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Abstract. View materialization and indexing are the most effective
techniques adopted in data warehouses to improve query performance.
Since both materialization and indexing algorithms are driven by a con-
straint on the disk space made available for each, the designer would
greatly benefit from being enabled to determine a priori which fractions
of the global space available must be devoted to views and indexes, re-
spectively, in order to optimally tune performances. In this paper we
first present a comparative evaluation of the benefit (saving per disk
page) brought by view materialization and indexing for a single query
expressed on a star scheme. Then, we face the problem of determining an
effective trade-off between the two space fractions for the core workload
of the warehouse. Some experimental results are reported, which prove
that the estimated trade-off is satisfactorily near to the optimal one.

1 Introduction

Among the techniques adopted in relational implementations of data warehouses
(DW’s) to improve query performance, view materialization and indexing are
surely the most effective ones.

View materialization consists in precomputing and storing a set of partial
aggregates useful to solve, with decreased cost, frequent and/or crucial queries
within the workload. Several approaches to view materialization were devised
in the literature (see [16] for a survey and a general statement of the problem),
mostly aimed at determining the subset of views which allows to minimize the
execution cost of a given workload under a given space constraint.

The other technique universally adopted to reduce query execution costs is,
of course, indexing. Though a number of papers were devoted to proposing or
adapting indexing techniques for DW’s [12—-14], only a few works focus on the
selection of indexes for DW’s. Since indexes may be built on any view materi-
alized, in order to reduce the problem complexity materialization and indexing
are often faced separately, meaning that the optimal indexing scheme is cho-
sen, under a space constraint, after the set of views to be materialized has been
determined [4].



It 1s apparent that, in most approaches, both materialization and index-
ing are driven by a rough indication of the disk space made available for each.
Since the warehouse administrator can reasonably constrain only the global space
available, S, as stated in [1] the designer must be capable of estimating which
fractions of S should be devoted to views and indexes, Sy and Sx respectively,
in order to optimally tune performances. Due to the high computation complex-
ity of the algorithms for selecting the optimal sets of views and indexes, it is
highly desirable that a good balancing of Sy and Sx is decided a priori, since
a trial-and-error approach would require to execute the optimization algorithms
several times under different space constraints. To this end, since the benefit of
both materialization and indexing strongly depends on the characteristics of the
queries formulated on the DW, we believe that the workload must be necessarily
taken into account.

Let the workload be composed of GPSJ queries, typical of OLAP applica-
tions: essentially, queries consisting of a selection and an aggregation operated
over a join. The key factors which impact the optimization benefit for a GPSJ
query are its aggregation level (defined by its grouping set) and its selectivity
(defined by the HAVING/WHERE clause). Tt is reasonable to expect that mate-
rialization will offer great advantage for queries with coarse aggregation, which
compute a few groups out of a huge number of tuples, since accessing a small
view is much cheaper than accessing a huge table. On the other hand, indexes
will give their best when solving queries with high selectivity, which select only
a few tuples, since accessing lots of useless tuples will be avoided. Thus, intu-
itively, queries with fine aggregation and high selectivity encourage indexing,
while queries with coarse aggregation and low selectivity encourage materializa-
tion. On the other hand, as sketched in Figure 1, it is difficult to predict even
qualitatively which of the two optimization techniques will fit best for queries
falling outside these two regions.
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Fig. 1. Recommended optimization techniques depending on the query selectivity and
aggregation level



In this paper we face the problem of determining a priori an effective trade-
off between Sy and Sx based on the core workload of the DW. The approach we
follow is rooted on the accurate estimation of the saving per disk page (benefit) of
materialization and indexing for a single GPSJ query expressed on a star scheme;
the estimates are based on a detailed analysis of the optimization strategies
adopted by a commercial DBMS. The benefits computed for all the queries in
the workload are then compared to heuristically estimate the space fractions Sy
and Sx.

The paper is organized as follows. Section 2 briefly discusses the related
literature, while Section 3 introduces the necessary background on star schemes,
GPSJ queries, and views. Sections 4 and 5, respectively, outline a model for
query execution plans and describe the cost model adopted. Section 6 discusses
and compares the benefits of view materialization and indexing in function of the
query characteristics, while Section 7 shows how these benefits can be used to
heuristically estimate an effective space balancing to be used for design. Finally,
Section 8 draws the conclusions.

