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Abstract

In this paper we propose an encoding scheme and ad hoc operators for a genetic approach to hierarchical graph

clustering. Given a connected graph whose vertices correspond to points within a Euclidean space and a ®tness

function, a hierarchy of graphs in which each vertex corresponds to a connected subgraph of the graph below is

generated. Both the number of clustering levels and the number of clusters on each level are not ®xed a priori and are

subject to optimization. Ó 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

Clustering has a key role, in di�erent applica-
tion ®elds, in revealing hidden structures and ex-
tracting typical prototypes from a dataset. On the
other hand, `¯at' clustering gives no information
about the structure existing between clusters; hi-
erarchical clustering deals with this issue by
grouping data into a tree structure, thus building a
multi-level representation capable of revealing in-
ter-cluster relationships. A survey of classical ap-
proaches to hierarchical clustering is given by Jain
and Dubes (1988).

In the ®eld of autonomous mobile robots, hi-
erarchical clustering may be pro®tably used to
emphasize the structural and topological charac-
teristics of the environments and to derive their
high-level representations to be used for reasoning

and for planning navigation paths. In particular,
we consider an autonomous robot moving in an
environment where landmarks corresponding to
distinctive places and objects can be detected by
sensors such as cameras or sonars. The environ-
ment is initially unknown; the robot's mission is to
acquire its description incrementally during an
exploration process. The map built by the robot is
structured as a graph of landmarks and inter-
landmark routes; each landmark is represented by
a point within the plane. In the navigation-ori-
ented multi-layered architecture for environment
representation we proposed in (Maio and Rizzi,
1996), the environment map is hierarchically
clustered in order to introduce multiple abstrac-
tion levels in the representation and to allow the
complexity of path-planning problems to be de-
creased by applying divide-and-conquer tech-
niques.

Map clustering mainly di�ers from classical
pattern clustering in the following aspects:
· The pattern of connectivity between landmarks

must be taken into account when clustering. In
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fact, the agent should be enabled to plan partial
paths within clusters.

· The objective function to be optimized by clus-
tering takes into account multiple factors, ex-
pressing structural and functional
requirements; clusters are evaluated both as sin-
gles and as a whole.

· The number of levels in hierarchical clustering
and the number of clusters on each level are
not de®ned a priori, hence, they must be subject
to optimization.

These peculiar aspects make most hierarchical
approaches in the literature unsuitable for map
clustering (Fisher, 1996; Hofmann and Buhmann,
1995; Hofmann and Buhmann, 1996; Miller and
Rose, 1994).

In (Maio et al., 1995) we have shown how map
¯at clustering can be carried out by optimizing
directly, through a genetic algorithm, a ®tness
function. In this paper we extend the ¯at approach
to the case of hierarchical clustering by proposing
an encoding scheme for chromosomes and ad hoc
genetic operators. The approach is general since,
given a graph in a Euclidean space and a ®tness
measure de®ned on a hierarchy of graphs, both the
encoding scheme and the operators can be applied
for clustering.

2. The graph clustering problem

De®nition 1. Let G� (V, E) be a non-directed
graph; with �v0; v00� 2 E we denote the edge con-
necting the two vertices v0; v00 2 V . Let a partition-
ing n � fV1; . . . ; Vmg of V be given; we call clusters
the m subgraphs C1 � �V1;E1�; . . . ;Cm � �Vm;Em�,
where

Ei � f�v0; v00� 2 E jv0 2 Vi ^ v00 2 Vig
for i � 1; . . . ;m:

We call the bridge between Ci and Cj the set of the
edges connecting one vertex in Ci with one vertex
in Cj:

�Ci;Cj� � f�v0; v00� 2 E jv0 2 Vi ^ v00 2 Vjg
for i; j � 1; . . . ;m; i 6� j:

A clustering on G is de®ned as a partitioning n in
which every cluster produced is a connected graph.

