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Abstract. The data vault model natively supports data and schema
evolution, so it is often adopted to create operational data stores. How-
ever, it can hardly be directly used for OLAP querying. In this paper we
propose an approach called Starry Vault for finding a multidimensional
structure in data vaults. Starry Vault builds on the specific features of
the data vault model to automate multidimensional modeling, and uses
approximate functional dependencies to discover out of data the infor-
mation necessary to infer the structure of multidimensional hierarchies.
The manual intervention by the user is limited to some editing of the
resulting multidimensional schemata, which makes the overall process
simple and quick enough to be compatible with the situational analysis
needs of a data scientist.

Keywords: Data vault · Data warehouse design · Multidimensional
modeling

1 Introduction

Since their adoption as an enabling technology for information systems, one of
the goal of databases has been to provide a unified, integrated, and consistent
repository for all enterprise data; this repository should act has a hub for differ-
ent activities such as process coordination, auditing, historical data storage, etc.
Among the solutions devised in this direction we mention Master Data Man-
agement and ERPs in the area of operational systems; in the area of business
intelligence, Operational Data Stores and, more recently, data lakes. Another
solution that has been progressively gaining attention and diffusion since its offi-
cial release in 2000 is the data vault, a practitioner-driven proposal for designing
a database that provides long-term historical storage of data coming in from
multiple sources. The main goals of the data vault can be summarized as (i)
maximize resilience to change in the business environment when storing histor-
ical data; (ii) accommodate data regardless of their quality and of their confor-
mity to standard and business rules; and (iii) enable parallel loading so that very
large implementations can scale out without the need of major redesign. While
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the 1.0 version of the data vault was strictly relational, version 2.0 (released in
2015) relies on Hadoop-Hive for delivering scalability and performance at a big
data level. However, in spite of its undeniable informative value, a data vault is
not suitable for direct multidimensional querying both for performance reasons
(it is not optimized for OLAP workloads) and because it is hardly supported by
OLAP front-ends.

In this paper we propose an approach called Starry Vault aimed at finding
a multidimensional structure in data vaults so that their data can be fed into
a data warehouse (DW) for OLAP querying. On the one hand, our approach
builds on the specific features of the data vault model to automate multidimen-
sional modeling, on the other it uses approximate functional dependencies [7] to
discover out of data the information necessary to infer the structure of multidi-
mensional hierarchies. The Starry Vault approach is mainly aimed at being used
at design time, to support a supply-driven design of a DW from a source data
vault [18]. However, the manual intervention by the user is limited to some edit-
ing of the resulting multidimensional schemata, which makes the overall process
simple and quick enough to be also compatible with the situational analysis
needs typical of a data scientist.

2 Related Work

The data vault model has hardly been explored in the academic literature.
Besides the official model specification [14], to the best of our knowledge only
a couple of works were made: [11], which provides a conceptualization of the
data vault physical model, and [13], which describes an approach for designing
DWs where the data vault model is used instead of the standard star/snowflake
schemata to physically implement the multidimensional model. On the other
hand, there are evidences that the data vault can be used in agile design con-
texts [6], and some CASE tools generate DW schemata based on the data vault
model (e.g., Quipu [16]).

The problem of how to support or even automate the design of DWs has been
widely explored. In particular, in supply-driven approaches multidimensional
modeling starts from an analysis of data sources—which is in line with the goal
of this paper. The first approaches to supply-driven design date back to the late
90’s [3,10,12,15] and propose algorithms that create multidimensional schemata
starting from Entity-Relationship diagrams or relational schemata. The basic
idea is that of following the functional dependencies (FDs) expressed in the
source schema to build the multidimensional hierarchies. In the following years,
there have been some attempts to obtain multidimensional schemata out of XML
source data (e.g., [5]). In this case, the main problem is that some FDs are not
intensionally expressed, so they must be checked extensionally, i.e., by properly
querying the XML database at design time.

