
Y. Kambayashi, M. Mohania, W. Wöß (Eds.): DaWaK 2003, LNCS 2737, pp. 89-98, 2003.
 Springer-Verlag Berlin Heidelberg 2003

Designing Web Warehouses from XML Schemas

Boris Vrdoljak1, Marko Banek1, and Stefano Rizzi2

1 FER � University of Zagreb
Unska 3, HR-10000 Zagreb, Croatia

{boris.vrdoljak,marko.banek}@fer.hr
2 DEIS � University of Bologna

Viale Risorgimento 2, 40136 Bologna, Italy
srizzi@deis.unibo.it

Abstract. Web warehousing plays a key role in providing the managers
with up-to-date and comprehensive information about their business
domain. On the other hand, since XML is now a standard de facto for
the exchange of semi-structured data, integrating XML data into web
warehouses is a hot topic. In this paper we propose a semi-automated
methodology for designing web warehouses from XML sources
modeled by XML Schemas. In the proposed methodology, design is
carried out by first creating a schema graph, then navigating its arcs in
order to derive a correct multidimensional representation. Differently
from previous approaches in the literature, particular relevance is given
to the problem of detecting shared hierarchies and convergence of
dependencies, and of modeling many-to-many relationships. The
approach is implemented in a prototype that reads an XML Schema and
produces in output the logical schema of the warehouse.

1 Introduction

The possibility of integrating data extracted from the web into data warehouses
(which in this case will be more properly called web warehouses [1]) is playing a key
role in providing the enterprise managers with up-to-date and comprehensive
information about their business domain. On the other hand, the Extensible Markup
Language (XML) has become a standard for the exchange of semi-structured data,
and large volumes of XML data already exist. Therefore, integrating XML data into
web warehouses is a hot topic.

Designing a data/web warehouse entails transforming the schema that describes the
source operational data into a multidimensional schema for modeling the information
that will be analyzed and queried by business users. In this paper we propose a semi-
automated methodology for designing web warehouses from XML sources modeled
by XML Schemas, which offer facilities for describing the structure and constraining
the content of XML documents. As HTML documents do not contain semantic
description of data, but only the presentation, automating design from HTML sources
is unfeasible. XML models semi-structured data, so the main issue arising is that not

90 Boris Vrdoljak et al.

all the information needed for design can be safely derived. In the proposed
methodology, design is carried out by first creating a schema graph, then navigating
its arcs in order to derive a correct multidimensional representation in the form of a
dependency graph where arcs represent inter-attribute relationships. The problem of
correctly inferring the needed information is solved by querying the source XML
documents and, if necessary, by asking the designer's help.

Some approaches concerning related issues have been proposed in the literature. In
[4] a technique for conceptual design starting from DTDs [12] is outlined. That
approach is now partially outdated due to the increasing popularity of XML Schema;
besides, some complex modeling situations were not specifically addressed in the
paper. In [5] and [6] DTDs are used as a source for designing multidimensional
schemas (modeled in UML). Though that approach bears some resemblance to ours,
the unknown cardinalities of relationships are not verified against actual XML data,
but they are always arbitrarily assumed to be to-one. Besides, the id/idref mechanism
used in DTDs is less expressive than key/keyref in XML Schema. The approach
described in [8] is focused on populating multidimensional cubes by collecting XML
data, but assumes that the multidimensional schema is known in advance (i.e., that
conceptual design has been already carried out). In [9], the author shows how to use
XML to directly model multidimensional data, without addressing the problem of
how to derive the multidimensional schema.

Differently from previous approaches in the literature, in our paper particular
relevance is given to the problem of detecting shared hierarchies and convergence of
dependencies, and of modeling many-to-many relationships within hierarchies. The
approach is implemented in a prototype that reads an XML Schema and produces in
output the star schema for the web warehouse.

2 Relationships in XML Schema

The structure of XML data can be visualized by using a schema graph (SG) derived
from the Schema describing the data. The method is adopted from [10], where
simpler, but less efficient DTD is still used as a grammar. The SG for the XML
Schema describing a purchase order, taken from the W3C's document [14] and
slightly extended, is shown in Fig. 1. In addition to the SG vertices that correspond to
elements and attributes in the XML Schema, the operators inherited from the DTD
element type declarations are also used because of their simplicity. They determine
whether the sub-element or attribute may appear one or more (�+�), zero or more
(�*�), or zero or one times (�?�). The default cardinality is exactly one and in that
case no operator is shown. Attributes and sub-elements are not distinguished in the
graph.