De®nition 2. Given a non-directed graph G and a
clustering n, we call the image of G through n the
graph G� � (V�, E�) whose vertices and edges are,
respectively, the clusters and the non-empty bridg-
es induced by n:

V � � fC1; . . . ;Cmg;
E� � f�Ci;Cj�j�Ci;Cj� 6� [; i; j � 1; . . . ;m; i 6� jg:
It can be easily proved that the image of a con-
nected graph is itself connected (Maio and Rizzi,
1996).

De®nition 3. A hierarchical clustering of height n is
a sequence of n clusterings, each applied to the
image graph generated by the preceding clustering,
which produces a hierarchy of n + 1 graphs
(including the original graph).

Let a non-directed connected graph G�0� and a
hierarchical clustering n�1�; . . . ; n�n� be given. We
call G�0� the 0-graph, and the connected graph G�k�

�k � 1; . . . ; n�, image of G�kÿ1� through n�k�, the k-
graph. We call k-vertices the vertices of the k-graph
�k � 0; . . . ; n�, and k-edges its edges.

A k-vertex is denoted by V
�k�
i and corresponds

to a subgraph of the (k ) 1)-graph; its cardinality
is de®ned as the number of (k ) 1)-vertices it
contains. We will assume that the n-graph always
contains exactly one n-vertex, which corresponds
to the whole (n ) 1)-graph.

De®nition 4. Let each 0-vertex V�0� be associated
to a point in a d-dimensional Euclidean space,
pos(V�0�), which we call its position. We de®ne the
position of a k-vertex V�k� as:

pos�V�k�� � avgfV�kÿ1�
i 2V�k�g; pos�V�k�1�

i �
� �

for k � 1; . . . ; n;

where avgS(f) denotes the average of function f
extended to the set S.

2.1. A ®tness function for map clustering

Let n�k� be the ¯at clustering which, applied to
the (k ) 1)-graph G�kÿ1�; produces the k-vertices
which constitute the k-graph G�k�. Our approach to
determine the optimal clustering n�k� is guided by
the six requirements summarized below, each jus-
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ti®ed with reference to the application ®eld of
autonomous agents.
· Visibility. In order to ensure that an autono-

mous agent has a good intra-cluster mobility,
an upper bound q�k� on the maximum radius
of k-vertices is placed.

· Equi-cardinality. Clustering can be used to de-
compose management and planning algorithms
following a divide-and-conquer policy, so as to
decrease their complexity. To this end, all k-ver-
tices should have the same cardinality.

· Predictability. High cluster cardinality leads to
management complexity; on the other hand,
low cardinality strongly reduces the e�ective-
ness of decomposing methods. We introduce a
parameter, g�k�, which denotes the required av-
erage cardinality of k-vertices.

· Homogeneity. Clustering should reveal the rele-
vant topological features of the environment; to
this end, density of (k ) 1)-vertices should be
homogeneous within each k-vertex.

· Cohesion. Clusters should be cohesive, meaning
that the average length of the external edges
should overcome that of the edges belonging
to clusters. The aim of this criterion is, when
(k ) 1)-vertices are arranged into one or more
high-density areas surrounded by low-density
belts, to have cluster borders lying on these
belts.

· Regularity. Irregularly-shaped clusters may
cause divide-and-conquer path-planning algo-
rithms to generate non-optimal solutions; there-
fore, clusters should be regularly shaped.
These requirements can be formalized by de-

®ning, for clustering n�k�, a ®tness measure f(n�k�,
q�k�, g�k�) as a weighted sum of six components,
each expressing the degree to which n�k� meets one
of the criteria listed above and ranging from 0 (no
adherence) to 1 (maximum adherence). The
mathematical details concerning the de®nition of f
can be found in (Maio et al., 1996).