The main inspiration for our current work comes from the supply-driven
approaches that use relational schemata as a source. However, these approaches
cannot be smoothly reused in our case because (i) while in traditional (normal-
ized) relational databases all FDs are made explicit, several FDs are normally
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Fig. 1. A sale data vault. Grey boxes, hexagons, and dashed boxes represent hubs,
links, and satellites, respectively; additional FDs are shown with thick dashed arrows

hidden in data vaults; (ii) the peculiar structure of data vaults, lets us make some
specific assumptions which are not possible with traditional relational databases;
(iii) while relational-based approaches do not use many-to-many relationships for
design, these must always be considered when designing from data vaults. On
the other hand, the idea of querying data vaults to establish the missing FDs is
borrowed from the approaches using XML sources.

Among the works on supply-driven design of DWs, some also consider the
problem of supporting the designer in detecting potential facts. For instance,
in [15] all the entities with numeric fields are selected as candidate facts. Not
only the presence of measures, but also table cardinality is considered to iden-
tify facts in [10], while in [12] all entities with a high number of many-to-one
relationships are candidates to become facts. A model-driven approach to detect
fact is proposed in [1], based on a heuristics that considers the cardinality and
in-degree of each table, together with its ratio of numerical fields. Finally, in [17]
potential facts are selected by searching specific topological patterns in source
data. The criteria we use in this work for ranking candidate md-schemata are
partially inspired and adapted from the ones mentioned above.

3 Data Vault Basics

The data vault model was conceived by Dan Linstedt in 1990 and then released
in 2000 as a public domain modeling method [14]. Its basic goal is that of dealing
with data and schema changes by separating the business keys (that are basically
stable, because they uniquely identify a business entity) and the associations
between them, from their descriptive attributes (that may change frequently).
The data vault is based on three components [8]:
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– Hubs. A hub is a table that models a core concept of business; each of its
tuples corresponds to a single business object with a unique enterprise-wide
key, and is timestamped with the moment that object was first loaded into
the database. The primary key of a hub is always a surrogate key.

– Links. A link is a table that models a business relationship between hubs.
To establish this relationship, a link includes foreign keys referencing the
hubs/links involved. Like a hub, it has a surrogate as the primary key and it
includes a load timestamp. To ensure that the schema can be easily evolved,
all relationships are modeled as potentially many-to-many regardless of their
actual multiplicity.

– Satellites. A satellite is a table that includes a set of attributes describing one
hub or one link. Its primary key combines a foreign key that references the
corresponding hub/link with a timestamp, so that multiple temporal version
of attribute values can be stored.

Example 1. The simple data vault we will use as a working example models sale
orders and is shown in Fig. 1 (adapted from [8]).

4 Formal Background

In this section we give a graph-based formalization of data vaults and multi-
dimensional schemata, which will be respectively the input and output of our
design algorithm.

Definition 1 (Data Vault Schema). A data vault schema (briefly, dv-
schema) is a directed graph V = (T, F ) where T = TH ∪ TL ∪ TS and:

1. TH , TL, and TS are, respectively, sets of hub, link, and satellite tables;
2. each arc 〈t, t′〉 in F represents an FD from a foreign key of table t to the

primary key of table t′, which we will denote with t → t′ to emphasize that
one tuple of t determines one tuple of t′;

3. F ⊆ (TS × (TH ∪ TL)) ∪ (TL × TH);
4. exactly one arc exits from each satellite s ∈ TS (entering a hub or a link);
5. at least two arcs exit from each link.

Given point (3) of Definition 1, all FDs explicitly modeled in a dv-schema take
either form s → h, s → l, or l → h. Each hub in h ∈ TH has one busi-
ness key, denoted BusKey(h). Each satellite s has a set of business attributes,
BusAttr(s); for each hub or link t, we denote with BusAttr(t) the union of the
sets of business attributes included in all satellites s such that s → t.

