
determined by the separator position.

Genetic operators

The selection operator builds a new population,
Pnoxt, using the chromosomes belonging to the pre-
vious one, P. The size of the population, z, remains
unchanged. Two copies of the chromosome having
maximum fitness in P are always included in/'next;
the remaining z - 2 chromosomes of/'next are chosen
randomly from P with probability proportional to
their fitness.

As a matter of fact, selection is not carried out us-
ing the fitness function f () , but a scaled funct ionf ' () .
Scaling is commonly used in GAs in order to nor-
malize the fitness range in the different phases of
evolution. In fact, the first generations usually con-
tain few "good" chromosomes and a lot of"average"
and "bad" ones; since good solutions quickly over-
whelm the others, the advanced generations consist
of chromosomes having similar (high) values of fit-
ness, so that mediocre solutions have approximately
the same probability as the best ones of being se-
lected for reproduction. Linear scaling (Goldberg,
1989), which we adopted in our GA, uses a linear
transformation

Due to the connectivity constraint, it may happen
that the vertices in the growth cannot be orderly as-
signed to clusters. When a vertex cannot be assigned
to any cluster, the algorithm momentarily leaves it
apart and tries again to assign it at the next iteration.
Since ~ ' is a connected graph, we are guaranteed that
all vertices are assigned in a finite number of steps.

separ~

I1 I101 81 51 51 61 91131 ,I 31 711111 11511,1
• v " ~ v " J

seed growth

Fig. I. Clustering associated to a sample chromosome on a map
including 15 vertices.

D. Maio et al. / Pattern Recognition Letters 16 (1995) 89-96 93

f ' () = k l f () + k 2

to adjust f a t each generation.
Reproduction is based on the crossover operator,

which is applied to pairs of chromosomes chosen
randomly (parents) and combines them to create new
pairs with similar features (offspring). The ad hoc
crossover operator we designed entails the two phases
described below.

The first is a partial crossover of the seeds and gen-
erates offspring chromosomes in which the number
of clusters is the average of that of their parents. Let
c~ and c2 be the parent chromosomes, and c', and c~
the offspring chromosomes. The position of the sep-
arator in the offspring is

sep (C'l) = sep (c~) = (sep(c,) + sep(c2)) /2

if sep(c,) +sep(c2) is even;

sep (c'l) =[_(sep (c,) + sep (c2)) /2J ,

sep (c~) = sep (c'~) + 1

otherwise.
The compositions of the offspring seeds are deter-

mined by the following constraints:

seed(c',) w seed(c~) _~ seed(c,) w seed(c2) ,

seed(c,) c~ seed(c2) c_ seed(C'l) ,

seed (c,) c~ seed (c2) _ seed (c~) .

The seed of each offspring consists of all the vertices
belonging to the intersection of the parents' seeds plus
other vertices taken randomly from the union of the
parents' seeds. Since one or more vertices not belong-
ing to the intersection of the parents' seeds may be
inserted in both offspring, one or more vertices of the
parents' seeds may not be present in any of the off-
spring's seeds. Each chromosome must contain a
consistent permutation, hence, including a vertex in
the seed really means inverting the positions of two
vertices in the chromosome. An example of seed
crossover is shown in Fig. 2.

The second crossover phase is substantially equiv-
alent to the Partially Matched Crossover (PMX)
(Whitley et al., 1989) applied to the growths. First,
two positions a and b of the growths ofc'~ and c~ are
chosen randomly from the interval [sep (c~), n]. The
substrings of the growths of c', and c~ enclosed be-

tween a and b are called matching sections, and in-
clude (b - a) vertices. Secondly, the matching sec-
tions ofc', and c~ are exchanged by inverting vertices
as necessary. Occasionally, one of the vertices to be
replaced may belong to the seed; in this case the re-
placement is not executed, in order to prevent ver-
tices from crossing the separator and isolate the seed
from the growth. Fig. 3 shows an example of growth
crossover.

