
Sprint Planning Optimization

in Agile Data Warehouse Design

Matteo Golfarelli, Stefano Rizzi, and Elisa Turricchia

DEIS - Univ. of Bologna,
V.le Risorgimento 2, 40136 Bologna, Italy

{matteo.golfarelli,stefano.rizzi,elisa.turricchia2}@unibo.it

Abstract. Agile methods have been increasingly adopted to make data
warehouse design faster and nimbler. They divide a data warehouse
project into sprints (iterations), and include a sprint planning phase
that is critical to ensure the project success. Several factors impact on
the optimality of a sprint plan, e.g., the estimated complexity, business
value, and affinity of the elemental functionalities included in each sprint,
which makes the planning problem difficult. In this paper we formalize
the planning problem and propose an optimization model that, given the
estimates made by the project team and a set of development constraints,
produces an optimal sprint plan that maximizes the business value per-
ceived by users. The planning problem is converted into a multi-knapsack
problem with constraints, given a linear programming formulation, and
solved using the IBM ILOG CPLEX Optimizer. Finally, the proposed
approach is validated through effectiveness and efficiency tests.

Keywords: Agile methods, Optimization, Data warehouse design.

1 Introduction

As empirical studies suggest [9,2], agility is one of the most promising directions
to overcome the problems of traditional software engineering approaches. The
twelve principles stated in the Agile Manifesto [3] are followed by several agile
methods, such as Scrum and eXtreme Programming, that have been adopted by
an increasing number of companies to make the software development process
faster and nimbler. Agile principles also find large application for designing data
warehouses (DWs), that are characterized by a particularly long and expensive
development process, so some agile approaches to DW design have been devised
in recent years [13,11].

A key practice shared by all agile methods is incremental and iterative design
and implementation. The DW system is described in terms of detailed user
functionalities (user stories) [13]; a user story can correspond for instance to a
set of correlated reports, a piece of ETL, or a conceptual schema for a fact. At
each iteration (sprint in the Scrum terminology), the team should deliver the
set of user stories that maximizes the utility for the users and fulfills a set of
development constraints [22]; typical constraints include limiting the duration of

A. Cuzzocrea and U. Dayal (Eds.): DaWaK 2012, LNCS 7448, pp. 30–41, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Sprint Planning Optimization in Agile Data Warehouse Design 31

an iteration, respecting dependencies and correlations among user stories (e.g.,
logical design must follow conceptual design), reducing the non-delivery risk.

Clearly, the sprint planning phase is critical to ensure the project success.
User story prioritization and definition of sprint boundaries are obtained by
sharing and averaging the estimates given by the different team members about
story complexity, utility, and dependencies. For example, advancing high-valued
stories (e.g., those that implement critical analysis reports) could lead to an early
significant result for users; similarly, risky user stories (e.g., those that implement
cleaning procedures for very dirty data) can be advanced to avoid late side-
effects, but at the price of a higher probability of delays in the initial stages. The
success of a sprint planning phase mainly depends on the accuracy of estimates
and on the capability of properly taking several variables and constraints into
account. While the first issue is mainly related to the team experience, the second
one can be formulated as an optimization problem whose complexity increases
with the project size. Clearly, a non-optimal solution to this problem leads to
inefficiencies that easily turn into extra-costs and project delays.

Though some commercial tools support agile project management for generic
software systems [23,8], they do not provide any support to optimal sprint plan-
ning. In this direction, in this paper we formalize the sprint planning problem for
DW projects and propose an optimization model that, given the team estimates
and a set of development constraints, produces an optimal sprint plan that max-
imizes the business value perceived by users. Remarkably, though our approach
fully complies with the agile principles that give the team experience and knowl-
edge a key role in delivering an effective plan, it also relieves the team from the
difficult task of quickly producing an optimal plan. The optimization problem
is formalized as a multi-knapsack problem with constraints, and is solved using
the IBM ILOG CPLEX Optimizer [14].

The paper is organized as follows. Section 2 reviews the related literature;
Section 3 summarizes the key agile practices in DW design; Section 4 formalizes
the sprint planning problem and proposes an optimization model that takes
agile principles into account; Section 5 presents a set of tests on both synthetic
and real projects to prove efficiency and effectiveness of our approach; Section 6
draws the conclusions and sketches our future work.