Example 2. With reference to the sale data vault in Fig. 1, it is TH = {H Customer,
H Order,H Employee,H Class,H Product}, TL = {L CustClass, L CustOrder,
L LineItem}, and TS = {S Customer,S CustAddress,S CustRating, . . .}. An exam-
ple of arc is 〈L CustClass,H Class〉, which corresponds to the inter-table FD
L CustClass → H Class. Finally, it is BusKey(H Customer) = CustomerCode
and BusAttr(H Customer) = {FirstName, LastName,Phone,Email,Address,City,
County,State,Score, Loyalty}.
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Fig. 2. Process architecture of the Starry Vault approach

Definition 2 (Multidimensional Schema). A multidimensional schema (or
md-schema) is a directed acyclic graph M = (A,E) where each node in A is an
attribute, each arc in E is an FD involving two attributes, and there exists one
node f ∈ A, called fact, such that each other node in A can be reached from
f through a directed path (which implies that f has no entering arcs). The set
of direct children of f is partitioned into a set of dimensions, D, and a set of
measures, M . All measures in M are leaves of M. For each dimension d ∈ D,
the subgraph of M that can be reached from d is called a hierarchy.

5 The Starry Vault Approach

A functional overview of the approach we use to obtain an md-schema out of a
source dv-schema is sketched in Fig. 2; three processes are included:

1. Hub-To-Hub FD Detection. This process aims at detecting additional FDs
not explicitly modeled in the dv-schema, in particular those between two or
more hubs connected by a link, by querying the source data vault.

2. Md-Schema Discovery and Ranking. A set of candidate facts is heuristically
determined; for each of them, a draft md-schema is built based on both the
FDs explicitly modeled in the dv-schema and those detected by process (1).
The md-schemata obtained are then heuristically ranked based on how com-
prehensive they are from the intensional and extensional points of view.

3. Md-Schema Enrichment. The user selects one or more draft md-schemata,
then edits and enriches them based on her knowledge of the application
domain. To further improve the quality of the md-schemata, additional FDs
hidden in satellites can be discovered by querying the source data vault.

5.1 Hub-To-Hub FD Detection

In a dv-schema each relationship between two or more hubs is modeled through
a link that contains the foreign keys referencing the connected hubs. As already
mentioned, this implies that all relationships are modeled as if they were many-
to-many, so it is not possible to determine if there are any FDs between two
hubs (i.e., if a relationship is really many-to-many or is actually many-to-one)
based on the dv-schema alone. For instance, looking at Fig. 1 it is impossible to
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say if the binary relationship between customer and classes is many-to-many or,
more realistically in this case, many-to-one.

Things get even more complex with n-ary relationships, like the one expressed
by L CustOrder that features three branches. Indeed, in this case there are dif-
ferent possibilities:

1. The relationship between the hubs involved really has many-to-many mul-
tiplicity in all directions. In particular, in case of the L CustOrder link, this
would mean that one order can be made by several customers with the sup-
port of several employees.

2. The relationship has many-to-one multiplicity from one branch towards the
others. In our example, this happens if one order is always made by one
customer with the support of one employee.

3. There are mixed multiplicities from the same branch. For instance, this is the
case if one order is always made by one customer with the support of several
employees.

Note that, while in a standard relational schema only case (1) corresponds to
a good design practice for normalization reasons (in the other cases the n-ary
relationship should be substituted by n − 1 binary relationships, each with its
multiplicity), within a dv-schema all three cases are considered equally good for
the sake of maintainability.

To disambiguate relationship multiplicities in all cases above and detect FDs
with reasonable confidence, we must resort to the data stored in the source data
vault. Clearly, there is a chance that an FD holds for the specific data stored at
design time but does not hold in general in the application domain, which means
that it will probably be contradicted in the future when new data will be added.
Fortunately, since data vaults usually host great amounts of data, these can
realistically be considered to be representative of the application domain. More
probably, the data will be affected by noise in the form of errors (e.g., spelling
errors) that “hide” an existing FD. The tool we use to cope with this issue are
approximate functional dependencies (AFDs) [7], i.e., FDs that “almost hold”,
which normally arise when there is a natural FD between attributes but data
are dirty or present exceptions. Given AFD a � b, where a and b are attributes,
one way to define its approximation e(a � b) is to count the minimum number
of distinct values of ab that must be removed to enforce a → b. We will then
consider a � b to hold if e(a � b) < ε, where ε is a threshold.

