
CubeLoad: A Parametric Generator

of Realistic OLAP Workloads

Stefano Rizzi and Enrico Gallinucci

DISI – University of Bologna,
V.le Risorgimento 2, 40136 Bologna, Italy

{stefano.rizzi,enrico.gallinucci2}@unibo.it

Abstract. Differently from OLTP workloads, OLAP workloads are
hardly predictable due to their inherently extemporary nature. Besides,
obtaining real OLAP workloads by monitoring the queries actually is-
sued in companies and organizations is quite hard. On the other hand,
hardware and software benchmarking in the industrial world, as well as
comparative evaluation of novel approaches in the research community,
both need reference databases and workloads. In this paper we present
CubeLoad, a parametric generator of workloads in the form of OLAP
sessions, based on a realistic profile-based model. After describing the
main features of CubeLoad, we discuss the results of some tests that
show how workloads with very different features can be generated.

Keywords: OLAP, DataWarehouse, Business intelligence, Benchmarks.

1 Introduction

The term OLAP (On-Line Analytical Processing) is now widely used to refer to
multidimensional databases and to data warehouse systems. However, originally,
it was meant to denote a specific class of queries characterized by high interac-
tivity and flexibility, small formulation effort, read-only access, and data ag-
gregation, run by decision makers to analyze their business trend and effectively
explore key figures and indicators. While OLTP (On-Line Transactional Process-
ing) queries are normally grouped into transactions that support the everyday
operational processes in a company, OLAP queries are typically sequenced into
sessions. Users create sessions by applying a sequence of OLAP operations (such
as drill-down and slice-and-dice) that transform one multidimensional query into
another, starting from an initial query that is usually predefined [15]. During an
OLAP session the user analyzes the results of a query and, depending on the spe-
cific data she sees, applies one operation to determine a new query that will give
her a better understanding of information. The resulting sequences of queries
are strongly related to the issuing user, to the analyzed phenomenon, and to the
current data.

Differently from OLTP workloads, that are 90% frozen within operational
applications, OLAP workloads are hardly predictable due to their inherently
extemporary nature. Besides, obtaining real OLAP workloads by monitoring

M. Jarke et al. (Eds.): CAiSE 2014, LNCS 8484, pp. 610–624, 2014.
c© Springer International Publishing Switzerland 2014

CubeLoad: A Parametric Generator of Realistic OLAP Workloads 611

the queries actually issued in companies and organizations is quite hard because
(i) OLAP queries are at the core of the decision-making process, hence they are
jealously guarded by managers and administrators, and (ii) reconstructing OLAP
sessions by interpreting the query log of a multidimensional engine operating in
a multi-user context is very complex.

On the other hand, hardware and software benchmarking in the industrial
world, as well as comparative evaluation of novel approaches in the research
community, both need reference databases and workloads. To this end, some ef-
forts have been done over the years to provide standard benchmarks. Specifically,
in the OLAP context, the TPC-DS benchmark [14] has been recently developed;
it is based on a fixed set of star schemata including 7 fact tables and 17 dimen-
sion tables, and it provides a workload featuring queries that address complex
business problems and use a variety of access patterns.

The TPC-DS benchmark is carefully designed and offers a solid reference.
However, especially in research papers, there is often a need for using bench-
marks based on schemata with varying characteristic and on multiple alterna-
tive workloads with different features. For instance, it could be interesting to
understand how the performance of a proposed approach varies with the num-
ber of dimensions in a cube, with the average branching factor of hierarchies,
with the maximum length of sessions, or with the average selectivity of queries.
In particular, generating parametric OLAP workloads is crucial to the experi-
ments made in the context of OLAP prediction and recommendation, where the
features of sessions and queries may have a strong impact on the approach effec-
tiveness and efficiency. So, the papers in this context often rely on synthetically
generated OLAP workloads, where queries and session are built in a completely
random way based on a set of structural and statistical parameters [1–4]. Un-
fortunately, while these synthetic workloads serve well for efficiency tests, they
cannot provide significant results for effectiveness tests because they do not lean
on a realistic user model.

