
An SQL extension supporting user viewpoints

Giuseppe Bellavia, Dario Maio, Stefano Rizzi
DEIS - Facolta' di Ingegneria, Universita' di Bologna

Abstract - In order to accomplish independence on the logical data organization, a
relational DBMS must be capable of interpreting query language sentences which reference
attributes belonging to different relations even if the necessary joins are not explicitly
formulated (query inference problem). In this work we propose an SQL extension which
supports concise formulation of queries through the dynamic definition of user viewpoints.
User viewpoints are perspectives for accessing data; each user viewpoint defines a virtual
derived relation (user viewpoint relation) which includes all those in the database scheme,
each accessed by means of exactly one chain of system-activated equi-joins. Our approach
to the definition of user viewpoint relations aims at reducing the global cost of query
formulation, that is, the number of joins which must be explicitly written.

1 Introduction
A relational query language is independent of the logical data organization if its

sentences can reference attributes belonging to different relations without explicitly
formulating the necessary joins. In order to support this functionality, a Relational
Database Management System (RDBMS) must be able to translate the query language
sentences into unambiguous representations based, for instance, on the formalism of
relational algebra. This is known in the literature as the query inference problem [7].

Let the logical scheme of the database be represented by a graph, which we call
database graph, where each node corresponds to a relation scheme and each arc to a
logical association between two relation schemes (typically determined by a foreign key
definition). Solving the query inference problem requires the selection, for each given
sentence of the query language, of an acyclic sub-graph of the database graph spanning
all the nodes corresponding to the relations whose attributes are referenced in that
sentence.

Different approaches for simplifying query formulation can be found in the
literature. In the universal relation approach, query inference is addressed by building a
derived relation which combines all the relations in the database through natural joins
[3]. On the other hand, the universal relation calls for requirements not always satisfied
in practical applications [4], and generates a fixed sight of the database, on whose
structure the user cannot intervene.

In [7], derived relations are computed following a graph-theoretic approach. Each
sentence of the query language is translated into a query by determining, on the database
graph, the minimum directed cost Steiner tree. In [6], query disambiguation is carried
out by considering the relatedness of the relations involved and the existence of directed
paths between them. In [5], query disambiguation is carried out by choosing the
interpretations which contains less connections between attributes defined on the same
domain).

All these approaches differ from ours, since they do not consider the possibility of
accessing data through multiple perspectives. In [2] we have proposed an original ap-
proach to query inference, in which each relation scheme may be used as a perspective
to formulate queries (user viewpoint). Each user viewpoint virtually defines a derived
relation (user viewpoint relation, UVR) which includes all the relations in the database,
each accessed by means of exactly one chain of system-activated equi-joins. The guid-
ing criterion in defining UVRs is the reduction of the global cost of query formulation,

being the cost of a query a function of the number of joins which must be explicitly
included in a sentence of the query language in order to obtain that particular query.

In this work we propose an extension to SQL which allows for user viewpoints to
be defined at query level; an extension to standard SQL is described first; also an SQL2
extension is proposed, in order to enable formulation of outer joins. In each sentence,
one or more user viewpoints may be adopted. The adoption of a user viewpoint in a
query entails the automatic derivation of a virtual relation (local UVR) including only
the relations mentioned in the query with reference to that viewpoint; this view can
then be subjected to selection, projection, and grouping operations through the classic
SQL clauses.

It is remarkable that query formulation from a viewpoint is not equivalent to query
formulation on a relational view defined by a create view statement. In fact, our
approach brings several advantages:

• Defining a relational view requires several joins to be explicitly formulated, while
defining a local UVR only requires to choose a viewpoint.

• The viewpoint can be changed dynamically; instead, (at least) one different view
should be written for each viewpoint.

• The join type (inner or outer) is fixed within the view, whereas it can be changed
within each local UVR.

• If the database scheme is changed (a relation scheme is added, dropped or modified),
all involved views must be rewritten; instead, local UVRs will be automatically
generated based on the new scheme.

2 From Database Schemes to Graphs
Let D be a database scheme including the relation schemes R1,...Rn and

characterized by a set of logical associations between pairs of relation schemes. A
logical association is typically determined by a foreign key constraint on two
(comparable) attributes; the database designer can declare explicitly other logical
associations when the comparison between two attributes is relevant. The logical
associations determined from foreign keys may be many-to-one or one-to-one, while
those declared explicitly may also be many-to-many.

We describe the logical association involving attributes Ai of Ri and Bj of Rj by
means of a pair of opposite connections between Ri and Rj, which we call potential
links (PLs) and denote with (Ri.Ai,Rj.Bj) and (Rj.Bj,Ri.Ai), respectively. Two relation
schemes may be connected by several distinct pairs of opposite PLs corresponding to
logical associations involving different pairs of attributes.

We are interested in describing each PL through two properties concerning the
corresponding logical association: strength and multiplicity. By default, a PL
(Ri.Ai,Rj.Bj) is strong if attributes Ai and Bj have the same name; weak otherwise. If
the scheme has name inconsistencies, the database administrator may explicitly declare
which PLs are strong, that is, which logical associations are most relevant and should
be privileged for query inference. We say a PL (Ri.Ai,Rj.Bj) is single if the logical
association involving Ai and Bj is one-to-one or many-to-one, multiple if it is one-to-
many or many-to-many. In single PLs, one tuple of ri references one tuple of rj,
therefore the association between Ri and Rj is assumed to be more significant than in
multiple PLs, in which one tuple of ri references several tuples of rj.