The approach we adopt to detect AFDs is an adaptation of the well-known
Tane algorithm [7]. Given a table r with schema R, Tane computes all the
valid AFDs X � a with X ⊆ R and a ∈ R \ X by relying on a level-wise
(small-to-big) enumeration strategy to navigate the search space of all possible
subsets of R (i.e., the containment lattice). Though Tane applies a set of pruning
rules to avoid computing/returning trivial and non-minimal dependencies, its
complexity remains exponential due to the number of candidate attribute sets X.
Specifically, the worst-case complexity of Tane is O(|r| + |R|2.5)2|R|), where |r|
is the cardinality of table r and |R| is its number of attributes. Noticeably, since
our goal here is to build hierarchies, we can restrict our search to simple AFDs
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(|X| = 1). In the remainder of this section we describe an original enumeration
strategy that works for simple AFDs and cuts the complexity of Tane down to
O(|r| · |R2|) in the worst case and to O(|r| · |R|) in the best one.

Let us start by considering “traditional” FDs. Given schema R, the set of
candidate FDs a → b, with a, b ∈ R, can be represented using an |R| × |R|
matrix Z whose rows and columns represent left- and right-hand sides of FDs,
respectively, so that Z[a, b] corresponds to a → b. If FD a → b is found to hold
on the stored data, cell Z[a, b] is set to true, otherwise it is set to false. A naive
approach to fill Z would check each single cell, i.e., each possible simple FD by
accessing data; actually, most checks can be avoided by orderly exploring the
cells of Z. Our exploration strategy requires the rows and columns of Z to be
ordered by descending cardinality of the corresponding attribute domain. Given
the ordered matrix, we initially note that only the cells over the diagonal must be
checked since (i) the cells on the diagonal correspond to trivial FDs like a → a,
and (ii) the cells below the diagonal correspond to unfeasible FDs like b → a with
|b| < |a|. Among the cells above the diagonal of Z, we can avoid checking those
corresponding to transitive FDs by applying the following exploration strategy:

– Rule 1 : First check the (unchecked) cells Z[a, b] such that |b| is maximum and,
among them, give priority to the one with minimum |a|.

– Rule 2 : If the FD corresponding to Z[b, c] is found to be true, set to true all
the FDs corresponding to cells Z[∗, c] such that Z[∗, b] holds.

To understand why Rules 1 and 2 avoid checking transitive FDs, consider FDs
a → b and b → c, which transitively imply a → c. Then it must be |c| ≤ |b| ≤ |a|,
so due to Rule 1 the check of a → c is scheduled after those of a → b and b → c.
But since b → c holds, Rule 2 sets a → c to true before it is checked.

According to the previous enumeration rule, the number of candidate FDs
that must be verified depends, given the number of attributes, on the num-
ber of transitive FDs in R. The worst case arises when no transitive FDs hold
between the attributes in R, because all the cells in the upper-right half of Z
(i.e., |R| × (|R| − 1)/2 cells) must be checked. The best case takes place when
the attributes of R are involved into a linear hierarchy, because the number of
checks drops to |R| − 1. Considering that the complexity of Tane is determined
by its enumeration strategy and that Tane checks the FDs in linear time, the
complexity of our approach turns out to be O(|r| · |R|2) and O(|r| · |R|) in the
worst and best cases respectively.

The enumeration strategy described above for traditional FDs relies on the
ordering of attributes. Unfortunately, when working with AFDs, we must allow
some tolerance on attribute cardinalities (hence, on the ordering of attributes)
to accommodate possible errors in data. Consider two attributes a and b such
that |a| � |b|. If we were searching for FDs, we would check for a → b and
not for b → a (Z[b, a] lies in the lower-left part of Z and would be skipped).
Conversely, when looking for AFDs, we must also consider the possibility that
the higher cardinality of a is due to some errors in data; in other words, we must
also check for b � a. In practice, this situation may occur if |a| − ε < |b| < |a|.
So, to preserve the correctness of our enumeration strategy when dealing with
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AFDs, we must check both cells Z[a, b] and Z[b, a] whenever abs(|a| − |b|) < ε.
Obviously, as a side effect, our pruning capability will be slightly reduced since
some more cells need to be checked; however, the best and worst complexity
remain unchanged.