To fill this gap, in this paper we present CubeLoad, a parametric generator of
OLAP workloads. The main features of CubeLoad are:

– No predefined multidimensional schema is used. The benchmarker1 can cre-
ate a workload for any multidimensional schema provided it has been ex-
ported in XML compliant with the Mondrian format.

– The workload is generated in the form of sessions, each including a variable
number of aggregate queries. The main parameters used are related to a
realistic profile-based workload model.

– Sessions are generated according to a set of four templates, that model re-
current types of user analyses.

– If an instance of the multidimensional schema is available (in particular,
in the form of a set of dimension tables), its data are used for generating
instance-dependent (hence, more realistic) workloads.

– The generated workload is exported in XML to ensure maximum usability.

1 To distinguish users of OLAP front-ends from the users of CubeLoad, we will call
benchmarkers the latter.

612 S. Rizzi and E. Gallinucci

CubeLoad is written in Java and can be downloaded at http://big.csr.unibo.it/
downloads/CubeLoad.zip. It can be freely used by researchers, practitioners, and
vendors whenever they need to create parametric bulk OLAP workloads for
benchmarking and testing.

The paper outline is as follows. After discussing some related literature in Sec-
tion 2, in Section 3 we describe the overall functional architecture of CubeLoad.
Then we present our workload model and the session templates we defined so
far in Sections 4 and 5, respectively. Finally, in Section 6 we discuss the results
of some tests we made to profile the generated workloads and in Section 7 we
draw the conclusions.

2 Related Works

A milestone in OLAP benchmarking is the TPC-DS [14], that models the deci-
sion support functions of a retail product supplier relying on multiple snowflake
schemata with shared dimensions. The TPC-DS provides four classes of queries;
in particular, the class of iterative OLAP queries is distinguished by the ten-
dency of one query to be related to the previous query so as to create sequence
of queries —essentially, OLAP sessions. Queries are randomly generated starting
from four templates; however, there is no way of parameterizing the generation
of sessions.

In [7] the authors introduce the concept of workload profile as a way for sum-
marizing the features of an OLAP workload to support designers during logical
and physical design. However, the profile used there has a merely statistical na-
ture, and has no relationship with classes of users. Besides, only stand-alone
queries are generated.

A workload for evolutionary analytics is proposed in [10] together with several
test metrics and with a methodology for running the workload. The emphasis
there is not on standard OLAP sessions but rather on queries that evolve over
time (which may imply much more drastic changes than those obtained through
OLAP operations) and are formulated over changing data and schemata.

A Data Warehouse Engineering Benchmark (DWEB) that allows to generate
various ad-hoc synthetic data warehouses and workloads is presented in [6].
Though the DWEB workload is parameterized to fulfill data warehouse design
needs, it does not create queries in sessions and is ruled by statistical parameters
rather than by realistic assumptions.

The author of [13] starts from the query generator of the TCP-DS to define a
set of rules that transform a SQL query into another SQL query similar to the
original. However, this transformation works at a merely syntactical level (e.g., a
new query can be created by changing the comparison operator in the selection
predicate) and does not consider OLAP operations such as slicing and drilling.

In [18] the authors introduce a query generator to evaluate the quality of a
query optimizer. Similarly to ours, the generator presented is schema-independent
and is able to produce valid queries on any database. However, only OLTP
queries are generated and, therefore, there is no mention of query sessions.

CubeLoad: A Parametric Generator of Realistic OLAP Workloads 613

CubeLoad

MD schema

workload

dimension
data

global
param.

profile
param.

UI

MD Schema Mng.

Template Mng.

File Interface

Session Generator

Fig. 1. Functional overview of CubeLoad

Finally, a benchmark on star schemata that extends the TPC-H is presented
in [12]; the emphasis here is more on data schemata than on queries, so only 4
non-parameterized OLAP sessions (called query flights here) are provided.

3 Overview

A functional overview of the CubeLoad architecture is sketched in Figure 1.
The main input is the multidimensional schema on which the workload is to
be generated. To provide this input we adopt the XML specification used by
Mondrian for its metadata [9].

Example 1. IPUMS is a public database storing census microdata for social and
economic research [11]. An excerpt of the XML specification for its CENSUS
multidimensional schema is given below.

