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Abstract -  Exploration is a central issue for autonomous agents which must carry out
navigation tasks in environments whose detailed description is not known a priori. In our
approach the environment is described, from a symbolic point of view, by means of a graph;
clustering techniques allow for further levels of abstraction to be defined, leading to a multi-
layered representation. In this work we propose an exploration algorithm in which a
supervisor co-ordinates several agents. All agents are equal, and pursue a local strategy
aimed at exploring a finite portion of a graph; nevertheless, the existence of multiple levels of
abstraction in the environment representation allows for the agents' behaviours to
differentiate. The supervisor plays the twofold role of assigning dynamically to each agent an
abstraction level for exploring the environment, and of co-ordinating the agents assigned to
the same level using the knowledge acquired by the agents on the higher levels. Two
exploration agendas are employed: a local agenda is used by the agents to keep track of the
unexplored routes, whereas a global agenda is used by the supervisor to calculate the agent
demands on each abstraction level.

I. INTRODUCTION

Autonomous agents (AAs) are mobile versatile machines capable of
interacting coherently with an environment and executing a variety of tasks in
unpredictable conditions [9]. They can be profitably employed to explore
hazardous and hostile environments, as well as to perform repetitive tasks in
dynamic environments such as offices, factories, hospitals, etc.

Autonomy means capability of navigating the environment; navigation, in
turn, necessarily relies on a description of the environment. It is important to
draw a distinction between knowledge  and meta-knowledge  of the
environment. By knowledge we mean a topological and metric description of
the specific environment the agent is moving in, more or less detailed
according to the complexity of the tasks required. With the term meta-
knowledge, instead, we denote general information concerning a whole
category of environments: for instance, a geometric model of the shapes of the
objects which are likely to be met in the environment. Both kinds of knowledge
may be either known a priori to the agent or not, depending on the applications
considered.

In our work we consider the case where the agent is given no a priori
knowledge, so that it must learn the environment description on-line by
interpreting sensor data. As to meta-knowledge, we assume that it is available
in terms of:

¥ Descriptions of typical sensor patterns present in the environment. Selection
of patterns corresponding to distinctive or significant categories of objects



and places enables recognition of landmarks  through a sensor-based
classification algorithm [5] [10]. Examples of significant categories are
computers and telephones in office environments, buildings and
monuments in urban environments.

¥ Characterization of semantically significant clusters of objects or places,
obtained through sensor-based recognition of passageways between different
clusters [6]. Example of clusters in office environments are rooms and
floors, identified by recognizing doors and stairs.

On these assumptions we have proposed, in [7], a multi-layered architecture
for representing the environmental knowledge to be used by an AA for
navigation. Our approach is based in the first place on the distinction between
reactive motion control and high-level path planning, both necessary for
autonomous navigation, and carried out by relying on sub-symbolic and
symbolic knowledge, respectively [1] [4]. Meta-knowledge for aggregation
allows for the symbolic representation of the environment to be distributed on
different abstraction levels in order to supply a richer description of the
environment and, at the same time, carry out navigation tasks more efficiently
[8]. In section II we outline the main concepts underlying the architecture
proposed.

The lack of a priori knowledge of the environment gives relevance to the
problem of on-line exploration, the subject of this paper. The existence of
different abstraction levels allows for the global topological and metric
structure of the environment to be acquired rapidly, so as to make the agents
ready as soon as possible to execute navigation tasks. Section III proposes an
algorithm for supervised multi-agent exploration, where the supervisor may be
either an external controller or one of the agents. The supervisor dynamically
assigns each agent the task of exploring the environment at a specific
abstraction level, and co-ordinates the agents assigned to the same level using
knowledge acquired by the agents that explore the environment at higher
abstraction levels. Two agendas are employed: a local and a global agenda. The
agents share the local agenda and use it to carry out their exploration strategy.
The global agenda is used by the supervisor to assign agents to the different
abstraction levels.