The ®rst step in generalizing ®tness to the hi-
erarchical case consists in discussing how q�k� and
g�k� depend on k. As to parameter g�k�, we may
assume that the required cardinality of clusters is
the same on all levels, and thus choose

g�k� � g for k � 1; . . . ; n:

The value of q�k�, instead, should increase with k
(clusters at high abstraction levels are larger than
those at low levels). A k-vertex includes g (k ) 1)-
vertices; roughly, the maximum radius of a k-ver-
tex in the d-dimensional space will be

q�k� � q�kÿ1�g
1=d for k � 2; . . . ; n:

If q(1) � q is the radius of a 1-vertex, we may
write

q�k� � qg�kÿ1�=d for k � 1; . . . ; n:

The global ®tness g for a hierarchical clustering
n of height n is de®ned as the average of the ®t-
nesses of the single levels

g�n; q; g� � 1

n

Xn

k�1

f n�k�; q�k�; g�k�
� �

:

3. Applying genetic algorithms to map hierarchical

clustering

Di�erent alternatives for encoding the problem
of object partitioning have been proposed in the
GA literature (Babu and Murty, 1994; Bhuyan
et al., 1991; Jones and Beltramo, 1990; Krovi, 1992).
Map clustering is more di�cult than classic par-
titioning problems, since the connectivity con-
straint makes most solutions unacceptable. The
approach based on rejection of the inconsistent
solutions cannot be pursued due to the huge
number of solutions that include non-connected
clusters. This justi®es the choice of the ad hoc
encoding scheme and genetic operators described
in the following subsections.

3.1. Encoding scheme

In (1995), Maio et al. proposed an encoding
scheme for map ¯at clustering which resembled
that described in (Davis, 1985). Each chromosome
consisted of a permutation of the vertices and a
separator splitting the string in two, and was
mapped into one consistent solution to the clus-
tering problem by means of a decoding procedure
in which ®rst each vertex in the left part of the
string was used to initialize a di�erent cluster,
and then the vertices in the right part were
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progressively added to the clusters created. Here
we generalize this encoding scheme to hierarchical
clustering.

Let G�0� be a non-directed connected graph in-
cluding k vertices. Each chromosome c is repre-
sented by a string of length 2k ) 1 in which the k
characters in odd positions consist of a permuta-
tion of the ®rst k integers while the k ) 1 charac-
ters in even positions are separators. Each integer
references a vertex in the map; each separator can
take value 0 or 1. Let n be the sum of the values of
the separators. The n separators set to 1 divide c
into n + 1 substrings; we denote with ck the string
of integers obtained by dropping all separators
from the kth substring of c.

An example of chromosome (k� 10) is shown
below (separators are in boldface):

In this case it is n� 2 and c1� (0), c2� (4,8),
c3� (5,7,1,2,6,9,3).

Chromosome c maps into exactly one hierar-
chical clustering, with height n, by means of a
decoding procedure which is an orderly manner
builds each image graph starting from the 1-graph
up to the n-graph. At the kth step, the k-graph is
built by considering two strings: a k-seed, obtained
by orderly concatenating c1; . . . ; cnÿk�1, and a k-
growth, cnÿk�2; each character in the k-seed and the
k-growth represents a (k ) 1)-vertex built at the
previous step. First each (k ) 1)-vertex in the k-
seed is used to initialize a di�erent k-vertex, and
then the (k ) 1)-vertices in the k-growth are pro-
gressively added to the k-vertices created. If we
denote with D�p0; p00� the Euclidean distance be-
tween two positions p0 and p00, the decoding pro-
cedure of c may be sketched as follows:
decode(c,G�0�)
{ for k�1 to n do

n�k� �flatDecode(c,k);
G�k� �image(G�k ÿ 1�,n�k�);

}

flatDecode(c,k)

// seed(c,k) denotes the k-seed of c,

growth(c,k) its k-growth

{ n�k� �£;

for each V
�k ÿ 1�
i _seed(c,k)

create new partition Vi� {V
�k ÿ 1�
i }

and add it to n�k�;
orderly copy vertices from

growth(c,k) to circular list L;

while length(L) > 0

{ V
�k ÿ 1�
j �next(L);

H�{Vi2n(k):$(Vj(k ) 1),V
�k ÿ 1�
l )2G�k ÿ 1�:

V
�k ÿ 1�
l 2Vi};
if H ¹ £
{ find Vbest 2 H:D(pos (V

�k ÿ 1�
j ), pos(V-

best)) is minimum;

add V
�k ÿ 1�
j to Vbest and delete it

from L;

}

}

return n�k�;
}
Due to the connectivity constraint, it may

happen that the (k ) 1)-vertices in the k-growth
cannot be in an orderly manner assigned to k-
vertices. When a (k ) 1)-vertex cannot be assigned
to any k-vertex, the algorithm momentarily leaves
it apart and tries to assign it again at the next it-
eration. Since G�k ÿ 1� is a connected graph for
every k, it is guaranteed that all vertices are as-
signed in a ®nite number of steps.