<?xml version=”1.0”?>
<Schema name=”Ipums”>
<Cube name=”CENSUS”>
<Table name=”FACT500K”/>
<Dimension name=”CITY” foreignKey=”CITY”>
<Hierarchy hasAll=”true” primaryKey=”IDCITY” allLevelName=”AllCity” allMemberName=”All”>
<Table name=”CITY”/>
<Level name=”Region” column=”REGION” type=”String” uniqueMembers=”true”/>
<Level name=”State” column=”STATE” type=”String” uniqueMembers=”true”/>
<Level name=”City” column=”CITY” type=”String” uniqueMembers=”false”/>

</Hierarchy>
</Dimension>

614 S. Rizzi and E. Gallinucci

<!– other dimensions –>
<Measure name=”SumCostGas” column=”COSTGAS” aggregator=”sum”/>
<Measure name=”SumIncTot” column=”INCTOT” aggregator=”sum”/>
<!– other measures –>

</Cube>
</Schema>

Here, a CITY hierarchy is declared that features three aggregation levels, Region,
State, and City besides the AllCity level. Besides, two measures SumCostGas and
SumIncTot are declared. �

To maximize interoperability, the workloads generated by CubeLoad are coded
using XML; an example is shown below:

<Benchmark>
<!– parameters –>
<Session profile=”Manager” progressive=”1” template=”Goal Oriented”>
<Query progressive=”1”>
<GroupBy>
<Element> <Hierarchy Value=”CITY”/> <Level value=”State”/> </Element>
<!– other group-by elements –>

</GroupBy>
<Measures>
<Element value=”MaxCostGas”/> <Element value=”SumCostGas”/>

</Measures>
<SelectionPredicates>
<Element>
<Hierarchy value=”OCCUPATION”/> <Level value=”Category”/>
<Predicate value=”Dentists”/>
<YearPrompt value=”false”/> <SegregationPredicate value=”false”/>

</Element>
</SelectionPredicates>

</Query>
<!– other queries –>

</Session>
<!– other sessions –>

</Benchmark>

(an explanation of the parameters and of the other workload elements mentioned
in this XML will be given in Section 4).

To generate realistic selection predicates and enable report sizes to be esti-
mated, dimension data are needed. These data can be fed into CubeLoad using
the CSV (comma-separated values) format, which can be easily obtained by
benchmarkers by exporting dimension tables.

Internally, CubeLoad includes five components:

1. The user interface, that allows benchmarkers to select the XML multidi-
mensional schema to be used and choose values for global and profile param-
eters.

2. The file interface, in charge of reading and parsing XML and CSV input
files and of writing XML output files.

3. The multidimensional schema manager, that builds an internal repre-
sentation of cubes and dimension data.

4. The session generator, that runs the basic procedures for creating sessions
respecting the constraints posed by global and profile parameters.

5. The template manager, that gives the session generator additional rules
for creating sessions based on each template.

CubeLoad: A Parametric Generator of Realistic OLAP Workloads 615

4 The Workload Model

The output of CubeLoad is an OLAP workload, defined as a set of sessions. A
session is a sequence of queries. In the current implementation, we support a basic
form of multidimensional query consisting of (i) a group-by (i.e., a set of hierarchy
levels on which measure values are grouped); (ii) one or more measures whose
values are returned (the aggregation operator used for each measure is defined
by the multidimensional schema); and (iii) zero or more selection predicates, each
operating on a hierarchy level. We call report the result of a query; its size is
the number of facts returned. Roughly, the size of a report can be estimated
as the product of the domain cardinalities for all levels in the query group-by,
reduced by considering the selectivity factors of the selection predicates; more
accurate estimates can be computed if the sparsity of the cube is known [5]. Two
consecutive queries within a session are normally separated by the application of
one OLAP operation, that changes either the group-by, or the selection predicate,
or the set of measures returned, as shown in the following example.