Since our design methodology is primarily based on detecting many-to-one
relationships, in the following we will focus on the way those relationships can be
expressed. There are two different ways of specifying relationships in XML Schemas.

• First, relationships can be specified by sub-elements with different cardinalities.
However, given an XML Schema, we can express only the cardinality of the
relationship from an element to its sub-elements and attributes. The cardinality

Designing Web Warehouses from XML Schemas 91

in the opposite direction cannot be discovered by exploring the Schema; only
by exploring the data that conforms to the Schema or by having some
knowledge about the domain described, it can be concluded about the
cardinality in the direction from a child element to its parent.

• Second, the key and keyref elements can be used for defining keys and their
references. The key element indicates that every attribute or element value must
be unique within a certain scope and not null. If the key is an element, it should
be of a simple type. By using keyref elements, keys can be referenced. Not just
attribute values, but also element content and their combinations can be
declared to be keys, provided that the order and type of those elements and
attributes is the same in both the key and keyref definitions. In contrast to
id/idref mechanism in DTDs, key and keyref elements are specified to hold
within the scope of particular elements.

3 From XML Schema to Multidimensional Schema

In this section we propose a semi-automatic approach for designing a web warehouse
starting from an XML Schema. The methodology consists of the following steps:

1. Preprocessing the XML Schema.
2. Creating and transforming the SG.
3. Choosing facts.
4. For each fact:

4.1 Building the dependency graph from the SG.
4.2 Rearranging the dependency graph.
4.3 Defining dimensions and measures.
4.4 Creating the logical schema.

Given a fact, the dependency graph (DG) is an intermediate structure used to
provide a multidimensional representation of the data describing the fact. In
particular, it is a directed rooted graph whose vertices are a subset of the element and
attribute vertices of the SG, and whose arcs represent associations between vertices.
The root of the DG corresponds to the fact.

name

purchaseOrder

orderDate
comment

shipTo

city

street

state zip
USPrice

partNum

*

shipDate

items
billTo

productName
quantity

itemcountry
??

?

?

? +
product

productCode
key size

weight
brand

keyref

Fig. 1. The Schema Graph

92 Boris Vrdoljak et al.

While in most cases the hierarchies included in the multidimensional schema
represent only to-one associations (sometimes called roll-up relationships since they
support the roll-up OLAP operator), in some applications it is important to model also
many-to-many associations. For instance, suppose the fact to be modeled is the sales
of books, so book is one of the dimensions. Although books that have many authors
certainly exist, it would be interesting to aggregate the sales by author. It is
remarkable that summarizability is maintained through many-to-many associations, if
a normalized weight is introduced [7]. Besides, some specific solutions for logical
design in presence of many-to-many associations were devised [11]. However, since
modeling many-to-many associations in a warehouse should be considered an
exception, their inclusion in the DG is subject to the judgment of the designer, who is
supposed to be an expert of the business domain being modeled.

After the DG has been derived from the SG, it may be rearranged (typically, by
dropping some uninteresting attributes). This phase of design necessarily depends on
the user requirements and cannot be carried out automatically; since it has already
been investigated (for instance in [2]), it is considered to be outside the scope of this
paper. Finally, after the designer has selected dimensions and measures among the
vertices of the DG, a logical schema can be immediately derived from it.

3.1 Choosing Facts and Building Dependency Graphs

The relationships in the Schema can be specified in a complex and redundant way.
Therefore, we transform some structures to simplify the Schema, similarly as DTD
was simplified in [10] and [6]. A common example of Schema simplification
concerns the choice element, which denotes that exactly one of the sub-elements must
appear in a document conforming to that Schema. The choice element is removed
from the schema and a minOccurs attribute with value 0 is added to each of its sub-
elements. The resulting simplified structure, although not being equivalent to the
choice expression, preserves all the needed information about the cardinalities of
relationships.