2 Related Literature

A pioneering work in the field of agile DW design is [13], that breaks with strictly
sequential approaches by applying two Agile development techniques, namely
scrum and eXtreme Programming, to the specific challenges of DW projects. To
better meet user needs, the work suggests to adopt a user stories decomposition
step based on a set of architectural categories for the back-end and front-end
portions of a DW. In [11] the potential advantages arising from the application
of modern software engineering methodologies to a DW project are analyzed,
and a design methodology called Four-Wheel-Drive (4WD) is proposed. 4WD
aims at making the DW design process more reliable, robust, productive, and

32 M. Golfarelli, S. Rizzi, and E. Turricchia

timely; to this end it adopts six key principles (incrementality, prototyping,
user involvement, component reuse, light documentation, and automated schema
transformation), most of which perfectly fit the agile paradigm.

More generally, in the software engineering field several approaches inspired by
agile principles have been proposed [2]. In [9], the authors propose a systematic
review and comparison of different agile methods, focusing on both organiza-
tional and technical features. They also emphasize the increasing penetration of
Scrum and Extreme Programming practices in industries. The Scrum approach
is deeply discussed in [22], where its key ideas and its life-cycle are described. A
more pragmatic work is presented in [7], that focuses on user stories and gives
practical hints for estimating their complexity and business value.

As to tools for agile project management, a few solutions are available. Ag-
ileFant [1] offers a set of basic functionalities to monitor the progress of project
iterations. Mingle [23] and ScrumWorks [8] provide a more complete set of agile
parameters to deal with user story risk, complexity, and business value. However,
all these solutions lack in providing an automated solution to the sprint opti-
mization problem; similarly, to the best of our knowledge, no research prototypes
have been developed to this purpose.

In the broader context of project scheduling, several models and algorithms
have been proposed in the literature (see [15] for a survey). According to the
classifications proposed in [12] and [5], our problem is categorized as resource-
constrained with renewable resources (i.e., manpower) available on a period-by-
period basis. As in the basic PERT/CPM model, finish-start precedences with
zero time lag are considered and no preemption of activities is allowed.

The project scheduling literature provides no model that perfectly fits the
problem discussed here, and this is where operational research comes into play.
Sprint optimization can be formulated as a multi-knapsack problem [17], where
sprints are the knapsacks, while user stories are the items. The sprint optimiza-
tion problem is made original by its objective function and the way how affinity
and risk affect the solution. Though the multi-knapsack problem is NP-hard
[10], branch-and-bound techniques can efficiently compute exact solutions for
medium-sized instances. For large problems, heuristic methods can be used to
find approximate results.

3 A Summary of Agile Data Warehouse Design Practices

The success of a DW project is directly related to customer satisfaction, so agile
methods strive to better comply with user requests. In particular, agile principles
aim at reducing the delivery time and making the development process more
flexible; indeed, accelerating the time-to-market leads to overcoming the business
pressure, while flexibility ensures fast reactions to both technology evolution and
user requirement changes. To achieve these goals, agile methods propose several
complemental practices:

– Incremental process: The DW system is broken up into smaller portions
which are scheduled, developed, and integrated when completed; each

Sprint Planning Optimization in Agile Data Warehouse Design 33

portion represents an increment in business functionality, that users can
validate. For instance, 4WD is based on nested iteration cycles: a data mart
cycle that defines and maintains the global plan for the development of the
whole DW and, at each iteration, designs and releases one data mart; a fact
cycle that refines the data mart plan and incrementally designs and releases
its facts; a modeling and an implementation cycle that include the activities
for delivering reports and applications concerning a single fact [11].

– Iteration: The DW system is built in iterations, where each cycle expands the
product until the project is completed. Since the process is also incremental,
each iteration includes analysis, design, coding, and testing. Noticeably, a
stepwise refinement based on short iterations increases the quality of projects
by supporting rapid feedback and quick deliveries [4,18].

– User involvement: Analysis specifications are difficult to be understood dur-
ing the preliminary life-cycle phases. Continuous interaction with users is
promoted to progressively refine the specifications, reduce inadequate re-
quirements, and increase the trust between users and developers. In more
general terms, a user-centered design increases customer satisfaction [11].