Example 2. An example of a session starting from seed query q1 is s =
〈q1, q2, q3, q4〉; the group-by’s, selection predicates, and returned measures for
the queries involved are shown in Table 1. Query q2 is obtained from q1 by
drilling-down the cube along the CITY dimension; q3 is obtained from q2 by
slicing-and-dicing the cube; q4 is obtained from q3 by changing the measure
returned. �

Table 1. Queries for the sample session in Example 2

Query Group-by Selection predicate Measures
q1 State, Year Region=’South Atlantic’ SumCostGas
q2 City, Year Region=’South Atlantic’ SumCostGas
q3 City, Year Occupation=’Dentists’ SumCostGas
q1 City, Year Occupation=’Dentists’ SumIncTot

In company settings, users of OLAP front-ends are normally grouped into pro-
files with different skills (e.g., CEO, marketing analyst, department manager)
and involved in business analyses with different features (e.g., more or less repet-
itive, more or less complex). Importantly, different profiles generally have quite
different permissions for accessing data; often, a profile has one or more segre-
gation predicates, i.e., it can only view a specific slice of the cube data (e.g., a
department manager can only access the sales for her department).

When a user logs to the OLAP front-end, she is typically shown a page where
some predefined queries (which we call seed queries) are linked. Sometimes seed
queries include a prompt, meaning that the front-end asks the user to select one
value out of the domain of a level (often, the year). After choosing and executing
one of these queries, the user starts applying a sequence of OLAP operations that
progressively transform a query into another so as to build an analysis session.

616 S. Rizzi and E. Gallinucci

Features such as the number of seed queries available, the maximum size and
complexity of reports returned by seed queries, and the average length of sessions
may significantly depend on the typical ICT skills and business understanding
for the users of each profile —besides on the quality of the OLAP fron-end.

To simulate the above setting, CubeLoad uses a set of parameters that rule
workload generation and are distinguished into global parameters and profile
parameters. The global parameters rule:

– the number of distinct user profiles to be simulated. Each profile simu-
lates a specific class of OLAP users and is characterized by different values
of the profile parameters. Each session is generated for one profile, so the
sessions in the resulting workload can be naturally grouped into clusters; the
more different the parameters for the profiles, the sharper the clusters.

– the maximum number of measures that can be returned by a single
query. A report including several measures is hardly readable by anyone,
so the value for this parameter mainly depends on how sophisticated the
visualization modes supported by the OLAP front-end are.

– the minimum and maximum size of seed query reports. The size (i.e.,
number of cells) of a query result depends on the query group-by and on
the presence of selection predicates. While during an unconstrained OLAP
sessions users can (either consciously or unconsciously) formulate a query
that returns a report with either negligible or huge size, seed queries are
typically created by front-end programmers in such a way that their report
size is reasonable. This is reason the reason why in our model the size of
seed query reports ranges within a parametric interval.

– the number of surprising queries, whose meaning will be explained in
Section 5 in relationship to the explorative template.

Each profile is then associated to a further set of parameters, that rule:

– the number of seed queries. Specialists’ profiles have a large number of
seed queries; managers’ profiles may have a low number of seed queries.

– the minimum and maximum length of sessions. The values for these
parameters depend on the ICT skills of the users of each profile and on the
complexity of the analyses they usually carry out.

– the number of sessions to be created. The more intensive the use of the
OLAP front-end for the users of a profile, the higher the value of this pa-
rameter.

– the fraction of seed queries that include a year prompt. This fraction
depends on the time scope of decision-making tasks for each profile (operative
profiles typically analyze daily to monthly trends, while managerial profiles
are often interested in yearly trends).

– the presence of a segregation predicate. A segregation predicate is typ-
ically present in departmental or geographically-distributed profiles (e.g.,
production manager and sales manager for Italy).

The workload model is summarized in Figure 2 in the form of a UML class
diagram.