As mentioned at the beginning of this section, in this phase our goal is to
detect the FDs holding between hubs related by a link l, which we actually
achieve by detecting the AFDs involving the foreign keys in l. Specifically, given
dv-schema V = (T, F ), let l ∈ TL be a link that connects hubs h1, . . . , hn ∈
TH , which means that l includes n foreign keys, k1, . . . kn, where ki references
hub hi. Considering Definition 1, this already implies l → hi for i = 1, . . . , n.
Additionally, we will say that hi → hj (1 ≤ i, j ≤ n, i 
= j) if ki � kj . All
the FDs determined are stored into a metadata repository, to be used at the
next step for md-schema discovery and ranking. Note that, with reference to the
complexity of detecting these AFDs, it is |R| ≡ n and |r| ≡ |l|.
Example 3. In our sale example, we can realistically assume that an order is
made by one customer and that a customer belongs to one class. A customer
normally issues several orders, each normally including several lines. Finally, the
company will reasonably have more customers than employees. So, for instance,
within link L CustOrder it must be |OrderSID| > |CustomerSID| > |EmployeeSID|.
The first AFD checked is OrderSID � CustomerSID, which is found to be true.
Then CustomerSID � EmployeeSID is checked, and we assume it does not hold.
Finally, OrderSID � EmployeeSID is checked, and again we assume that this does
not hold in our application domain (i.e., several employees may be involved in the
same order). We assume that overall, based on the data stored, two additional
FDs are discovered for the sale dv-schema, namely H Order → H Customer and
H Customer → H Class (a customer belongs to one class). These two FDs are
shown in thick dotted lines in Fig. 1.

5.2 Md-Schema Discovery and Ranking

This process determines which elements of the source dv-schema are candidate
to play the role of fact and, for each of them, creates an md-schema. Since the
number of candidate facts may be large, the corresponding md-schemata are
heuristically ranked before they are presented to the user.

Candidate Selection. The selection of candidates is based on two specific
features of the data vault model:

– A satellite s contains a foreign key referencing the associated hub or link t,
which means that each tuple of s is related to exactly one tuple of t (s → t)
but several tuples of s are associated to the same tuple of t. However, since
satellite are normally used to historicize attribute values, we can safely assume
that, at each point in time, at most one tuple of s is valid for each tuple of t,
i.e., that t → s.
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Algorithm 1. MDSConstruction(V)
Require: A dv-schema V = (T, F )
Ensure: A set of md-schemata {Ml}
1: for all l ∈ TL do � For each potential fact l...
2: A ← {l} ∪ BusAttr(l)
3: E ← {〈l, a〉 | a ∈ BusAttr(l)}
4: Ml ← (A, E) � ...initialize the md-schema with fact l...
5: for all h ∈ TH | 〈l, h〉 ∈ F do
6: Ml ← Explore(V, Ml, l, h) � ...and build a DAG
7: return {Ml}

– A hub h is connected to at least one link l (unless it is disconnected from all
other business concepts, in which case it is most probably not a fact candidate),
and l → h.

It follows that, for each satellite and hub in a dv-schema, there exists a link from
which that satellite or hub can be reached through at most two FDs (in case of
a satellite s of a hub h, it is l → h → s). So, since the algorithm we will use to
build an md-schema for each fact navigates FDs, we can restrict the set of fact
candidates to the set TL of links without loss of generality.

Md-Schema Construction. The goal of this step is to automatically build,
for each candidate fact (i.e., for each link) a draft md-schema starting from the
dv-schema and from the additional FDs previously discovered. To this end, all
the FDs (both those explicitly modeled by the dv-schema and the additional ones
discovered by accessing data) must be “navigated” starting from the candidate
fact, to build a DAG of attributes that will then be ranked and enriched in the
next phase to become an md-schema.

The pseudo-code for building draft md-schemata is sketched in Algorithms 1
and 2. Algorithm 1 iterates on all links in the source dv-schema. For each link l, it
initializes a draft md-schema Ml with fact l, adds the attributes of the satellites
of l (if any), and triggers procedure Explore to recursively build a hierarchy for
each hub connected to l.