– Continuous and automated testing: To facilitate requirement validation and
obtain better results, a DW is developed by refining and expanding an evo-
lutionary prototype that progressively integrates the implementation of each
increment [20]. Unit tests are written for each release of the prototype and
automated tests are used whenever possible to accelerate error detection.

– Lean documentation: A well-defined documentation is a key feature to com-
ply with user requirements. Small and simple formal schemata are preferred
to extensive specifications; thanks to continuous user involvement, up-to-
date and clear documentation can be achieved [16,21].

Figure 1 shows the general life-cycle of an agile DWproject. Depending on the spe-
cific methodology adopted, the macro-analysis returns a high-level description of
the requirements in terms of facts to be designed, functional areas to be covered, or
analysis applications to be developed. The project team and the users break these
requirements into user stories and assign a utility and a development complexity
(measured in terms of story points) to each of them.Typical examples of user stories
include: one or more forms for manual input of data to ETL; a report or a group of
related reports; the conceptual schema of a fact or a conformed hierarchy; an ETL
unit; the glossary for a functional area; a security profile.

Then, the team assigns a priority to each user story and defines possible corre-
lations (affinities) among stories. The resulting list composes the data warehouse
backlog, that must be partitioned into sprints to produce a plan. Sprints should
be short and regular enough to guarantee a prompt feedback from users. During
each sprint, the team carries out a micro-analysis of the user stories involved,
then its members take charge of one or more user stories that are then designed,
implemented, and tested. After closing a sprint, the users verify if the stories
developed match the requirements they expressed. The approved stories are de-
livered, while the remaining ones are reinserted in the backlog; noticeably, new
requirements may arise at this stage from user feedbacks.

34 M. Golfarelli, S. Rizzi, and E. Turricchia

Fig. 1. Agile life-cycle for DW design

4 An Optimization Model

Our formulation of the sprint planning problem takes into account the main
variables that affect user stories prioritization and sprint composition. The un-
derlying concepts are:

– Plan: a sequence of sprints. All modern DW design methodologies agree on
incrementally releasing one data mart at a time, so we will assume the scope
of a plan is that of a data mart.

– Sprint: the time-bound unit of iteration, typically a one- to four-week period,
depending on the project complexity and risk assessment. A sprint includes a
set of user stories, and it normally ends with a delivery. A maximum duration
is fixed for each sprint by the project team.

– User story: a relatively small piece of functionality valuable for users [7].
It represents a light specification that can be later detailed thanks to a
continuous communication with the user, but at the same time it must be
sufficiently described to estimate its development complexity.

– Utility: the business value of a user story as it is perceived by the user
that defines it. In general it is quantified through a positive numerical score
(typically ranging between 10 and 100 [19]).

– Story point: a unit of measurement for the development complexity of user
stories. Team members assign story points to each user story based on their
experience and knowledge of the domain and project specificities. Story
points are non-dimensional and are preferred to time/space measures to
avoid subjective and incomparable estimates. Typical complexities of user
stories range between 1 and 10 story points [19].

Sprint Planning Optimization in Agile Data Warehouse Design 35

– Risk: the risk that the project is not completed as desired. We consider risks
related to two different characteristics of user stories: (i) A critical story is one
that has a strong impact on the other stories, so that taking a wrong solution
for it can dramatically affect the success of the project (e.g., the conceptual
design of a conformed dimension); (ii) An uncertain story is one for which it
is somehow hard to estimate the complexity due to unexpected problems that
could arise (e.g., changes in the analysis requirements or faulty/incomplete
source data). Both types of risk are estimated by positive numbers; here we
adopted four classes of risk: 1 (no risk), 1.3 (low risk), 1.7 (medium risk),
and 2 (high risk).

– Affinity: the degree of correlation between user stories. Similar stories have
higher utility if they are included in the same sprint, because users better per-
ceive the overall business value of the functionality delivered. For instance,
an “incremental data extraction” story may have low utility on its own, but
its utility increases if delivered together with the complemental “incremental
data loading” story. The affinity range we adopted is [0, 0.5], meaning that
the utility of a story can be increased at most by 50%.