2 Related Work

A huge work on view materialization has been done during the last few years,
starting with [9] in which a lattice was used for the first time to capture the
relationships between aggregate views. Other basic approaches are described
in [2,6,8]; in all these cases materialization is workload-driven, and a space
constraint is considered. In all these approaches index selection is not considered,
except in [6] which adopts a fixed indexing scheme.

In [4], a heuristic algorithm for selecting tid-list and bitmap indexes under a
space constraint is proposed; it is assumed that views have been previously se-
lected. In [7] the problem of simultaneously choosing views and BT-tree indexes
for a workload given a global constraint on the space available is investigated;
the “two-steps” approach (first materialize views and then choose indexes) is
criticized, but no criteria for balancing space between views and indexes are
proposed. In [11] a set of heuristic criteria for selecting views and indexes is pro-
posed; the problem of space trade-off is tackled, but no really useful conclusion
is offered.

3 Background

3.1 Star Scheme and Working Example

Relational implementations of DW’s are typically based on star schemes. The
star scheme for a fact of interest is composed by a set of n denormalized dimen-
ston tables DTl(O), e DTT(LO), one for each dimension of analysis, and a fact table
FT) whose primary key is obtained by composing the n foreign keys referencing
the dimension tables. The fact table also includes one non-key attribute for each
measure which quantitatively describes the fact. Each dimension table typically



models, besides a dimension, a hierarchy of attributes functionally determined
by the dimension itself: thus, it includes non-key attributes for the dimension
and for the other attributes of the hierarchy; the key is typically a surrogate
generated by the DBMS.

Example 1 The working example adopted in this paper is derived from the
well-known TPC-H benchmark [15]; its star scheme is as follows:

PART (Partld, Part, Brand, MFGR, Type, Container, Size)
SUPPLIER (Supplierld, Supplier, SNation, SRegion)
ORDER (Orderld, Order, ODate, OMonth, OYear, Customer)
LINEITEM (Partld, Supplierld, Orderld,

Qty, ExtPrice, Discount, DiscPrice, UnitPrice, Tax)

where LINEITEM 1s the fact table and the others are dimension tables. Note
that dimension tables are denormalized: for instance, in SUPPLIER, the supplier
nation SNation functionally determines his region SRegion. i

3.2 The Workload

The workloads we consider are sets of GPSJ queries. A GPSJ (Generalized
Projection-Selection-Join) query ¢ is a generalized projection over a selection
over a join [b]; as such, it may be expressed in relational algebra over a star
scheme as follows:

¢ = me 0 prea( FT DTl(O) b ... o DT

where Pred is a conjunction of simple range predicates on dimension table at-
tributes, G is a set of dimension table attributes (grouping set), and M is a set
of aggregated measures each defined by applying an aggregation operator to a
measure in FT(9). Generalized projection 7g, M 1s an extension of duplicate elim-
inating projection [5]; from the SQL point of view, it corresponds to grouping
by the attributes in G and inserting G, M in the selection clause.

Example 2 A possible GPSJ query on the LINEITEM scheme is the one which
returns the total quantity ordered during 2001 and the average unit price for
each type of product and each supplier nation in the western region:

TType,SNation,OYear,SU M (Qty), AV G(UnitPrice) TSRegion='West’ AND OYear='2001/ (R)

where R = PART X SUPPLIER X ORDER X LINEITEM. The equivalent SQL

formulation 1s as follows:

SELECT P.Type, S.SNation, O.OYear, SUM(L.Qty), AVG(L.UnitPrice)
FROM LINEITEM AS L, PART AS P, SUPPLIER AS S, ORDER AS O
WHERE L.Partld=P.Partld

AND L.Supplierld=S.Supplierld

AND L.Orderld=0.0Orderld

AND  S.SRegion="West’” AND O.OYear="2001"

GROUP BY P.Type, S.SNation, O.OYear 0O



We will assume that all selection predicates are external, i.e. that they are
formulated on attributes functionally determined by an attribute in the grouping
set (G.! Besides, we will assume for simplicity that at most one selection predicate
is formulated on each dimension table. A dimension table (or, equivalently, a
hierarchy) on which ¢ formulates a predicate is said to be conditioned in q.