The goal of Algorithm 2 is to extend Ml by “exploring” hub h. First it creates
a node labelled with the business key of h, k, and attaches it to the previous
node g (lines 1–3). All the attributes of its satellites are then attached to k (lines
6–7). To continue exploration, the algorithm now checks if there are additional
FDs from h to some other hub (lines 8–18). In particular, if there is an FD to at
least one hub z through link l, before triggering recursion on z (line 18) all the
satellite attributes of l must be added as children of k (lines 12–15). Repeated
explorations of parts of the source dv-schema when the same hub is reached
twice from different directions are avoided by marking a hub as explored when
it is reached for the first time (lines 4–5).

Example 4. In our sale example, three draft md-schemata are built for facts
L LineItem, L CustOrder, and L CustClass (two of them are shown in Fig. 3).

To better describe the construction algorithms, we follow them step by step
with reference to the first md-schema (the one of fact L LineItem). Firstly,
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Algorithm 2. Explore(V,Ml, g, h)
Require: A dv-schema V, an md-schema Ml, a node g ∈ Ml, and a hub h ∈ TH

Ensure: An (extended) md-schema Ml

1: k ← BusKey(h)
2: A ← A ∪ {k} � Add business key k...
3: E ← E ∪ {〈g, k〉} � ...and its incoming arc to Ml

4: if h not explored yet then
5: Mark h as explored
6: A ← A ∪ BusAttr(h) � Add satellite attributes...
7: E ← E ∪ {〈k, a〉 | a ∈ BusAttr(h)} � ...and their arcs to Ml

8: for all l ∈ TL | 〈l, h〉 ∈ F do � For each link l connected to h...
9: Z ← {z ∈ TH | z 	= h ∧ 〈l, z〉 ∈ F} � ...find other hubs connected to l
10: if ∃z ∈ Z | h → z then
11: A ← A ∪ BusAttr(l)
12: E ← E ∪ {〈k, a〉 | a ∈ BusAttr(l)} � Add satellite attributes of l to Ml

13: for all z ∈ Z | h → z do � Use additional FDs to trigger recursion
14: Ml ← Explore(V, Ml, k, z)
15: return Ml
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Fig. 3. Draft md-schemata of facts L LineItem and L CustOrder

procedure MDSConstruction creates the fact node (in grey) and its satellite
children VAT, Amount, and Quantity. Then, procedure Explore is called twice for
hubs H Order and H Product. In the first case, Explore starts by creating node
OrderNumber (line 2), connecting it to node LineItem (line 3), and adding the
two satellite children (lines 6–7). Then, since link L CustOrder is connected to
H Order and FD H Order → L CustOrder holds (lines 8–12), Explore is called for
hub H Customer (L CustOrder has no satellites, so lines 13-15 have no effect).
When Explore is called for H Customer, 10 satellite children are added, then the
procedure is called again for hub H Class. Similarly for hub H Product.

Ranking. At the previous step, for each candidate fact l a draft md-schema
Ml = (Al, El) has been constructed. Now, the md-schemata obtained are ranked
to support the user in choosing the most comprehensive ones.

The ranking of md-schemata is based on a linear combination of three heuris-
tics that consider, for each candidate fact, (i) its cardinality, (ii) the number of
potential measures, and (iii) the number of potential attributes. While heuristics
(i) is extensional in nature because it is data-based, the remaining two (which are
partially inspired by [12]) are intensional because they consider the dv-schema.
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(i) Business events are dynamic in nature and generated with high frequency,
so the tables that store them have a large number of instances. A link l ∈ TL

is more likely to be a fact if it has high cardinality [1].
(ii) Business events are quantitatively described by several measures, i.e.,

numerical attributes. We quantify the probability that a link l is a fact as
the number of numerical attributes that are functionally determined from
l, i.e., as the number of numerical attributes in Al \ l.

(iii) At query time, business events are selected and aggregated by users using
the dimensions and their levels. We quantify the probability that a link l
is a fact as the number of non-numerical attributes that are functionally
determined from l, i.e., as the number of non-numerical attributes in Al \ l.

Note that the last heuristics closely recalls the connection topology value, defined
in [12] as the number of entities that can be (either directly or indirectly) reached
within an Entity-Relationship diagram by starting from the fact and recursively
navigating many-to-one relationships.