Each chromosome c generated by reproduction has
a given probability (mutation rate) of mutation. In
order to keep vertex reassignment and cluster crea-
tion/deletion conceptually separate and mutually in-
dependent, we adopt two different mutation opera-
tors which can be applied separately or jointly on the
same chromosome.

The first (permeability) modifies the number of
clusters by moving the separator one position back-
wards or forwards. If the separator is moved from
sep(c) to s e p (c) - 1 , the vertex in position sep(c)
becomes part of the growth; otherwise the vertex in
position sep(c)+ 1 becomes part of the seed. In or-
der to avoid the vertices in positions sep(c) and
sep(c) + 1 being the only candidates to this muta-
tion, the vertex involved is inverted with the one in a
position chosen randomly within the same substring
before the separator is moved. By doing so, all the
vertices in c have the same probability of being moved
from one substring to the other. An example is shown
in Fig. 4(a).

The second mutation operator (scrambling) leaves
the seed unchanged, but inverts the vertices in two
random positions of the growth (Fig. 4 (b)) . since
our decoding technique considers the order in which
vertices appear in the growth, this operator alters the
structure of clusters.

6. Experimental tests and conclusion

We carried out several simulations on maps with
different topologies using populations of size 20, since
we experimented that the advantages deriving from
a larger population do not compensate for the in-
creased computational complexity. The starting pop-
ulation consists of a family ofz strings generated ran-
domly. The separator position is chosen randomly in
the interval [1, n] ; the distribution function used has

94 D. Maio et al. / Pattern Recognition Letters 16 (1995) 89-96

C 1 C' 1

I I
c 2 e'2

Fig. 2. An example of seed crossover. Vertex 1 is common to both parent seeds, hence it must be included in the seed of both offspring
chromosomes. For each offspring chromosome, the vertex for filling the seed is chosen randomly from the set {9,4}. Inserting 4 in the
seed ofc', entails inverting it with 3; inserting 1 in the seed of c[entails inverting it with 4.

c, 1 a b c,, 1 a b

111 9 [4 1 6 1 1 0 1 8 I 21111 71 3 I 5 I 119J 41 2 I l l l 8 I 6 1101 7 I 3 1 5 I
c' 2 ' ' c " I , !

2

Fig. 3. Example of growth crossover. Exchanging the matching sections ofc~ and c[requires inverting vertices 11 and 10, 9 and 8, 6 and
2 in c~, and vertices 10 and 11, 8 and 9, 2 and 6 in c[. Vertices 8 and 9 are not inverted since 9 belongs to the seed of c[.

11,3181,,11, ol ol 5,1ol 2, 71

!

I
(a)

I11318],111191 15110151 71

I

(b)

Fig. 4. Example of application of the permeability (a) and scrambling (b) operators.

(a) (b)
Fig. 5. Clusterings obtained on two maps: (a) a regular square-meshed map (values used for parameters: p = 0.4, r/= 35; fitness obtained:
f = 0.99) and (b) a typical urban map (p = 0.5, t/= 30; f = 0.86). The maximum radius p is expressed as a fraction of the map global size.

D. Maio et aL / Pattern Recognition Letters 16 (1995) 89-96 95

0.9

~ 0.8

0.7
0

(a)

I I I i I I I

g g g g g ~ g

generations

(a)

0.9T ~ ' " " - ' - l

i 0.8 V','
'-~ 0.7 (b)

0 . 6 I I I I I I I
0 0 0 0 0 0 0 ~ 0

generations

Fig. 7. Fitness during evolution for the clusterings in Figs. 5(a)
and 5 (b). The fitness displayed for each generation is that of the
best chromosome in the current population.

(b)
Fig. 6. Clusterings obtained on the same map with different val-
ues ofp and r/. (a) p=0.5, r/=20 (fitness obtained:f=0.88); (b)
p=0.6, r/=35 (f= 0.88).

a peak in position n/q, corresponding to the desired
number of clusters.