3.3 Views

Materializing a view from the base fact table F7(®) may be seen as consolidating
the result of a query. Here we will only consider views consolidated from GPSJ
queries in which no selection predicate is formulated and the measures returned
are all those in F7T() each aggregated by the most appropriate aggregation
operator. Thus, each view is fully characterized by its grouping set; the base
fact table FT(% can be seen as a particular case of a view, whose grouping set
Gy is the set of the dimensions of analysis (Gy ={Part,Supplier,Order} in the
LINEITEM example).

View materialization obviously involves a modification of the DW logical
schema. Among the different alternatives proposed in the literature and in the
practice, in this paper we adopt the variant of the classic star scheme in which one
separate fact table is created for each materialized view and a separate dimension
table is created for each attribute belonging to the grouping set of at least one

view. Thus, view FT() with grouping set G = {a1, ..., a;q} will be associated
to dimension tables DTl(G), e DT(GG) where DTZ»(G) contains one surrogate key

and a field for each attribute functionally dependent on a;, including a; itself.

Example 3 Materializing the view with grouping set {Part,OMonth} means
enriching the LINEITEM scheme with the following tables:

OMONTH (OMonthld, OMonth, OYear, Customer)
LINEITEM1 (Partld, OMonthld, SumQty, SumExtPrice, SumDiscount,
SumDiscPrice, AvgUnitPrice, SumTax) O

Materializing view F7(%) brings benefit to all the queries whose grouping

set 18 “coarser” or equal to (G: in fact, they all can be solved with reduced costs
by rewriting them on FT(%) instead of FT(9). The notion of “coarseness” of a
grouping set is formally described as a partial ordering over the (exponential)
set of possible grouping sets, represented by the well-known multidimensional
lattice proposed in [9].

4 Modeling Query Execution Plans

Evaluating the benefit of materializing a view or creating an index for a sin-
gle query requires to estimate the costs for executing that query when the

1A predicate which does not satisfy this requirement can be easily made external by
refining the grouping set of the query.



view/index is absent and when it is present. Thus, a reference model for query
execution plans must be considered. The execution plans considered in this work
are derived from the rule-based optimizer model described in [4], which was de-
termined by carrying out a black-box analysis on the optimizer of Red Brick 6.0
[10].

Relational DBMSs necessarily require that an index is built at least on the
primary key of each table; thus we will assume that, for each view materialized
(including the base fact table), indexes are always built on the primary key of
both the fact table and the dimension tables. Besides these primary indexes,
other secondary indexes may optionally be built, if it 1s convenient, on non-key
attributes of dimension/fact tables. In this work, indexes built on numerical
measures of the fact table are not considered for simplicity.

A query execution plan is a sequence of elementary operators, each modeling
a function carried out by the DBMS on either tables or indexes. According to
the rule-based model adopted in [4], the execution plan for query ¢ in presence of
BT-tree and bitmap indexes is mainly determined by the number ¢ of dimension
tables conditioned in g¢:

— If ¢ = 0, the fact table is sequentially scanned then joined with all the
dimension tables involved in ¢ through a nested-loop on their primary key
indexes.

— If ¢ = 1, the conditioned dimension table is accessed by the index on the
conditioned attribute if such index has been created, by sequential scan
otherwise. The join with the fact table is based on nested-loop if the fact
table is indexed on the corresponding foreign key, on hybrid hash otherwise.
The result of the join is then joined with all the other dimension tables
requested in output.

— If ¢ > 1, each conditioned dimension table is joined separately with the
fact table. A conditioned dimension table is accessed by the index on the
conditioned attribute if such index has been created, by sequential scan
otherwise. The join with the fact table is based on nested-loop if the fact
table is indexed on the corresponding foreign key, on hybrid hash otherwise.
The tid sets obtained from the different conditioned dimension tables are
then intersected, and the corresponding tuples of the fact table are accessed.
Finally, the result is joined with all the dimension tables requested in output.

Of course, after the join has been completed, the grouping is executed.