Example 5. Heuristics (ii) and (iii) for the three sales draft md-schemata return
the following values for the number of numerical and non-numerical attributes:
7, 17 (L LineItem); 1, 13 (L CustClass); and 3, 14 (L CustOrder). Considering that
the cardinality of link L LineItem will surely be quite higher than the one of the
other two links (the cardinality of L CustClass is at most the same of H Customer
and a customer normally issues several orders; the cardinality of L CustOrder is
at most the same of H Order, and an order normally has several lines), we can
conclude that the top ranked md-schema is the one of fact L LineItem whatever
the weights of the linear combination of the three heuristics.

5.3 Md-Schema Enrichment

The last phase starts with the user selecting one or more draft md-schemata of
interest, supported by the ranking previously obtained. Some editing is normally
necessary at this stage, typically to remove uninteresting attributes from the md-
schema. Specific situations such as one-to-one relationships between hubs and
multiple arcs entering the same node in the md-schema must be also dealt with,
as discussed in [4]. Then, measures are chosen among the numerical attributes
in the md-schema. Finally, all the direct children of the fact that have not been
chosen as measures are labelled as dimensions, which completely defines the
output md-schema.

One further way to enrich the md-schema by making its hierarchies more
faithful to the application domain is to search for FDs hidden in satellites. In a
data vault, the grouping of attributes in satellites is generally oriented more to
cheap maintainability and querying than to normalization. For instance, in our
sale example, satellites S CustAddress and S Employee contain attributes City,
County, and State that are obviously related to one another, so the following
FDs hold: City → County and County → State. While in this simple case it will
probably be easy for the user to detect these FDs and manually add them to
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the md-schema as a part of editing, in other cases the user may be unsure of
whether an FD holds or not, so automating FD detection is highly desirable.
How to cope with this issue is the subject of the remainder of this section.

When dealing with satellites, we must keep in mind that data vaults are
natively oriented to storing time-variant data, so we can expect that a single
tuple of a hub (or link) is related to several tuples in a connected satellite,
one for each version of data. As a consequence, if we used traditional FD (or
even AFD) discovery techniques on the S CustAddress satellite for instance, we
might not find the FD City → County in case a city has been moved to a different
county at some time. The most natural way to formalize this problem is by using
temporal FDs [9]. Intuitively, in its simplest form, a temporal FD a

T−→ b is an
FD that is valid within a time-variant relation at any time slice. In our example,
though City → County may be not true overall, it must be true at any time slice,
so City

T−→ County. If we also consider the possibility that a temporal FD holds
on most tuples of a satellite, we have approximate temporal FDs (ATFDs) [2],
i.e., FDs that are valid for specific time periods and possibly subject to errors.

In [2], the detection of ATFDs is achieved through some preprocessing that
turns them into AFDs, that can then be discovered using Tane [7]; this pre-
processing is made by temporally grouping either on sliding windows or on tem-
poral granules. The type of temporal evolution that is relevant to the Starry
Vault approach is captured by grouping on temporal granules, i.e., by parti-
tioning the values in the domain of the time attribute into indivisible groups
called granules. Examples of possible granularities are hours, days, months, etc.
To understand how this preprocessing works, consider a table r with schema
R = v ∪ W , where v and W are respectively a time attribute and a set of other
attributes. A new relation is created from r by adding a granule attribute g
whose domain is the set of granules included in the time-span described by the
instances of r. Intuitively, for each tuple in r, the value of v is converted into
its corresponding granule identifier. The new relation obtained is then processed
with Tane to discover AFDs of type g ∪ X � Y , with X,Y ⊆ W .

To apply this technique to a satellite s, we consider its timestamp and its
business attributes BusAttr(s), thus neglecting its foreign key. After the the
granule attribute g has been addded, the ATFDs can be computed using the
following variation of the enumeration strategy proposed in Sect. 5.1:

– Instead of searching for AFDs of the form a � b, we consider all AFDs of
the form ga � gb (i.e., due to the decomposition rule, ga � b), where a, b ∈
BusAttr(s). This means that the ordering for rows and columns in matrix Z
will be defined by the cardinality of ga rather than by that of a.