II. LAYERED ARCHITECTURE FOR ENVIRONMENT REPRESENTATION

A knowledge layer is a view of the environment at a specific abstraction
level; it includes only those details of the environment which are significant for
a specific family of tasks or sub-tasks, and represents them in the most suitable
formalism. A multi-layered representation of the environment is semantically
richer than a "flat" representation. Besides, complex path planning tasks can
be decomposed into a number of sequential or parallel sub-tasks, each
supported by a specific layer.

During exploration, agents experience the environment through their
sensors. We assume that metric , visual  and symbolic  information are
acquired. By metric information we mean that the agent can compute where it
is at any time, for instance by means of a compass, an odometer and an
altimeter. By visual information we mean that the agent is equipped with a



sensor (a sonar or a camera) which returns an "image" of the nearby
surroundings. By symbolic information we mean that some landmarks are
tagged with a name, obtained by "reading" a sign or something written.

Sensory knowledge cannot be directly exploited, so it must be reorganized
and interpreted. This is done by abstracting from the set of sensor measures
one or more layers which are more suitable for some of the agent's tasks. Each
of these layers may in turn generate other layers for other tasks, through a
procedure of progressive abstraction which creates a taxonomy of layers. The
architecture we propose includes the following layers:

¥ Sub-symbolic layer. This is responsible for inter-landmark movement,
including obstacle avoidance, and is supported by a neural network whose
input consists of measures from the metric and visual sensors, and whose
output is the direction to be followed [2].

¥ Symbolic layer. This is the foundation for path planning, and describes the
environment as a map of landmarks and feasible inter-landmark paths
(routes). A route is an abstraction corresponding to the straight-line
connection between two landmarks, and is described by a cost expressing for
instance the length of the corresponding physical path. The symbolic layer is
represented through a directed graph whose vertices and arcs correspond,
respectively, to landmarks and routes.

¥ Clustered layers. A hierarchy of clustered layers at different abstraction
levels may be defined starting from the symbolic layer. At the first
abstraction level, the environment is described as a map of clusters of
landmarks and inter-cluster passageways (bridges); at the subsequent
levels, each cluster includes clusters of the level below. Clustered layers are
represented as directed graphs whose vertices and arcs correspond,
respectively, to clusters and bridges.

¥ Meta-layers. These are abstracted from the symbolic layer or from any
clustered layer, and describe the entities in the environment through the
category they belong to.

In the following we introduce the terminology used in section III to outline
the exploration algorithm.

Given a graph G=(V,A), with V a set of vertices and A a set of arcs, we
denominate with clustering a partition of the vertices and arcs of G into a set of
clusters and a set of bridges. A cluster is a connected sub-graph of G. The
bridge between two clusters Ci and Cj is the set of arcs of G which connect a
vertex of Ci to a vertex of Cj. All clusters and bridges are disjointed.

We call 1-clusters and 1-bridges the clusters and bridges determined by
applying a clustering to the symbolic layer. The directed graph whose vertices
and arcs correspond, respectively, to the 1-clusters and the 1-bridges is called a
1-clustered layer (Figure 1).  A clustered layer may in turn be clustered; in
general, we name k-clustered layer (k=1,..n, where n is the maximum
abstraction level) the graph obtained by applying clustering k times, starting
from the symbolic layer. The clusters and bridges of a k-clustered layer are
called k-clusters and k-bridges, respectively. The symbol C(k) denotes a k-
cluster. For analogy, we will also call the symbolic layer a 0-clustered layer.



Again, we will assume that the n-clustered layer contains exactly one n-cluster
C(n) (that is, the (n-1)-clustered layer is not partitioned).
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Figure 1. Hierarchy of clustered layers abstracted from the symbolic layer.

Consider for instance an office environment where landmarks correspond to
telephones, computers, photocopiers, etc. Within the 1-clustered layer the
environment would probably be modelled as a graph of rooms (1-clusters)
connected by doors (1-bridges); similarly, 2-clusters might correspond to the
different floors and 2-bridges to stairs.