Example 4 The graphical representation of two possible execution plans on the
base fact table LINEITEM for the query in Example 2 are depicted in Figure 2 (the
group-by operator is not reported). In the first one (top of figure), only primary
indexes have been created; thus, conditioned dimension tables are accessed by
sequential scan and joined with the fact table by hybrid hash. In the second
plan (bottom of figure), indexes on the conditioned attribute SUPPLIER.SRegion
and ORDER.OVYear, as well as indexes on the foreign keys LINEITEM.Supplierld
and LINEITEM.Orderld, have been built; thus, conditioned dimension tables are



accessed via index and joined by nested loop with the fact table, accessed via

index as well. The rest of the plan does not change in the two cases. ad
SCAN
(SUPPLIER) N[ riveRID-HASH | XACCESS ang
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Fig. 2. Execution plans for the query in Example 2 (ACCESS denotes accessing a table
via tuple identifiers, XACCESS via an index)

5 The Cost Model

Let ¢ be a query over the star scheme composed of tables FT( DT

DTT(LO), and let G and Gy be, respectively, the grouping sets of ¢ and F7T'(%)
(|Gg| = n). As detailed in Section 6, our approach to evaluate the benefits of
materialization and indexing for ¢ is based on the comparison between the costs
for executing ¢q over three notable configurations of the logical /physical scheme:

g ey

(0)
1

1. No view is materialized and only primary indexes are built on the base fact
table F7(® and on each DTZ»(O). In this case ¢ is solved by hybrid-hash join
on FTO) (reference plan);

2. The view FT(9) yielding the least cost for ¢, i.e. the view having grouping
set G, is materialized; only primary indexes are built on F7(%) and on each
DTZ»(G). In this case ¢ is solved by hybrid-hash join on FT(%) (view plan);

3. No view is materialized but, besides primary indexes, also all potentially
useful secondary indexes on F7T(°) (those on foreign keys) and on each DTZ»(O)
(those on conditioned attributes) are built. In this case ¢ is solved by nested-
loop join on FT(®) (index plan).

Note that reference and view plans are structured as in Figure 2 at the top,
while index plans are structured as in Figure 2 at the bottom.



The notation used in defining the cost model for these plans is summarized
in Table 1; the simple formulae adopted for estimating the numbers of table
pages and index leaves are omitted for brevity. According to the execution model
described in Section 4 and assuming that hierarchies are ordered in such a way
that the conditioned ones come first, the cost in disk pages of the reference, view,
and index plans for ¢ (not comprising the cost of group-by) may be estimated
respectively as follows:

costrer(q) =

COStview (Q) =

costip(q) =

NPF(Go)+

I (VPD(al)) + NLD(a{)) ife=0

~—

NPF(Gy) + NPD(al%))+
£l N PD@@ ) + NLD@@F))  ife=1
(c+ f) - NPF(Go) + 5_, NPD(a\“)+
7SN PD@E) 4 NLD(@P))  ife>1
NPF(G)+
I (N PDaD) + NLD(a()) ife=0

NPF(G)+ NPD(a\“)+
[ PD@D) + NLD(@@ ) ife=1
(c +£) - NPF(G) + Y5z, NPD(a[")+
- NPDE D) + NLD@a(D))  ife>1

)

costref (

S (VPD(al%)) + NLD(a{"))))
Sy f - (VL@E™) 4 NPD(@) 4 NLS)+

f1~NPF(G0)

F- I (N PD(a) + NLD(a{"))

K3

q
fo(N (ac°"d)+NPD(< Y+ NLS + NPF(Go)+

ife=0
ife=1
ife>1

(3)

Some considerations on the assumptions and approximations introduced:

keys.

All fact and dimension tables are assumed to be ordered on their primary

All selection predicates are assumed to select a continuous range of values.
The cost for tid-intersection is neglected; when estimating the cost of an

index access, the cost for descending the tree is neglected. The cost of group-
by is not considered here: the reason for this will be made clear in Section

6.

For simplicity, when estimating the number of accesses to the fact table in

the presence of selection predicates, we assume that the tuples to be read
are adjacent; a more precise evaluation would require to use the Cardenas

formula [3].