CubeLoad: A Parametric Generator of Realistic OLAP Workloads 617

Workload

Session

Query

ProfileTemplate

{ordered}

Level

Selection
Predicate

Measure

defined on

of for

1..*

1..*

1..*1..*

1

1

1

1

*

* *

*

*

*

1..*

1..*

groups-by

has

returns

ssion

uery

Profile

Level

ection
dicate

defined on

1..*1 *

1..**1 **

11

11

**

*

**

1..*

1..*1 *11

groups-by

segregates on

*

0..1

**
seed for

*

1..*

Surprising
Query

Fig. 2. UML workload model

5 Session Templates

Each session generated by CubeLoad for a given profile starts from one of the
seed queries for that profile and evolves, consistently with global and profile
parameters, according to a template. In its current implementation, CubeLoad
uses four different templates for generating sessions:

1. Slice-and-Drill. In several OLAP front-ends, the default behavior when a
user clicks on a row/column of a pivot table is to disaggregate the values for
that row/column into its components, which in OLAP terms means slicing
and drilling down. For instance, starting from a report showing sales per
state and year, clicking on 2013 would trigger a query showing sales per state
and month of 2013, while clicking on Florida would trigger a query showing
sales per Florida cities and year. In sessions based on this template, (non-
segregated) hierarchies are progressively navigated by choosing a hierarchy
h, a member v of the current group-by level l ∈ h and creating a new query
with selection predicate l = v and group-by on the level l that precedes l
within h.

2. Slice-All. Users are sometimes interested in navigating a cube by slices, i.e.,
in repeatedly running the same query but with different selection predicates.
In sessions based on this template, a level l of the group-by of the seed query

618 S. Rizzi and E. Gallinucci

slice-and-drill slice all

explorative goal-oriented

gr
ou

p-
by

selection predicate

Fig. 3. Session templates (seed queries in green, surprising queries in red)

is chosen, and new queries are generated by keeping the same group-by
and adding selection predicates on the different members of l. For instance,
starting from a query asking for the monthly sales by state for the video
department, the subsequent queries could ask for the same report for the
audio, the photo, and the PC departments.

3. Explorative. Some queries may return reports that are particularly inter-
esting for most users, for instance because they show unexpected results (e.g.,
they show that the impact of a social policy is not the one that had been pre-
dicted) or have a strong impact on business (e.g., they show that the level of
qualified employment in a given area is extremely low, which requires a cor-
rective action to be taken). Following [16], we call them surprising queries.
The motivation for this template is the assumption that several users, while
exploring the cube in search of significant correlations, will be “attracted”
by one surprising query. So, sessions based on this template tend to converge
“near” to one of the surprising queries, then they evolve casually. Note that
the overall number of surprising queries is fixed by a global parameter, while
each surprising query is randomly generated.

4. Goal-Oriented. Sessions of this type are run by users who have a specific
analysis goal, but whose OLAP skills are limited so they may follow a com-
plex path to reach their destination. All the goal-oriented sessions starting
from the same seed query q end in the same (randomly-generated) query
p, but the sequence of OLAP operations to be applied to reach p from q is
generated randomly.

Figure 3 shows an intuition of sessions based on the four templates in a qual-
itative group-by/selection predicate space.

CubeLoad: A Parametric Generator of Realistic OLAP Workloads 619

6 Experiments

To verify that the CubeLoad parameters and templates actually allow a wide
spectrum of workloads to be generated, and to help benchmarkers better under-
stand the relationships between those parameters/templates and the workload
features, we use a similarity function that was specifically proposed in [2] for
comparing OLAP queries and sessions. The query similarity function, σque, is
a combination of three components: one related to group-by’s, one to selection
predicates, and one to measure sets.

Definition 6.1 (Similarity of OLAP queries). Let q and q′ be two queries
on the same n-dimensional schema. The similarity between q and q′ is

σque(q, q
′) = 0.35σgbs(q, q

′) + 0.50 · σsel(q, q
′) + 0.15 · σmeas(q, q

′) ∈ [0..1]

where:

– The similarity between the group-by’s of q and q′, {l1, . . . , ln} and {l′1, . . . , l′n}
respectively, is

σgbs(q, q
′) = 1−

∑n
i=1

Distlev(li,l
′
i)

Li−1

n

where Li is the total number of levels in the i-th hierarchy, hi, and
Distlev(li, l

′
i) ∈ [0..Li − 1] is the distance between its two levels li and l′i.