III. ALGORITHM FOR SUPERVISED MULTI-AGENT EXPLORATION

In our approach, exploration is carried out at a symbolic level. The link
between symbolic exploration and the sensor level is established by assuming
that:

¥ When an agent is located in a landmark, it can make hypotheses about the
directions of the possible routes departing from that landmark. If a
restricted number of paths are physically possible in the environment (for
instance, the streets in a city), these can be directly recognized through the
visual sensors; otherwise, assuming that the agents can sense landmarks
within a fixed range, we consider routes the paths leading to the
neighbouring landmarks.

¥ The agents can recognize the routes which mark a change of cluster at any
abstraction level (for instance, a route traversing a threshold).

¥ When an agent is located in a landmark, it can choose to explore one of the
routes sensed by assigning the estimated position of the destination
landmark as the current goal to the sub-symbolic layer.

We give the following definitions:

A 0-cluster (i.e., a landmark) has been visited when it has been sensed.
A k-cluster (k=1,..n-1) has been visited when at least one of the (k-1)-clusters it
contains has been visited.



The k-clustered layer (k=1,..n) has been explored when all the k-clusters it
contains have been visited.

In these terms, our goal can be formulated as the exploration of the graph
corresponding to the symbolic layer, that is, the visit to all the landmarks (a
complete exploration of the symbolic layer logically implies a complete
exploration of all the clustered layers). The symbolic layer is partitioned into 1-
clusters; if several agents are available, it is worth adopting a policy of
subdivision of the explorative tasks, aimed at assigning each agent to a
different 1-cluster. An efficient subdivision policy presupposes "awareness" of
the existing 1-clusters: one or more agents should then be entrusted with the
task of visiting all the 1-clusters, that is, of exploring the 1-clustered layer.
Exploration of the 1-clustered layer, in turn, takes advantage from knowledge
of the 2-clusters, so that the decomposition process is iterated as far as the
maximum level of clustering, n. Therefore, each clustered layer (from level 0 to
n-1) is assigned one or more agents who share exploration according to
information reported from the agents at the higher levels.

Figure 2. Partial exploration path of a 0-agent. The agent's current position is circled. Black
landmarks have already been visited; black routes have already been undertaken. Dashed
lines represent routes belonging to 1-bridges.



Figure 3. Partial exploration path of a 1-agent. The agent's current position is circled. Black
landmarks have already been visited; black routes have already been undertaken. Dashed
lines represent routes belonging to 1-bridges. The 1-agent first traverses the 1-cluster where it
is positioned in order to reach a 1-bridge; then it begins to follow the edges of the 1-clusters
aimed at discovering new 1-clusters and the 1-bridges between them.

A. The agents

All the agents are structurally equal, and capable of following a standard
strategy aimed at exploring a finite graph based on local knowledge only. The
strategy adopted is based on Tremaux's algorithm, modified so as to consider
the contemporary presence of several agents and the existence of mono-
directional routes (one-way streets, doors which can be opened one way only,
etc.) [3]. As a matter of fact, the agents' behaviours are diversified by their
assignment to increasing abstraction levels. We will call k-agent (k=0,..n-1) one
whose task consists of exploring the graph representing the k-clustered layer.
Agents' exploration strategy is supported by a local agenda which is structured
in layers corresponding to the different clustered layers. The k-th layer of the
local agenda reports, for each k-cluster visited, all the k-bridges that have not
been undertaken yet.



Please note that, while visibility of the routes departing from a visited
landmark is guaranteed by the sensor level, the same is not true for k-clusters
(k>0). In fact, visiting for instance a 1-cluster only requires visiting one of its
landmarks, while getting information of the departing 1-bridges entails
following the whole edge of the 1-cluster. Figures 2 and 3 show the different
exploration paths followed by a 0-agent and a 1-agent on the same map: the 0-
agent carries out exhaustive exploration inside 1-clusters (Figure 2); the 1-
agent, instead, follows the edges of the 1-clusters and undertakes the routes
contained in the 1-bridges (Figure 3). From a behavioural point of view we
might say that, though all agents are equally "curious" (due to their standard
exploration strategy), those working on low layers are "meticulous", while
those working on high layers are more "superficial".