Fig. 5 shows the clusterings obtained on two sam-
ple maps, and reports the corresponding fitness val-
ues. In particular, the clustering in Fig. 5 (a) points
out the good behaviour of the algorithm in terms of
adherence to parallel efficiency and regularity; Fig.
5 (b) shows how discontinuities in the density of ver-
tices are revealed.

In some cases the five requirements outlined in
Section 3 may contrast with each other so that the
optimal clustering expresses a trade-off between them;
the weights c~, used in the fitness function as well as
the values chosen for parameters p and q, are crucial
in determining the trade-off point. Fig. 6 shows how
clustering is influenced by p and q.

Though experimental evidence suggests that GAs
converge to the optimum in most cases, no formal
demonstration has been given yet in the literature.
The diagrams in Fig. 7 show how the fitness varied
during the evolutionary process corresponding to the
clusterings in Fig. 5. Even after a relatively small
number of generations (100-200), the solutions
yielded are usually very good.

The main drawback ofa GA is that, due to its time
complexity, it can hardly be used in real-time appli-
cations. In autonomous agents clustering is carried
out using exploration, so that new data to be imme-
diately clustered are acquired continually. At present
we are studying how, when a new vertex v is discov-
ered during exploration and clustering must be recal-
culated, the starting population can be derived by
properly extending with v the final population at the
previous step. Since it seems reasonable to assume
that in most cases the local perturbation caused by
discovering a new vertex will not greatly alter the near-

96 D. Maio et al. / Pattern Recognition Letters 16 (1995) 89-96

optimal clustering, we expect that the derived start-
ing population will be exceptionally "good", so that
the number of generations necessary for convergence
may greatly decrease.

References

Ackley, D.H. (1987). An empirical study of bit vector function
optimization. In: L. Davis, Ed., Genetic Algorithms and
Simulated Annealing. Morgan Kaufmann, Los Altos, CA, 170-
204.

Bhuyan, J., V. Raghavan and V. Elayavalli (1991). Genetic
algorithms for clustering with an order representation. Proc.
4th Internat. Conf. on Genetic Algorithms and their Application,
408-415.

Chaudhuri, B.B. (1994). Dynamic clustering for time incremental
data. Pattern Recognition Lett. 15, 27-34.

Davis, L. (1985). Job shop scheduling with genetic algorithms.
Proc. First Internat. Conf. on Genetic Algorithms, 136-140.

Davis, L. and M. Steenstrup (1987). Genetic algorithms and
simulated annealing: an overview. In: L. Davis, Ed., Genetic
Algorithms and Simulated Annealing. Morgan Kaufmann, Los
Altos, CA, 1-11.

Goldberg, D. (1989). Genetic Algorithms in Search, Optimization,
and Machine Learning. Addison-Wesley, Reading, MA.

Jones, D.R. and M.A. Beltramo (1990). Solving partitioning
problems with genetic algorithms. Research Report 48090-
9055, General Moters Research Laboratories, Warren, MI.

Kirkpatrick, S., C.D. Gelatt and M.P. Vecchi (1983).
Optimization by simulated annealing. Science 220, 671-680.

Maio, D. and S. Rizzi (1992). Clustering by discovery on maps.
Pattern Recognition Lett. 13 (2), 89-94.

Maio, D. and S. Rizzi (1993). Map learning and clustering in
autonomous systems. IEEE Trans. Pattern Anal. Machine
Intell. 15 (12), 1286-1297.

Maio, D. and S. Rizzi (1994). A hybrid approach to path planning
in autonomous agents. Proc. 2nd Internat. Conf. on Expert
Systems for Development, Bangkok, 222-227.

Nitzan, D. (1985). Development of intelligent robots:
achievements and issues, IEEE J. Robotics and Automation 1
(1), 3-13.

Rose, K., E. Gurewitz and G. Fox (1990). A deterministic
annealing approach to clustering. Pattern Recognition Lett.
11 (9), 589-594.

Whitley, D., T. Starkweather and D. Fuguay (1989). Scheduling
problems and traveling salesman: the genetic edge
recombination operator. Proc. Third Internat. Conf. on Genetic
Algorithms and their Application, 133-140.