– The similarity between the selection predicates of q and q′, {p1, . . . , pn} and
{p′1, . . . , p′n} respectively, is

σsel(q, q
′) = 1−

∑n
i=1

Distpred(pi,p
′
i)

Li

n

where the distance Distpred(pi, p
′
i) between predicates pi and p′i, both formu-

lated on levels of hierarchy hi, is 0 if they are expressed on the same level
and using the same constant, 1 if they are defined on the same level but not
on the same constant, greater than 1 if they are defined on different levels.

– The similarity between the measure sets returned by q and q′, M and M ′

respectively, is

σmeas(q, q
′) =

|Meas ∩Meas′|
|Meas ∪Meas′|

The session similarity function, σali(s, s
′) ∈ [0..1], is based on the best align-

ment between the queries belonging to sessions s and s′. The best alignment is
computed by means of the Smith-Waterman algorithm, which efficiently matches
subsequences of two given sequences by ignoring the non-matching parts [17]. It
is a dynamic programming algorithm based on a matrix whose value in position
(i, j) expresses the score for aligning subsequences of s and s′ that end in queries
si and s′j , respectively. This score is computed starting from the similarity be-
tween the queries included in the aligned subsequences [2].

620 S. Rizzi and E. Gallinucci

Table 2. CubeLoad parameters used for generating the three sample workloads

Sample workload W1 W2 W3
Number of profiles 1 1 1

Max number of measures 2 2 2
Size of seed query reports 10÷ 100 10÷ 100 10÷ 100

Number of surprising queries 5 2 1
Number of seed queries 50 5 1

Length of sessions 7÷ 12 7÷ 12 7÷ 12
Number of sessions per seed query 4 40 200

Year prompt fraction 0.25 0.50 1.00
Segregation predicate No Yes Yes

To explore the range of possibilities of CubeLoad we generated three sample
workloads with the following “extreme” features:

1. Workload W1 is a sparse one, i.e., the sessions generated are quite different
one from another. This result is mainly obtained by using a high number of
seed queries and generating a few sessions per seed.

2. Workload W2 is a clustered one, i.e., the sessions generated are similar
to each other in five groups. This is mainly obtained by defining five seed
queries.

3. Workload W3 is a dense one, i.e., the sessions generated are all quite similar
to each other. This is mainly obtained by defining a single surprising query
and by generating all sessions starting from the same seed query.

For a fair comparison, all three workloads include the same numbers of sessions
(200); the values for the other parameters are summarized in Table 2.

A qualitative analysis of these three workloads can be made by observing
Figure 4, that shows for each of them the session-to-session similarity. Each row
and column corresponds to one of the 200 sessions of the workload, so each cell
shows the similarity between two different sessions of the same workload: white
means σali = 0, black σali = 1, gray shades mean 0 < σali < 1. As expected,
in Figure 4.a we find a very low average similarity between sessions, while in
Figure 4.c the average similarity is much higher. In Figure 4.b we can easily
find the five cluster as areas with higher-than-average similarity. A quantitative
confirmation of this fact can be found in Figure 5, that shows for each workload
the average session-to-session similarity and its standard deviation: they are
both lower for the sparse workload W1 (where all sessions are different), while
they increasingly grow higher for the clustered workload W2 (where sessions in
the same cluster are very similar to each other and very different from those in
the other clusters) and the dense workload W3 (in the latter case, the standard
deviation is high because the four templates adopted inevitably introduce a
scattering in the sessions generated).

Figure 5 also shows the propensity of each workload to being clustered. The
indicator we adopted to this end is the Hopkins statistics [8]. Given a workload
W , i.e., a set of N sessions, we first generate a set S of m fake sessions (m � N)

CubeLoad: A Parametric Generator of Realistic OLAP Workloads 621

200 sessions

200 sessions

(a)

200 sessions

200 sessions

(b)

200 sessions

200 sessions

(c)

Fig. 4. Session-to-session similarities for the three sample workloads

that are randomly and uniformly distributed in the space of possible sessions.
For each fake session si ∈ S, let ui be its distance from the nearest-neighbor
session in W (where Distance(s, s′) = 1 − σali(s, s

′)). Then, m sessions are
randomly chosen from W ; let wi be the distance of the i-th of these sessions
from its nearest-neighbor in W . The Hopkins statistics is then defined as

H =

∑m
i=1 wi∑m

i=1 ui +
∑m

i=1 wi

For workloadW1,H is near to 0.5; this means that the distance of each session in
W1 from its nearest-neighbor is very similar to the distance of each fake session,
i.e., that W1 has a random distribution. For W2 is quite small; this is because
the wi’s are small, which means that sessions are well clustered. For W3 H is
even smaller, because all sessions are part of a single, dense cluster.