It is remarkable that, by adopting this decoding
technique, all the chromosomes represent a con-
sistent solution to the clustering problem. The
number of k-vertices is equal to the length of the k-
seed, hence it is determined by the position of the
(n ) k + 1)th separator.

Conversely, there are clusterings that cannot be
represented by strings. The existence of ``forbid-
den'' clusterings is due to the heuristic criterion
used in the decoding algorithm to choose Vbest,
which aims at building compact clusters where
near vertices are grouped together. A clustering
which cannot be derived in accordance with that
criterion is in contrast with the ®tness require-
ments, hence it is not interesting.

Example 1. Consider the simple graph in Fig. 1(a)
and the chromosome shown above, encoding a
hierarchical clustering of height 2. The 1-seed and
the 1-growth are (0,4,8) and (5,7,1,2,6,9,3), respec-
tively; the resulting clustering is shown in Fig. 1(a)

1296 S. Rizzi / Pattern Recognition Letters 19 (1998) 1293±1300



by drawing in grey the 0-edges belonging to 1-
edges, while the corresponding image graph is in
Fig. 1(b). The 2-seed and the 2-growth are (0) and
(4,8), respectively (each 1-vertex is denoted by the
0-vertex which initialized it); the resulting cluster-
ing features one 2-vertex.

3.2. Selection

The selection operator builds a new population,
Pnext, using the chromosomes belonging to the
previous one, P. The size of the population, z,
remains unchanged; the chromosomes of Pnext are
chosen randomly from P with probability pro-
portional to their ®tness. Cloning the best chro-
mosome in P ensures that the best solution
obtained at the previous step is not lost. Adopting
a linear scaling for the ®tness function g allows the
®tness range to be normalized in the di�erent
phases of evolution (Goldberg, 1989).

3.3. Crossover

Reproduction is based on the crossover opera-
tor, which is applied to pairs of chromosomes
chosen randomly (parents) and combines them to
create new pairs with similar features (o�spring).
The ad hoc crossover operator we designed con-
sists of three di�erent elemental operators which
can be applied singularly or consequently.

Height-oriented crossover. This operator acts
on the separators, aimed at producing o�spring
chromosomes, a0 and b0, with heights equal to the
average of the heights of the parent chromosomes,
a and b.

Let na and nb be the heights of a and b, re-
spectively. If na� nb, the o�spring chromosomes
are identical to the parents.

Conversely, let na > nb. The height of the o�-
spring, n0, is (na + nb)/2 if it is even, otherwise, it is
chosen randomly between ë(na + nb)/2û and
é(na + nb)/2ù O�spring a0 is obtained by setting
naÿ n0 separators in a, chosen randomly, to 0.
O�spring b0 is obtained by setting to 1 n0 ÿ nb

separators in b, chosen randomly among those to
the left of the rightmost separator set to 1.

Example 2. Consider the two parents below,
encoding clustering of heights 3 and 2, respective-
ly.

The o�spring height n0 is chosen randomly be-
tween 2 and 3. If n0 � 2, b0 is identical to b and one
separator is set to 0 in a; for instance:

If n0 � 3, a0 is identical to a and one separator is set
to 1 in b; for instance:

Level-oriented crossover. This operator gener-
ates o�spring chromosomes in which, at each
common level, the number of clusters is the aver-
age of those of their parents; the heights of the
chromosomes are left unchanged. This is obtained
by changing the positions of the separators set to 1
without altering the sum of the separators.