Table 1. Notation for the cost model

Query
G grouping set
|G| number of attributes in G
(@)

attribute of the i-th hierarchy in G, 1 < i < |G|
a9 attribute of the i-th hierarchy in Go, 1 <1 < |G|

c number of conditioned hierarchies (0 < ¢ < |G])
aEwnd) conditioned attribute in the :-th hierarchy, 1 < <¢
£ selectivity of the selection predicate on the -th hierarchy, 1 <
k2

i<c(0< f; <1, fi =1 if not conditioned)
f global selectivity (f = [[i_, fi)
Tables

card(G) |cardinality of FT()

NPF(G) [number of pages of F1(%)
NPD(GEG)) number of pages of DTi(G)
Indexes

NL(aEwnd)) number of leaves of index on attribute aEwnd) over DTi(GD)
NLD(GEG)) number of leaves of primary index on DTi(G)
NLF(G) |number of leaves of primary index of FT9

NLS number of leaves of secondary index on a foreign key of FT(®

These formulae have been validated by comparing the costs they estimate with
the corresponding costs measured on Red Brick for different values of the pa-
rameters; the error is always less then 10%.

The results presented in this section are computed on a star scheme including
3 equal hierarchies of 10 attributes each; the domain cardinality 1s 1000. The base
fact table includes 106 tuples with 8 measures. Each measure and attributes
takes, respectively, 8 and 20 bytes. Each disk page is 8 KB. Figure 3 shows how
costyiew(q) depends on the grouping set G and on the global selectivity f of ¢
for ¢ = 2; the cost of the reference plan is very similar to costyiey (¢) for G = Gy.
The cost of the view plan is linear in both card(G) and f; this is due to the fact
that its most significant term is (¢ + f) - NPF(G).

Figure 4 shows how cost;;(¢) depends on GG and f for ¢ = 2. The cost does not
significatively depend on card((), since ¢ is executed on FT): the dependence
on f is slightly parabolic.

6 Benefit Evaluation

In this section we will discuss and compare the benefits, meant as savings per

disk page, of view materialization and indexing for different classes of queries.
We define the benefit of materialization for ¢ as the difference between the

total costs for executing ¢ on FT(® and on FT(%) with only primary indexes
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Fig. 3. Cost of the view plan for ¢ = 2 (expressed in disk pages)
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Fig. 4. Cost of the index plan for ¢ = 2

built, divided by the space overhead of materialization:

costrer(q) + costGBrey () — (costyicw(q) + c05tG Byicw (¢))

SPACEyjew (Q)

bfv(q) =

(4)

where costG Byt (q) and costG Byjew (¢) are the costs of grouping for the reference
and the view plans, while

spaceyiew (¢) = NPF(G)+ NLF(G) + Z (NPD(a)+ NLD(a)) (5)

By definition, for a query ¢ whose grouping set is G(% it is spaceyiew (q) = 0 and
bfv(q) =0.

As to grouping, consistently with the Red Brick implementation, we assume
that a hash-based algorithm is used. The experimental tests revealed that, while
the cost of grouping depends substantially on the number of groups in output, it
depends only marginally on the number of tuples to be grouped. Thus, since the
number of groups is the same for both plans (it only depends on the grouping set
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Fig.5. Benefit of materialization for ¢ =1 (top) and ¢ = 2 (bottom)

and on the selectivity of ¢), we will assume for simplicity that costGB,cr(g) =
costG Byiew(q). 2

Figure 5 shows the benefit of materialization for ¢ = 1 and ¢ = 2 (case ¢ = 0 is
not shown since very similar to ¢ = 1). While in the first case the benefit is largely
independent of f 3, in the second it varies linearly with it. The dependence on
card((@) is always hyperbolic (roughly, it is bfy-(q) = O(card(Gy)/card(G))).

We define the benefit of indexing for ¢ as the difference between the costs
for executing ¢ on FT(%) when only primary indexes are built and when all
potentially useful indexes are built, divided by the space overhead of indexing;
the group-by cost is not considered since it is the same for both the reference

2 The error introduced is obviously higher for low values of card(G), since the differ-
ence between the number of tuples to be grouped in the reference and the view plans
is more relevant. On the other hand, in this case the benefit is high since the view on
G is very small. Thus, a possible way of taking the group-by cost into account would
be to multiply the benefit of materialization by a corrective factor greater than 1.