622 S. Rizzi and E. Gallinucci

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

W1 W2 W3

Avg Sim.

+ Standard dev.

- Standard dev.

+ Standard dev.

- Standard dev.

Hopkins Stat.

Fig. 5. Average session-to-session similarity and Hopkins statistics for the three sample
workloads

Finally, Figure 6 gives a quantitative explanation of the differences between
our four templates by showing the similarity σque between the first query and
the subsequent queries for sessions based on each template. In the slice-and-
drill template, the saw-tooth trend arises because when a sequence of slice-and-
drill clicks along hierarchy h leads to a query grouped by the finest level of h,
the simulated user behavior is to go back to the seed query and start a new
slice-and-drill sequence along a different hierarchy (three such sequences are
clearly visible in the figure). In the slice-all template, only the specific member
appearing in the query selection predicate is changed during the session, so the
query similarity is mostly constant and quite high. In the explorative template,
the session rapidly converges towards the surprising query (the sixth query in
the session in this case), then it moves randomly in the query space (in this case,
it tends to reapproach the seed query). Finally, in the goal-oriented template the
session randomly moves towards its goal query.

7 Final Remarks

In this paper we have described the features of CubeLoad, a generator of OLAP
sessions aimed at simulating realistic workloads. The sessions generated are cur-
rently based on four templates and ruled by a set of parameters. The template
features and the impact of parameters on the resulting workload have been dis-
cussed with the support of some tests using a similarity function specifically
devised for OLAP sessions.

Some comparison between CubeLoad and TPC-DS is useful at this point.
Overall, the focus in the TPC-DS is more on the complexity of single queries
rather than on query sessions. Indeed, while the query model is more expressive
than in CubeLoad because nesting is supported, three of the four classes of
queries provided in the TPC-DS (namely, ad hoc queries, reporting queries, and
data mining queries) only include stand-alone queries; as such, they could be

CubeLoad: A Parametric Generator of Realistic OLAP Workloads 623

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8 9 10

Q
ue

ry
 S

im
ila

ri
ty

Query Position

Slice-and-Drill

Slice All

Explorative

Goal-Oriented

Fig. 6. Intra-session query similarity for the four templates

generated with CubeLoad by setting the maximum length of sessions to 1 and
properly tuning the maximum size of seed query reports (differently from the
first two classes, data mining queries are characterized by high cardinality of
the results). Conversely, the class of iterative OLAP queries comprises four base
sessions each including exactly 2 queries; more sessions can be generated from
each base session by randomly changing a selection predicate. In two of the base
sessions, the subsequent queries are not related by the application of a single
OLAP operator like in CubeLoad, so they can be quite “distant” from each
other, but still they are finalized to the same analysis goal. In the other two base
sessions, the two subsequent queries differ from their selection predicate. Thus,
an effective way to generate sessions like these ones with CubeLoad is to use the
goal-oriented and the slice-all templates and fix the number of seed queries to 4,
with a session length equal to 2.

Our future work on this topic will be mainly aimed at enhancing the capabili-
ties of CubeLoad in three directions: (i) by allowing benchmarkers to distinguish
skilled and non-skilled profiles, so as to enable a finer tuning of the workload fea-
tures; (ii) by defining other templates, so as to make CubeLoad more flexible and
usable for a wider array of benchmarks; and (iii) by adopting a more complex
query model, so as to make the generated workloads more realistic still. From
the engineering point of view, we plan to refactor the CubeLoad code according
to an open architecture where each benchmarker can write her own templates
in the form of a plugin.

Acknowledgements. We would like to thank Luca Spadazzi for his support in
implementing and testing CubeLoad, and Patrick Marcel (Université François
Rabelais, Tours, France) for the fruitful discussions about the features of a real-
istic OLAP workload.