B. The supervisor

The supervisor may be either an external controller or one of the agents; it is
capable of communicating with all the agents and manages the knowledge
base storing the environment representation. The first role played by the
supervisor consists in deciding dynamically how many agents will be
entrusted with environment exploration at each abstraction level. The second
role is the co-ordination of the k-agents within the k-clustered layer, which is
carried out by dynamically assigning to each k-agent the task of exploring a
specific (k+1)-cluster (that is, a sub-graph of the k-clustered layer). Both roles
are supported by a global agenda which reports, for each clustered layer, the
current progress of exploration. More specifically, the scheduling of the k-
agents (k=0,..n-1) is based on the list of all the (k+1)-clusters which have been
visited by a w-agent (w>k) but have not been completely explored by any k-agent,
yet. Figure 4 shows the data flows exchanged between the supervisor and the
agents.
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local
agenda
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representation
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. . . . . .

environment

A1

Figure 4. Data flows between the supervisor and the agents. The agents acquire data from the
environment, and hand them to the supervisor which stores them in the knowledge base.

The algorithm used by the supervisor to manage the agents and the global
agenda can be summarized as follows:



initialize agents' levels;
initialize agents' scopes;
initialize global agenda;
while global agenda is not empty do
{ handle events visited and explored ;
}
end exploration.

Event handling:

¥ when visited(A, C(k)) do
/* the k-agent A has visited a new cluster C(k); k>0*/
{ put C(k) in global agenda;

if global agenda is unbalanced
{ decrease level of A to k-1;

set scope of A to C(k);
}

}

¥ when explored(A(k), C(k+1)) do
/* the k-agent A(k) has terminated exploration of cluster C(k+1) */
{ remove C(k+1) from global agenda;

set scope of A to nearest (k+1)-cluster in global agenda;
}

The agents' levels are initialized by assigning one agent to each level,
starting from level n-1 and descending towards level 0; should the number of
agents overcome the number of levels n, all the remaining agents are assigned
to level n-1. The initial scope of a k-agent is the (k+1)-cluster which includes the
k-cluster the agent is located in. The global agenda initially contains the
current scopes of all the agents.

Every time a k-agent visits a new k-cluster, its level may be reassigned on
the basis of the information contained in the global agenda. The supervisor
policy in reassigning levels is aimed at keeping a balance between the discovery
of new clusters and their exploration. As the level decreases, the complexity of
the corresponding graph increases and exploration takes progressively more
time; hence, if the number of agents assigned on each level were the same, the
k-agents would visit more k-clusters than the (k-1)-agents could explore. In
order to avoid this unbalance, agents are progressively moved towards the
lower levels.

When a k-agent completes exploration of a (k+1)-cluster, it is assigned to the
nearest unexplored (k+1)-cluster present in the global agenda; if all the (k+1)-
clusters have already been explored, its level is decreased.

CONCLUSION

In this paper we have proposed an algorithm for supervised multi-agent
exploration of environments. The layered representation adopted for the
environment enables the agents to carry out exploration at different abstraction



levels. The supervisor co-ordinates the agents by assigning them to the
different knowledge layers and, inside each layer, to a restricted scope.

Some simulation results for our algorithm are shown in Figure 5. The
exploration time is compared with an ideal time computed as the ratio between
the mono-agent optimal exploration time and the number of agents.
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Figure 5. Exploration time on a sample of maps as a function of the number of agents
employed. The dotted line shows the ideal exploration time, computed as the ratio between the
mono-agent optimal exploration time and the number of agents.
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