After moving the 1 s, the vertices belonging to
the 1-seeds of the parents are redistributed ran-
domly among the 1-seeds of the o�spring chro-
mosomes; in order to maintain the structure of the
highest levels as much as possible, each vertex is
extracted with probability inversely proportional
to the index of the substring it belongs to.

Example 3. Consider the two parents below,
encoding clusterings of heights 3 and 2, respec-
tively.

Chromosome a encodes 6, 3 and 1 clusters on the
®rst, second and third level, respectively; b encodes

Fig. 1. Hierarchical clustering on a 2-dimensional graph: (a)

The 0-graph; (b) the 1-graph.
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4 clusters on the ®rst level and 2 clusters on the
second. The number of clusters in the o�spring
chromosomes should be 5 on the ®rst level and 2.5
on the second (we choose 2 for a and 3 for b):

The vertices appearing within the 1-seeds of a and/
or b are then redistributed (where necessary, by
swapping a couple of vertices placed in the 1-seed
and in the 1-growth):

Cluster-oriented crossover. This consists of a
Partially Matched Crossover (Whitley et al., 1989)
applied to the 1-growths, and changes the posi-
tions of vertices without altering the values of the
separators. Swaps between vertices in the match-
ing sections of the parents are carried out only if
they do not require swaps with vertices of the
1-seed.

This operator alters the sequence of vertices in
the 1-seed, thus, it directly a�ects the composition
of the 1-vertices; the clusters at the levels above are
typically a�ected only in their positions.

Example 4. Consider the two parents below,
encoding clusterings of height 2. Let the matching
section be de®ned (randomly) as indicated by the
arrows:

The partially matched crossover consists in swap-
ping the two matching sections. Vertices 5 and 1 in
a are not swapped, since vertices 6 and 7 do not
belong to the 1-growth of a; for the same reason,
vertex 9 in b is not swapped.

3.4. Mutation

Each chromosome generated by reproduction
has a given probability of mutation. The ad hoc
mutation operator we designed consists of three

elemental operators which can be applied singu-
larly or consequently.

Height-oriented mutation. This operator in-
creases or decreases by 1 the height of the chro-
mosome by changing the value of a separator
chosen randomly.

Example 5. Consider the following chromosome:

By setting to 1 the 7th separator, the height is in-
creased from 2 to 3:

Level-oriented mutation. This operator modi®es
the number of clusters on a level by moving one of
the separators set to 1, chosen randomly, one po-
sition backwards or forwards; as a result, one
vertex moves from the seed to the growth or vice
versa. In order to avoid the vertices adjacent to
separators being the only candidates for this mu-
tation, the vertex involved is inverted with the one
in a position chosen randomly within the same
substring. By doing so, all the vertices have the
same probability of being moved from one sub-
string to the other.

Example 6. Consider the following chromosome:

By moving the 4th separator to the right, after
inverting vertex 1 with vertex 4, a mutates to:

Cluster-oriented mutation. This operator works
on the 1-growth by inverting the vertices in two
random positions. Since our decoding technique
considers the order in which vertices appear in the
growth, this operator alters the structure of clus-
ters.

Example 7. Consider the following chromosome:

By inverting vertices 9 and 7, a mutates to:
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Fig. 2. Hierarchical clustering on a sample map (g� 15, q� 250): the 0-graph (top), the 1-graph (middle) and the 2-graph (bottom); the

3-graph includes only one vertex.
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4. Conclusion

In this work we have described a technique for
hierarchical clustering of a connected Euclidean
graph. The clusters obtained are connected graphs;
the number of clustering levels and the number of
clusters are not de®ned a priori, and are subject to
optimization.

With reference to the robotics application do-
main, where vertices are positioned in the 2-di-
mensional space, Fig. 2 shows the hierarchical
clustering obtained on a sample map. The diagram
in Fig. 3 shows how the ®tness varied during the
evolutionary process corresponding to the clus-
tering in Fig. 2. Even after a relatively small
number of generations (100±200), the solutions
yielded are usually very good.
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