– Dependence: a development constraint between two user stories, indicat-
ing that a user story (post-condition) cannot start before the other (pre-
condition) is completed. Though agile methods discourage user story
relationships to improve the project flexibility, some development dependen-
cies must necessarily be preserved (e.g., logical design must follow conceptual
design). The dependency type of a user story takes value AND (all the pre-
condition stories must be completed) or OR (at least one of the pre-condition
stories must be completed).

– Development speed: the estimated number of story points the team can de-
liver per day. It is used to convert the sprint duration into the sprint capacity
(i.e., the maximum number of story points the team can deliver in a sprint).

We can now list the goals an optimal plan should pursue:

�1 Customer satisfaction. It can be obtained by delivering user stories with
higher utility first. In the agile philosophy, this also increases the user aware-
ness and trust.

�2 Affinity management. Similar stories should be carried out in the same sprint
to increase their value for users.

�3 Risk management. It can be achieved by (i) advancing critical user stories
to avoid late side-effects, on the one hand; (ii) distributing uncertain stories
in different sprints and postponing them to reduce the risk that the sprint
delivery is delayed, on the other hand.

Besides, all constraints related to the sprint capacity and inter-story dependen-
cies must obviously be met.

The problem of determining an optimal plan, i.e., one that achieves these
goals, can be converted into a multi-knapsack problem [17], where the knap-
sacks are the sprints and the items are the stories. Story points measure the
weight of an item, while utility represents its value. Knapsack capacity is mea-
sured as the story points that the team can deliver given the sprint duration and

36 M. Golfarelli, S. Rizzi, and E. Turricchia

the team development speed, i.e., as the sprint capacity. The objective function
to be maximized is the cumulative utility of the project (goal �1), where the
utility of each story is increased if some similar stories are included in the same
sprint (goal �2) and/or if that story is critical (goal �3-i). Finally, in the formu-
lation of the capacity constraint, the story points of user stories are increased by
their uncertainty, which discourages the inclusion of two uncertain stories in the
same sprint (goal �3-ii). The multi-knapsack problem is NP-hard [10]; the linear
programming formulation we adopt is shown in the following.

Definition 1 (Sprint Planning Problem). Given a set of m sprints S and
a set of n user stories U , let:

– xij = 1 iff story j is included in sprint i, 0 otherwise;
– uj be the utility of story j;
– pj be the number of story points of story j;
– pmax

i be the capacity of sprint i, measured in story points;
– rcrj be the criticality risk of story j;
– runj be the uncertainty risk of story j;
– aj be the affinity of story j;
– Yj ⊂ U be the set of stories similar (i.e., with some affinity) to story j;
– yij be an accessory variable related to the number of stories in Yj included

in sprint i;
– Dj ⊂ U be the set of stories the story j depends on;
– U ⊇ UAND ∪ UOR, where UAND and UOR are the subsets of stories having

dependency type AND and OR, respectively.

The sprint planning problem consists in determining an optimal assignment of
the xij ’s, i.e., in finding which stories compose each sprint in an optimal plan.
Its linear programming formulation is as follows:

z = Max

m∑

k=1

k∑

i=1

n∑

j=1

uj(r
cr
j xij + aj

yij
|Yj |) (1)

s.t.
n∑

j=1

pjr
un
j xij ≤ pmax

i ∀i ∈ S (2)

m∑

i=1

xij = 1 ∀j ∈ U (3)

i∑

k=1

∑

z∈Dj

xkz ≥ xij ∀i ∈ S, j ∈ UOR (4)

i∑

k=1

∑

z∈Dj

xkz ≥ xij |Dj | ∀i ∈ S, j ∈ UAND (5)

yij ≤
∑

k∈Yj

xik ∀i ∈ S, j ∈ U (6)

yij ≤ |Yj |xij ∀i ∈ S, j ∈ U (7)

Sprint Planning Optimization in Agile Data Warehouse Design 37

The explanation of the elements of this formulation is as follows:

(1) The objective function z states that the optimal plan maximizes the cu-
mulative utility function. The criticality risk rcrj increases the utility uj of
a critical story j, thus encouraging an early placement of critical stories.
Affinity is managed through term aj

yij

|Yj| , that increases the utility of a story

j proportionally to the fraction of similar stories included in sprint i.

(2) These inequalities ensure that the sum of the story points of the stories
included in each sprint i does not exceed the sprint capacity pmax

i . The
story points pj of story j are increased according to the uncertainty risk runj
of that story, so as to fairly distribute uncertainty risk among the sprints.