® This is due to the fact that no indexes are built and hybrid-hash join is used. The
main term determining the cost is that related to the sequential scan of the fact
table, which is independent of f.
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Fig. 6. Benefit of indexing for ¢ = 1 (top) and ¢ = 2 (bottom)

and the index plans (both the tuples in input and the groups in output are the
same for the two plans):

costrer(q) — costiz(q)
b =
fx(q) spacers (q) (6)
where *
spacei;(q) = Z NL(aZ(»cond)) +c¢-NLS (7)
=1

Figure 6 shows the benefit of indexing for ¢ = 1 and ¢ = 2 (for ¢ = 0 it is
obviously bfx (¢) = 0). While in the first case the benefit is linear in f, in the
second it is nearly constant; in both cases it does not depend on card(G).

It is now very interesting to compare the two benefits. Figure 7 shows the
contour lines of the surface representing bfv (¢) — bfx (¢) in function of card(G)
and f; the white and the grey areas correspond, respectively, to bfy (¢) > bfx(q)

* Assuming that, for indexing foreign keys of fact tables, Bt-trees are always used.
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Fig. 7. Contour lines for bfv(q) — bfx(g) in case ¢ =1 (top) and ¢ = 2 (bottom)

and bfyv(q) < bfx(q). Compare this diagram with the qualitative one sketched
in Figure 1: the influence of selectivity is less relevant than we expected; besides,
though the benefit of materialization reaches higher values than indexing, the
convenience area for indexing is much larger.

7 Balancing Space Constraints

Given a constraint .S (expressed in disk pages) on the total disk space available
for optimization, in this section we propose an approach to estimate the fractions
of S to be devoted to materialization and indexing, Sy and Sx respectively, with
reference to a given workload W. We will assume that the space S‘(/O), required to
store the base fact table FT() together with its dimension tables and primary
indexes, 1s not included in S; thus, even case S = 0 corresponds to a feasible
constraint (no optimization at all). On the other hand, Sy and Sx are to be
meant, respectively, as the space to be allocated for views (not including the
base fact table) plus their related dimension tables and primary indexes, and
the space to be allocated for indexes on foreign keys of fact tables (including the

base one) and non-key attributes of dimension tables.



We will first introduce two extreme optimization situations, which we will
call full materialization and full indexing:

— Given a workload W, full materialization occurs when, for each query ¢ € W,
an ad hoc view FT(%) (where (G is the grouping set of ¢) is materialized.
Letting S{;u” = quw spaceyiew (q), the total disk space required for full

materialization is S‘(/O) + S‘J;u”.

— A materialized view is fully indered when, for each ¢ € W to be executed
on it, all the useful indexes have been created. Given a set of views taking
space Sy, we will denote with (Sv)qu” the total space for full indexing all

of them plus the base fact table; thus, (O)qu” is the space to fully index the

base fact table only, while (S{;u”)fxu” is the space to fully index also all the
views in case of full materialization. We estimate (Sv)qu” by assuming that

Sv+80 S + 8P
(Sv)qull - (S“);ull)qull
Sv + Sy
full o PV Vv

= (Sv)¥ e T )]
Sy + Sy

(8)
. (S‘J;ull)qull (9)

In the remainder we will assume that S < S{;u” + (S{;u”)fxu”; if not, the space
constraint is redundant and the space trade-off can be easily found.

As a first observation, an index may only be built on a view which has been
materialized: thus, for a set of materialized views taking space Sy, (Sv)qu” is
an upper bound to the space which can be realistically filled with indexes. For
instance, given S = 10000 disk pages, let Sy = 6000 and Sx = 4000 define the
space trade-off for a workload which encourages indexing. Now, suppose that
fully indexing the views materialized within Sy plus the base fact table requires
only 1000 pages: 3000 pages uselessly reserved to indexes will be wasted, while
they could have been more profitably used for materialization.

As a second observation, the space reserved for materialization should not
overcomme S{;u”. For instance, let .S = 10000, Sy = 8000, and Sx = 2000 for a
workload which encourages materialization. Now, suppose that full materializa-
tion requires only 6000 pages besides the base fact table: 2000 pages uselessly
reserved to views will be wasted, while they could have been more profitably
used for indexing.