624 S. Rizzi and E. Gallinucci

References

1. Aligon, J., Golfarelli, M., Marcel, P., Rizzi, S., Turricchia, E.: Mining preferences
from OLAP query logs for proactive personalization. In: Eder, J., Bielikova, M.,
Tjoa, A.M. (eds.) ADBIS 2011. LNCS, vol. 6909, pp. 84–97. Springer, Heidelberg
(2011)

2. Aligon, J., Golfarelli, M., Marcel, P., Rizzi, S., Turricchia, E.: Similarity measures
for OLAP sessions. In: KAIS (to appear, 2014)

3. Aligon, J., Marcel, P.: A framework for user-centric summaries of OLAP sessions.
In: Proceedings EDA, Bordeaux, France, pp. 103–117 (2012)

4. Aufaure, M.-A., Kuchmann-Beauger, N., Marcel, P., Rizzi, S., Vanrompay, Y.: Pre-
dicting your next OLAP query based on recent analytical sessions. In: Bellatreche,
L., Mohania, M.K. (eds.) DaWaK 2013. LNCS, vol. 8057, pp. 134–145. Springer,
Heidelberg (2013)

5. Ciaccia, P., Golfarelli, M., Rizzi, S.: Efficient derivation of numerical dependencies.
Inf. Syst. 38(3), 410–429 (2013)

6. Darmont, J., Bentayeb, F., Boussaid, O.: DWEB: A data warehouse engineering
benchmark. CoRR abs/0705.1453 (2007)

7. Golfarelli, M., Saltarelli, E.: The workload you have, the workload you would like.
In: Proceedings DOLAP, New Orleans, Louisiana, pp. 79–85 (2003)

8. Hopkins, B., Skellam, J.G.: A new method for determining the type of distribution
of plant individuals. Annals of Botany 18, 213–227 (1954)

9. Hyde, J.: Mondrian documentation (2011),
http://mondrian.pentaho.com/documentation/schema.php

10. LeFevre, J., Sankaranarayanan, J., Hacigümüs, H., Tatemura, J., Polyzotis, N.:
Towards a workload for evolutionary analytics. CoRR abs/1304.1838 (2013)

11. Minnesota Population Center: Integrated public use microdata series (2008),
http://www.ipums.org

12. O’Neil, P., O’Neil, E., Chen, X., Revilak, S.: The star schema benchmark and
augmented fact table indexing. In: Nambiar, R., Poess, M. (eds.) TPCTC 2009.
LNCS, vol. 5895, pp. 237–252. Springer, Heidelberg (2009)

13. Poess, M.: Controlled SQL query evolution for decision support benchmarks. In:
Proceedings WOSP, Buenes Aires, Argentina, pp. 38–41 (2007)

14. Pöss, M., Smith, B., Kollár, L., Larson, P.Å.: TPC-DS, taking decision support
benchmarking to the next level. In: Proceedings SIGMOD Conference, Madison,
Wisconsin, pp. 582–587 (2002)

15. Sapia, C.: PROMISE: Predicting query behavior to enable predictive caching
strategies for OLAP systems. In: Kambayashi, Y., Mohania, M., Tjoa, A.M. (eds.)
DaWaK 2000. LNCS, vol. 1874, pp. 224–233. Springer, Heidelberg (2000)

16. Sarawagi, S.: User-adaptive exploration of multidimensional data. In: Proceedings
VLDB, Cairo, Egypt, pp. 307–316 (2000)

17. Smith, T., Waterman, M.: Identification of common molecular subsequences.
Journal of Molecular Biology 147, 195–197 (1981)

18. Stillger, M., Freytag, J.C.: Testing the quality of a query optimizer. IEEE Data
Eng. Bull. 18(3), 41–48 (1995)

http://mondrian.pentaho.com/documentation/schema.php
http://www.ipums.org

	CubeLoad: A Parametric Generator of Realistic OLAP Workloads
	Introduction
	Related Works
	Overview
	The Workload Model
	Session Templates
	Experiments
	Final Remarks