(3) This constraint imposes that each story is included in exactly one sprint.

(4) These inequalities handle OR dependencies by stating that at least one story
in Dj is placed before each story j.

(5) These inequalities handle AND dependencies by stating that all stories in
Dj are placed before each story j.

(6) These inequalities manage affinity by bounding the number of stories similar
to j in sprint i. Using an inequality is necessary to accommodate the fact
that, if sprint i includes stories similar to j but j is not part of i, it is yij = 0
(see constraint 7).

(7) These inequalities state that yij is zero if story j is not part of sprint i,
otherwise it cannot be greater than the number of stories similar to it.

CPLEX solves this optimization problem using a branch-and-cut approach [6],
that is, a method of combinatorial optimization for solving integer linear pro-
gramming problems (i.e., linear programming problems where some or all the
unknowns are restricted to integer values —the xij ’s and yij ’s in our case). The
method is an hybrid of branch-and-bound and cutting plane methods that dra-
matically improves the performance of classic branch-and-bound methods by
incorporating cutting planes, that is, inequalities that improve the linear pro-
gramming relaxation of integer linear programming problems.

5 Model Validation

5.1 Effectiveness Tests

To verify the effectiveness of our model we applied it to a real DW project in the
area of pay-tvs, carried out by an Italian system integrator who has successfully
been adopting agile methods for five years. The subproject we describe here had
an overall duration of 8 months; it included 44 user stories —mostly related to
the development of reports, complex ETL units, and forms for manual input
of data— and consisted of 10 sprints with an average duration of 17 days. 52
dependencies and just one affinity were involved. The project team included 4
members, but in a few cases one additional programmer was added to support
the team.

38 M. Golfarelli, S. Rizzi, and E. Turricchia

Sprint

C
um

ul
at

iv
e

ut
ili

ty

Team

Opt

0
1 2 3 4 5 6 7 8 9 10

Sprint

Av
er

ag
e

ga
p

0
1000
2000
3000
4000
5000
6000
7000
8000

1 2 3 4 5 6 7 8 9 10

0.1

0.2

0.3

0.4

(a) (b)

Fig. 2. Comparison of cumulative utilities (a) and difference in sprint composition (b)
for the optimal and the team plans

The goal of the test presented here is to compare the sprint plan manually
defined by the project team with the one generated by our model, using a devel-
opment speed of 2.43 story points per day. Figure 2.a compares the cumulative
utilities of the optimal plan (Opt) and of the plan defined by the team (Team).
The curve of the optimal plan is always higher mainly due to a better opti-
mization of sprint composition, but also to a better handling of risk. Indeed,
in the team’s plan some critical stories with low utility (essentially related to
infrastructural needs) were advanced too much.

To better understand how the two plans differ in terms of sprint composition,
we measured their difference as the average of the gaps of all user stories:

Definition 2 (User Story Gap). Let j be a story. Let iteam and iopt be the
sprints j belongs to in the team plan and in the optimal plan, respectively. The
gap of story j is

gap(j) =
1

N − 1
|iteam − iopt|

where N is the maximum number of sprints in the two plans.

The user story gap ranges from 0 to 1, where 0 means that the story belongs
to the same sprint in both plans. As shown in Figure 2.b, the average gap is
always lower then 0.3, denoting a good correspondence between the two plans.
The main difference arises in sprints 1, 7, 8, and 10. In particular, in sprint 1,
the team plan aimed at anticipating critical stories, thus exceeding the sprint
capacity. The strong difference in the composition of the first sprint necessarily
affected the subsequent sprints. Noticeably, both plans made good use of affinity
relationships.

In order to have a further evaluation of the optimal plan, we discussed it with
the team chief after the project end. Here are the main outcomes:

– The team spent a couple of days in defining their plan, while the optimal
plan was generated in a few seconds.