As depicted in Figure 8, this situation can be summarized by constraining
the feasible trade-off solutions, for each value of S, as follows:

Sy +Sx =S (10)
0<S5x < (Sv)qu” (11)
0< Sy < s (12)

Thus the grey area shown in Figure 8, delimited by
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Fig. 8. Estimated values for Sx in function of S when the workload encourages indexing
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upper . u . (SfU”)fU” ) (S + S(O))
SYTT = mm{(SV)fX ”,S} = mm{ ful‘; " Full full - OR (13)
Sy Sy )x - + Sy

Stewer = max{0, S — 5 (14)

represents the space of the feasible solutions (Sl)?we’" < SYP" when 0 < S <
S{;u” + (S{;u”)fxu”). Within such space, the optimal values for Sy and Sx are
estimated by considering the ratio between the benefits of materialization and
indexing, computed on the whole workload. For a given global constraint .S and

with reference to workload W = {¢1,...,¢,}, let
S
bf _
X = 14+ EQ,ebeV(q’) (15)
quew bfx (qi)
Then, the estimate for the optimal space trade-off is defined as follows:
Shgwer i S5 < Shger
Sx =< SY, if Sigwer < S < glgwer (16)
supper i S guprer
Sy =5 - Sx (17)

8 Experimental Tests and Conclusions

In this paper we have presented a comparative evaluation of the benefits brought
by view materialization and indexing in DW’s in function of the query charac-
teristics. Then, we have proposed a heuristic approach to estimate, for a given
workload and a global space constraint, the optimal trade-off between the space
devoted to view materialization and that devoted to indexing.

The experimental tests presented in this section were conducted on the same
star scheme used in Section 5. Three different workloads were considered, each



including 25 queries: W1y, which encourages indexing, Wa, which encourages ma-
terialization, and W3 in which queries are uniformly distributed in the space of
card(G) and f.

Figure 9 shows how the global cost of workload W3 (expressed in disk pages)
varies depending on the relative space amount devoted to materialization and
indexing, for different values of S. Since each disk page takes 8 KB, the space
constraint ranges approximatively between 100 MB and 1 GB. The algorithms
used for view materialization and indexing are those proposed, respectively, in
[2] and [4]. The cost for a non-optimal space trade-off may even be three times
that of the optimal trade-off; the irregular shape of the curves is due to the
sub-optimality introduced by the heuristic approaches to materialization and
indexing.

120000

Sy=0 Sy=Sx Sx=0

Fig.9. Cost of workload W3, as a function of the relative space amount devoted to
materialization and indexing, for increasing values of S

Figure 10 compares the estimated and optimal values for Sx in function of
S for all three workloads, emphasizing the relative position of the full indexing
and the full materialization lines, as well as the values of Sg(f suggested by the
ratio between the materialization and the indexing benefits.

Finally, Table 2 reports the percentage difference between the workload costs
for the optimal solution and for the solution estimated by our approach. It is
apparent that the costs measured when applying the estimated trade-off are very
close to those yielded by the optimal trade-off, which demonstrates the utility
of our approach.

Our future work on this topic will be aimed at overcoming the main limita-
tions of our approach:

— The benefits of materialization and indexing are not really independent of
each other, since only a view which has been materialized can be indexed. In
our present approach this is considered through the thresholding mechanism
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Fig. 10. Estimated and optimal values for Sx in function of S for W; (top left)7 Ws
(top right), and Ws (bottom)

introduced by full indexing; we will try to directly model the dependence of
indexing on materialization within the definition of benefit, instead.

— Presently, our benefit estimates are independent of whether the grouping sets
of the queries are scattered or clustered within the multidimensional lattice.
Intuitively, if grouping sets are very “near” to each other, the actual benefit
of materialization is higher than our estimate, since one common view may
dramatically decrease the cost for several queries.

— Rule-based optimizers present some well-known drawbacks due to the fact
that they do not take query costs into account. Developing and adopting a
detailed cost model also for a cost-based optimizer will widen the usability
of our approach.

— In this approach we considered only the workload cost as an indicator of the
quality of optimization, while also the maintenance costs of both views and
indexes should be considered.

Another interesting evolution of our approach is related to the absence of a
specific workload. In this case, Sg(f could be estimated by considering a uniform
distribution of queries, i.e. by computing the integrals of bfy (¢) and bfx (¢q) over
the card(G) x f space.
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