After the initial SG has been created [10], it must undergo two transformations.
First, all the key attributes or elements are located and swapped with their parent
vertex in order to explicitly express the functional dependency relating the key with
the other attributes and elements. Second, some vertices that do not store any value
are eliminated. A typical case is an element that has only one sub-element of complex
type and no attributes, and the relationship with its sub-element is to-many. We name
such an element a container. Note that, when a vertex v is deleted, the parent of v
inherits all the children of v and their cardinalities.

The next step is choosing the fact. The designer chooses the fact among all the
vertices and arcs of the SG. An arc can be chosen as a fact if it represents a many-to-
many relationship. For the purchase order SG presented in Fig. 1, after the items
element has been eliminated as a container, the relationship between purchaseOrder
and item is chosen as a fact, as in Fig. 2.

For each fact f, the corresponding DG must be built by including a subset of the
vertices of the SG. The DG is initialized with the root f, to be enlarged by recursively
navigating the relationships between vertices in the SG. After a vertex v of the SG is
inserted in the DG, navigation takes place in two steps:

Designing Web Warehouses from XML Schemas 93

fact

purchaseOrder

orderDate

item

*...

...?

Fig. 2. Choosing a fact

1. For each vertex w that is a child of v in the SG: When examining relationships
in the direction expressed by arcs of the SG, the cardinality information is
expressed either explicitly by �?�, �*� and �+� vertices, or implicitly by their
absence. If w corresponds to an element or attribute in the Schema, it is added
to the DG as a child of v; if w is a �?� operator, its child is added to the DG as a
child of v. If w is a �*� or �+� operator, the cardinality of the relationship from
u, child of w, to v is checked by querying the XML documents (see Section
4.5): if it is to-many, the designer decides whether the many-to-many
relationship between v and u is interesting enough to be inserted into the DG or
not.

2. For each vertex z that is a parent of v in the SG: When examining relationships
in this direction, vertices corresponding to �?�, �*� and �+� operators are
skipped since they only express the cardinality in the opposite direction. Since
the Schema yields no further information about the relationship cardinality, it is
necessary to examine the actual data by querying the XML documents
conforming to the Schema (see Section 4.5). If a to-one relationship is detected,
z is included in the DG.

Whenever a vertex corresponding to a keyref element is reached, the navigation
algorithm �jumps� to its associated key vertex, so that descendants of the key become
descendants of the keyref element. A similar approach is used in [3], where the
operational sources are represented by a relational schema, when a foreign key is met
during navigation of relations. See for instance Fig. 3, showing the resulting DG for
the purchase order example. From the fact, following to-one relationship, the item
vertex is added to the DG. Vertex productCode is defined to be a key (Fig.1). It is
swapped with product, which then is dropped since it carries no value. The partNum
vertex is a child of item and is defined as a key reference to the productCode attribute.
size, weight and brand, the children of productCode, become descendants of the
partNum attribute in the DG.

3.2 Querying XML Documents

In our approach, XQuery [15] is used to query the XML documents in three different
situations:

1. examination of convergence and shared hierarchies
2. searching for many-to-many relationships between the descendants of the fact

in SG
3. searching for to-many relationships towards the ancestors of the fact in the SG

94 Boris Vrdoljak et al.

item

quantity

purchaseOrder-item

partNum shipDate

productName

USPrice

size weight brand

purchaseOrder

orderDate

USAddress

name
street

zip

city

state country

FACT

comment

comment

Fig. 3. The DG for the purchase order example

Note that, since in all three cases querying the documents is aimed at counting how
many distinct values of an attribute v are associated to a single value of an attribute w,
it is always preliminarily necessary to determine a valid identifier for both v and w.
To this end, if no key is specified for an attribute, the designer is asked to define an
identifier by selecting a subset of its non-optional sub-elements.

Convergence and Shared Hierarchies. Whenever a complex type has more than one
instance in the SG, and all of the instances have a common ancestor vertex, either a
convergence or a shared hierarchy may be implied in the DG. A convergence holds if
an attribute is functionally determined by another attribute along two or more distinct
paths of to-one associations. On the other hand, it often happens that whole parts of
hierarchies are replicated two or more times. In this case we talk of a shared
hierarchy, to emphasize that there is no convergence.