– The team was used to collecting user story estimates using standard forms,
but the level of detail required by our framework is slightly higher. This was

Sprint Planning Optimization in Agile Data Warehouse Design 39

266.00

731.00

0.14 18.72

1763.80

0

500

1000

1500

2000

30 40 50 60 75
Number of stories

Ti
m

e
(s

ec
s)

0
0 10 20 30

Number of dependencies

Ti
m

e
(s

ec
s)

chain

graph

50

100

150

200

250

300

(a) (b)

Fig. 3. Time for computing the optimal plan for projects (a) with an increasing number
of stories and no dependencies, and (b) with an increasing number of dependencies and
50 stories

perceived has a positive aspect since it leads to more refined estimates, thus
producing a better plan.

– The team chief recognized that his plan failed in properly distributing risks,
which led to some delay in the first sprint.

– The optimal plan was judged to be feasible and realistic, showing that the
elements considered in our model provide a good distribution of user stories.

– Most of the differences in sprint compositions were evaluated as improve-
ments over the team plan. In particular, the team plan did not take into
account the side effects of postponing some stories, thus causing the stories
depending on them to be delayed too much.

5.2 Efficiency Tests

These tests were carried out on an Intel Core 2 Duo platform with 3 Gb of RAM,
running at 3 GHz under Windows XP professional. To test the model behavior
on a broad benchmark we generated a set of 58 synthetic projects; utility and
story points of the user stories were randomized in the intervals [10,100] and
[1,10], respectively. The maximum sprint duration was set to 15 days, while the
development speed was set to 3 story points per day (i.e., sprint capacity was 45
story points). All planning problems were solved using CPLEX; performances
were measured in seconds.

First of all we evaluate performances in function of the total number of user
stories on projects that do not include dependencies. Figure 3.a reports the aver-
age time needed to compute the exact solution. As expected for a multi-knapsack
problem, the computation time grows non-linearly, reflecting an exponential in-
crease in the search space.

The presence of dependencies makes planning harder for the project team.
To study their impact on our model, two types of dependencies were added to
our benchmark projects: (1) chain dependencies, where each story depends on
at most another story; and (2) graph dependencies, where a story can depend

40 M. Golfarelli, S. Rizzi, and E. Turricchia

on several stories. In both cases dependencies were obviously acyclic. Figure 3.b
shows how the computation time changes in function of the number of dependen-
cies. This figure suggests that a small number of dependencies tends to reduce
the computation time because dependencies allow a set of unfeasible plans to be
pruned, thus reducing the search space. However, when the number of depen-
dencies is high, the computation time increases again because finding a feasible
plan becomes harder for the solver. Noticeably, we observed that both chain and
graph dependencies show similar trends.

Though the time to obtain an exact solution for very complex problems (more
than 100 stories) can be too high, the time to obtain a good feasible solution
is always limited. CPLEX can be configured so that it first looks for a feasible
solution, then it tries to improve it until the exact one is found; at each step it
returns the utility of the best solution found so far (i.e., an upper bound to the
utility of the optimal solution) and a lower bound to the utility of the optimal
solution. We measure the suboptimality at each step (i.e., how the current solu-
tion is far from the optimal one) as the ratio between the lower and the upper
bounds. Remarkably, a solution that is less than 1% worse than the optimal one
is always produced within 5 seconds.

6 Conclusions and Future Work

In this paper we formalized the sprint planning problem for agile DW design
and we proposed a multi-knapsack model to solve it. We tested our model on
a set of (both synthetic and real) projects. We found that, for medium-sized
problems, an exact solution is determined in a time that is fully compatible
with the development process (i.e., from some seconds to a few minutes), while
for large problems a heuristic solution that is just a few percentage points far
from the exact one can be returned in a couple of seconds. As to effectiveness,
the team chief judged the optimal plan to be feasible and realistic, and most of
the differences in sprint composition were evaluated as improvements over the
team plan. Currently, the optimal plan is delivered to the team in tabular form;
however, to present the plan in a more effective way, our optimization module
could be coupled with existing softwares for agile project management.

We are currently working on extending our model to better support the plan-
ning activity. First of all we will accommodate iterative planning, i.e., given a
first solution the team will manually adjust it by pinning some user stories to
some sprints, and then run the optimizer again. This requires an extension of
our model to deal with further types of constraints while preserving the overall
structure of the resulting plan. Further improvements that will make the model
best fit for real cases are: (1) allowing different development speeds for different
sprints due to a variable team composition; (2) modeling different team capabil-
ities (e.g., design, implement, test) so that, in each sprint, the team will be able
to deliver a different number of story points for each capability.