– The pruning rule seen in Sect. 5.1 would avoid checking all AFDs b � a with
|a| > |b| + ε. Conversely, in this case a check can be avoided if |ga| > |gb| + ε.

It is easy to see that the size of matrix Z is still |R|2 ≡ |BusAttr(s)|2 since we
are just adding the granule attribute g to both the left- and right-hand sides of
the AFDs. As to the correctness of the pruning rule, we remark that the error
e(ga � b) is defined as the minimum number of distinct values of gab that must
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Table 1. Sample data for the S CustAddress satellite

CustomerSID Timestamp Address City County State Granule

1 1-1-2015 Gandalf Street Minas Tirith Gondor Middle-Earth January 2015

1 1-6-2015 Gandalf Street Minas Tirith Rohan Middle-Earth June 2015

2 1-3-2015 Frodo Road Minas Tirith Gondor Middle-Earth March 2015

2 1-6-2015 Frodo Road Minas Tirith Rohan Middle-Earth June 2015

FirstName
LastName

Phone 
Address 

City 

County 

State 

Description 
ClassCode

CustomerCode

Name 

Color 
ProductCode

LineItem

Quantity 
Amount 
TotalAmount
VAT 
Discount 
CustomerScore
ProductWeight Date 

Superclass

Loyalty

Fig. 4. The enriched md-schemata of fact S LineItem (descriptive attributes, non usable
for aggregation, are underlined)

be removed to enforce ga → b; therefore, an error ε can at most impact on the
cardinality of b for an amount equal to ε itself.

Example 6. Consider the sample data for the S CustAddress satellite in Table 1,
showing that on June 1 the city of Minas Tirith has moved from the Gondor
county to that of Rohan. If we considered traditional FDs or even AFDs, we
would probably conclude that one city can belong to different counties (i.e., that
City � County). Let us consider ATFDs instead, choosing for instance a month
granularity. The table created after preprocessing has the new column Granule,
and it is easy to verify that Granule City → County, so City

T−→ County. The final
md-schema obtained from the draft md-schema of fact L LineItem (Fig. 3, top) is
depicted in Fig. 4 using the DFM notation [4]. Attribute OrderNumber has been
deleted and all numerical attributes have been chosen as measures; besides, the
missing FDs between City, County, and State have been added.

6 Conclusions

In this paper we have described the Starry Vault approach for detecting a mul-
tidimensional schema out of a source data vault. Both schema-based and data-
based FDs are used to this end, with a small intervention by the user. In par-
ticular we have shown how to use extensional techniques for discovering hidden
FDs, with some tolerance to errors in data and taking into account the temporal
aspects related to historicization, to automatically deliver the md-schemata that
better fit the business domain. To this end we have proposed an original explo-
ration strategy that allows to significantly reduce the complexity of the Tane
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algorithm when applied to simple ATFDs. To the best of our knowledge, ours is
the first approach that adopts advanced types of FDs to infer md-schemata.

Automatic derivation of md-schemata is a widely explored topic in the DW
literature; nonetheless we believe that it is worth reconsidering it in the era of
big data and data science, in which the need for on-the-fly analyses creates a
strong requirement for a smarter design process. Based on these considerations,
our future work on this topic will be mainly focused on investigating ad hoc tech-
niques to support the data scientist in discovering a multidimensional structure
even in situations in which the source data are poorly-structured or schemaless,
as is the case for document databases.
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17. Romero, O., Abelló, A.: A framework for multidimensional design of data ware-

houses from ontologies. Data Knowl. Eng. 69(11), 1138–1157 (2010)
18. Winter, R., Strauch, B.: A method for demand-driven information requirements

analysis in data warehousing projects. In: Proceedings of HICSS, p. 231, Big Island
(2003)

www.datawarehousemanagement.org

	Starry Vault: Automating Multidimensional Modeling from Data Vaults
	1 Introduction
	2 Related Work
	3 Data Vault Basics
	4 Formal Background
	5 The Starry Vault Approach
	5.1 Hub-To-Hub FD Detection
	5.2 Md-Schema Discovery and Ranking
	5.3 Md-Schema Enrichment

	6 Conclusions
	References