In our approach, the examination is made by querying the available XML
documents conforming to the given Schema. In the purchase order example,
following a to-one relationship from the fact, the purchaseOrder vertex is added to
the DG. It has two children, shipTo and billTo (Fig. 1), that have the same complex
type USAddress. The purchaseOrder element is the closest common ancestor of
shipTo and billTo, thus all the instances of the purchaseOrder element have to be
retrieved. For each purchaseOrder instance, the content of the first child, shipTo, is
compared to the content of the second one, billTo, using the deep-equal XQuery
operator as shown in Fig. 4.

let $x:= for $c in $retValue
 where not(deep-equal($c/first/content,
$c/second/content))
 return $c
return count($x)

Fig. 4. A part of the XQuery query for distinguishing convergence from shared hierarchy

Designing Web Warehouses from XML Schemas 95

By using the COUNT function, the query returns the number of couples with
different contents. If at least one couple with different contents is counted, a shared
hierarchy is introduced. Otherwise, since in principle there still is a possibility that
documents in which the contents of the complex type instances are not equal will
exist, the designer has to decide about the existence of convergence by leaning on her
knowledge of the application domain. In our example, supposing it is found that
shipTo and billTo have different values in some cases, a shared hierarchy is
introduced.

Many-to-Many Relationships between the Descendants of the Fact. While in most
cases only to-one associations are included into the DG, there are situations in which
it is useful to model many-to-many associations. Consider the SG in Fig. 5, modeling
the sales of the books, where the bookSale vertex is chosen as the fact. After the book
vertex is included into the DG, a to-many relationship between book and author is
detected. Since including a one-to-many association would be useless for aggregation,
the available XML documents conforming to the bookSale Schema are examined by
using XQuery to find out whether the same author can write multiple books. A part of
the query is presented in Fig. 6: it counts the number of distinct books (i.e. different
parent elements) for each author (child) and returns the maximum number. If the
returned number is greater than one, the relationship is many-to-many, and the
designer may choose whether it should be included in the DG or not. If the
examination of the available XML documents has not proved that the relationship is
many-to-many, the designer can still, leaning on his or her knowledge, state the
relationship as many-to-many and decide if it is interesting for aggregation.

bookSale

date

store

quantitybook

title
author

+

publisher

storeNo address

city
year

price

nameLast nameFirst

?

Fig. 5. The book sale example

max(...
 for $c in distinct-values($retValue/child)
 let $p:=for $exp in $retValue
 where deep-equal($exp/child,$c)
 return $exp/parent
 return count(distinct-values($p))
)

Fig. 6. A part of a query for examining many-to-many relationships

96 Boris Vrdoljak et al.

timeKey

billToCustomerKey
orderDateKey
productKey

USPrice
quantityproductKey

productName
size

dayOfWeek
holiday
month

customerKey
customer

street

TIME

PURCHASE_ORDER
CUSTOMER

PRODUCT
zip
city

state
country

shipToCustomerKey

income

weight
brand

orderDate

partNum

name

Fig. 7. The star schema for the purchase order example

To-Many Relationships towards the Ancestors of the Fact. This type of search
should be done because the ancestors of the fact element in the SG will not always
form a hierarchically organized dimension in spite of the nesting structures in XML.
When navigating the SG upwards from the fact, the relationships must be examined
by XQuery since we have no information about the relationship cardinality, which is
not necessarily to-one. The query is similar to the one for examining many-to-many
relationships, and counts the number of distinct values of the parent element
corresponding to each value of the child element.

3.3 Creating the Logical Scheme

Once the DG has been created, it may be rearranged as discussed in [3]. Considering
for instance the DG in Fig. 3, we observe that there is no need for the existence of
both purchaseOrder and purchaseOrder-item, so only the former is left. Considering
item and partNum, only the latter is left. The comment and shipDate attributes are
dropped to eliminate unnecessary details. Finally, attribute USAddress is renamed into
customer in order to clarify its role.

The final steps of building a multidimensional schema include the choice of
dimensions and measures as described in [2]. In the purchase order example, USPrice
and quantity are chosen as measures, while orderDate, partNum, shipToCustomer,
and billToCustomer are the dimensions.