Sprint Planning Optimization in Agile Data Warehouse Design 41

References

1. Aalto University, SoberIT: Agilefant (2011), http://www.agilefant.org/
2. Abrahamsson, P., Warsta, J., Siponen, M.T., Ronkainen, J.: New directions on

agile methods: A comparative analysis. In: Proc. ICSE, pp. 244–254 (2003)
3. Beck, K., et al.: Manifesto for agile software development (2001),

http://agilemanifesto.org/

4. Boehm, B.W.: A spiral model of software development and enhancement. IEEE
Computer 21(5), 61–72 (1988)

5. Brucker, P., Drexl, A., Möhring, R.H., Neumann, K., Pesch, E.: Resource-
constrained project scheduling: Notation, classification, models, and methods. Eu-
ropean Journal of Operational Research 112(1), 3–41 (1999)

6. Caprara, A., Fischetti, M.: Branch-and-cut algorithms. In: Dell’Amico, M., Maf-
fioli, F. (eds.) Annotated Bibliographies in Combinatorial Optimization. Wiley
Interscience Series in Discrete Mathematics (1997)

7. Cohn, M.: User Stories Applied: For Agile Software Development. Addison-Wesley
Professional (2004)

8. Collabnet: ScrumWorks (2011), http://www.danube.com/
9. Dyb̊a, T., Dingsøyr, T.: Empirical studies of agile software development: A sys-

tematic review. Information & Software Technology 50(9-10), 833–859 (2008)
10. Fréville, A.: The multidimensional 0-1 knapsack problem: An overview. European

Journal of Operational Research 155(1), 1–21 (2004)
11. Golfarelli, M., Rizzi, S., Turricchia, E.: Modern Software Engineering Method-

ologies Meet Data Warehouse Design: 4WD. In: Cuzzocrea, A., Dayal, U. (eds.)
DaWaK 2011. LNCS, vol. 6862, pp. 66–79. Springer, Heidelberg (2011)

12. Herroelen, W., Demeulemeester, E., Reyck, B.D.: A classification scheme for
project scheduling problems. Tech. rep., Katholieke Universiteit Leuven (1997)

13. Hughes, R.: Agile Data Warehousing: Delivering world-class business intelligence
systems using Scrum and XP. IUniverse (2008)

14. IBM: IBM ILOG CPLEX optimizer (2011), http://www-01.ibm.com/
15. Kolisch, R., Padman, R.: An integrated survey of deterministic project scheduling.

Omega 29(3), 249–272 (2001)
16. Kruchten, P.: The 4+1 view model of architecture. IEEE Software 12(6), 42–50

(1995)
17. Martello, S., Toth, P.: Knapsack Problems: Algorithm and Computer Implemen-

tation. John Wiley and Sons Ltd. (1990)
18. Martin, J.: Rapid application development. MacMillan (1991)
19. Nichols, A.: Agile planning, estimation and tracking (2009),

http://www.slideshare.net/andrewnichols/

agile-planning-estimation-and-tracking

20. Pomberger, G., Bischofberger, W.R., Kolb, D., Pree, W., Schlemm, H.:
Prototyping-oriented software development — concepts and tools. Structured Pro-
gramming 12(1), 43–60 (1991)

21. Royce, W.W.: Managing the development of large software systems: Concepts and
techniques. In: Proc. ICSE, Monterey, California, USA, pp. 328–339 (1987)

22. Schwaber, K.: SCRUM development process. In: Proc. OOPSLA (1995)
23. ThoughtWorks Studios: Mingle: Agile project management (2011),

http://www.thoughtworks-studios.com/

http://www.agilefant.org/
http://agilemanifesto.org/
http://www.danube.com/
http://www-01.ibm.com/
http://www.slideshare.net/andrewnichols/agile-planning-estimation-and-tracking
http://www.slideshare.net/andrewnichols/agile-planning-estimation-and-tracking
http://www.thoughtworks-studios.com/

	Sprint Planning Optimizationin Agile Data Warehouse Design
	Introduction
	Related Literature
	A Summary of Agile Data Warehouse Design Practices
	An Optimization Model
	Model Validation
	Effectiveness Tests
	Efficiency Tests

	Conclusions and Future Work