Finally, the logical schema is easily obtained by including measures in the fact
table and creating a dimension table for each hierarchy in the DG. Fig. 7 shows the
resulting star schema corresponding to the DG in Fig. 3; note how the shared
hierarchy on customer is represented in the logical model by only one dimension table
named CUSTOMER, and how a derived measure, income, has been defined by
combining quantity and USPrice. In the presence of many-to-many relationships one
of the logical design solution proposed in [11] is to be adopted.

4 Conclusion

In this paper we described an approach to design a web warehouse starting from the
XML Schema describing the operational source. As compared to previous approaches

Designing Web Warehouses from XML Schemas 97

based on DTDs, the higher expressiveness of XML Schema allows more effective
modeling. Particular relevance is given to the problem of detecting shared hierarchies
and convergences; besides, many-to-many relationships within hierarchies can be
modeled.

The approach is implemented in a Java-based prototype that reads an XML
Schema and produces in output the star schema for the web warehouse. Since all the
needed information cannot be inferred from XML Schema, in some cases the source
XML documents are queried using XQuery language, and if necessary, the designer is
asked for help. The prototype automates several parts of the design process:
preprocessing the XML Schema, creating and transforming the schema graph,
building the dependency graph, querying XML documents. All phases are controlled
and monitored by the designer through a graphical interface that also allows some
restructuring interventions on the dependency graph.

References

[1] S. S. Bhowmick, S. K. Madria, W.-K. Ng, and E. P. Lim, �Web Warehousing:
Design and Issues�, Proc. DWDM'98, Singapore, 1998.

[2] M. Golfarelli, D. Maio, and S. Rizzi, �Conceptual design of data warehouses
from E/R schemes�, Proc. HICSS-31, vol. VII, Kona, Hawaii, pp. 334-343,
1998.

[3] M. Golfarelli, D. Maio, S. Rizzi, �The Dimensional Fact Model: a Conceptual
Model for Data Warehouses�, International Journal of Cooperative
Information Systems, vol. 7, n. 2&3, pp. 215-247, 1998.

[4] M. Golfarelli, S. Rizzi, and B. Vrdoljak, �Data warehouse design from XML
sources�, Proc. DOLAP'01, Atlanta, pp. 40-47, 2001.

[5] M. Jensen, T. Møller, and T.B. Pedersen, �Specifying OLAP Cubes On XML
Data�, Journal of Intelligent Information Systems, 2001.

[6] M. Jensen, T. Møller, and T.B. Pedersen, �Converting XML Data To UML
Diagrams For Conceptual Data Integration�, Proc. DIWeb'01, Interlaken,
2001.

[7] R. Kimball. �The data warehouse toolkit�. John Wiley & Sons, 1996.
[8] T. Niemi, M. Niinimäki, J. Nummenmaa, and P. Thanisch, �Constructing an

OLAP cube from distributed XML data�, Proc. DOLAP'02, McLean, 2002.
[9] J. Pokorny, �Modeling stars using XML�, Proc. DOLAP'01, 2001.
[10] J. Shanmugasundaram et al., �Relational Databases for Querying XML

Documents: Limitations and Opportunities�, Proc. 25th VLDB, Edinburgh,
1999.

[11] I.Y. Song, W. Rowen, C. Medsker, and E. Ewen, �An analysis of many-to-
many relationships between fact and dimension tables in dimensional
modeling�, Proc. DMDW, Interlaken, Switzerland, pp. 6.1-6.13, 2001.

[12] World Wide Web Consortium (W3C), �XML 1.0 Specification�,
http://www.w3.org/TR /2000/REC-xml-20001006.

[13] World Wide Web Consortium (W3C), �XML Schema�,
http://www.w3.org/XML/Schema.

98 Boris Vrdoljak et al.

[14] World Wide Web Consortium (W3C), �XML Schema Part 0: Primer�,
http://www.w3.org /TR/xmlschema-0/.

[15] World Wide Web Consortium (W3C), �XQuery 1.0: An XML Query
Language (Working Draft)�, http://www.w3.org/TR/xquery/.

	Designing Web Warehouses from XML Schemas
	Introduction
	Relationships in XML Schema
	From XML Schema to Multidimensional Schema
	Choosing Facts and Building Dependency Graphs
	Querying XML Documents
	Creating the Logical Scheme

	Conclusion