We represent the database scheme D by means of a database graph D = (R, L); each
node in R corresponds to a relation scheme, each arc in L corresponds to a PL and is

labelled with the two attributes involved and with the properties of that PL.
Also queries can be described through a graph formalism. Let q be a query on

database scheme D. We represent q by means of a query graph Qq; each node
corresponds to a relation scheme whose attributes are referenced by q, each arc
represents a join required by q and is labelled with the two attributes involved.

We will explain these concepts with two examples, which will be used also in the
rest of the paper: the well-known suppliers-and-parts database (SPD) and the conference
database (CD).

The scheme we adopt for the SPD is sketched below (primary keys are underlined):

D = { PART (#P, Description, Colour, Weight, City),
SUPPLIER (#S, Name, City, Status), SUPPLY (#P, #S, Quantity) }

The conceptual E/R scheme of the CD is shown in Figure 1. A possible database
scheme is as follows:

D = { TOPIC (#Topic, Description), REFEREE (#Referee, Name),
IS_EXPERT (#Referee, Expertise, Confidence),
PAPER (#Paper, Title, AboutTopic), INVITED (#Paper, Proposer),
SUBMITTED (#Paper, SubDate, Accepted), AUTHOR (#Author, Name),
WRITES (#Author, #Paper), REFEREES (#Paper, #Referee, Rating) }

AUTHOR

PAPER

SUBM.INVITED

TOPIC

REFEREE

(1,n)

(0,n)(1,1)

(3,3)(t,e)

(1,n)

(1,n)

(0,n) (0,n)

(1,1)

(1,n)

writes

about

proposes

referees

is
expert

Fig. 1. E/R scheme for the CD. The minimum and maximum multiplicity of relationships
is shown in parentheses. The IS-A hierarchy is total and exclusive.

Figure 2 shows the database graphs representing the two database schemes; the
compact graphical notation used for arcs emphasizes the properties of the corresponding
PLs.

An example of query graph is the one in Figure 3; a query described from this query
graph is the one displaying, for each submitted paper, its topic and its authors. Note
that, if the query requires only inner joins, the directions of arcs are irrelevant.

3 From Graphs to Derived Relations
In this section we discuss how a sub-graph of the database graph can be univocally

associated with a derived relation.
Let D = (R, L) be a database graph and T = (R', L'), R'⊆ R, L'⊆ L, be a (directed)

tree with root in Rp∈ R'. Let (Rk1,...Rkm) be any sequence of the nodes in R' such
that:

AUTHOR

WRITES

PAPER

SUBMITTED

INVITED

REFEREES

R
E

FE
R

E
E

T
O

PIC

IS_E
X

PE
R

T

#Author

#Paper

#Paper

#Paper

#Referee

Proposer,#Referee

A
boutT

opic,#T
opic

#T
opic,E

xpertise

#R
eferee

#Paper

PART

SUPPLY

SUPPLIER

#P

#S

(a) (b)

Fig. 2. Database graphs representing the SPD (a) and the CD (b) schemes. For simplicity,
each pair of opposite arcs is represented by one connection; when the two attributes
involved in a PL have the same name, the name is written only once. Normal and dashed
lines represent strong and weak PLs, respectively. Double and single arrows represent
multiple and single PLs, respectively.

AUTHOR

WRITES

PAPER

SUBMITTED

T
O

PIC

#Author

#Paper

#Paper

A
boutT

opic,#T
opic

Fig. 3. A query graph on the CD.

1. the first node in the sequence is Rp;
2. for each other node Rki in the sequence, there exists in L' an arc whose second

endpoint is Rki and whose first endpoint is a node appearing in the sequence before
Rki.

The derived relation associated to T is defined as follows:

rp ><A2=B2 rk2... ><An=Bn rkm

where "ri ><A=B rj" denotes the inner equi-join between relations ri and rj on
attributes A and B, and Ai and Bi are the attributes labelling the arc which enters Rki in
T. It can be proved that the derived relations corresponding to the different sequences of
the nodes in R' which may satisfy the condition above, are identical (except for the
ordering of the attributes).

The derived relation associated to the graph in Figure 3, which is a tree with root in
SUBMITTED, can be expressed as:

submitted ><(#Paper=#Paper) paper ><(#Paper=#Paper) writes

 ><(#Author=#Author) author ><(AboutTopic=#Topic) topic

4 User Viewpoint Relations
A user viewpoint is a specific perspective for accessing data. Users define the view-

point by selecting a primary relation (PR), that is, the relation which interests them
most with reference to one or more queries. Choosing a PR allows for determining a
user viewpoint relation (UVR), that is, a derived relation including all those in the
database scheme, each accessed from the PR by means of exactly one chain of system-
activated equi-joins. The UVR solves the query inference problem, since it allows for
any sentence of the query language to be translated into an unambiguous representation.

Let D = (R , L) be a database graph and Rp∈ R be the PR. The requirements
outlined for the UVR are satisfied from the derived relation associated to a spanning tree
on D with root in Rp. In fact, a spanning tree on D includes all nodes in R, and
connects the root with each other node through exactly one directed path.

Let q be a query on D and Qq be its query graph. Let Tp be the spanning tree
determining the UVR from viewpoint Rp. We say q is implicit for viewpoint Rp if all
the arcs in Qq also belong to Tp, that is, Qq⊆ Tp; explicit otherwise. Implicit queries
can be formulated relying entirely on system-activated joins, that is, by referencing in a
sentence of the query language the attributes to be displayed. Formulation of explicit
queries require, in addition, a join to be explicitly written for each arc in the query
graph which does not belong to the tree.

If D does not contain cycles (except those generated by each pair of opposite PLs),
each choice of the PR determines exactly one spanning tree on D, which can be
obtained by dropping an element from each pair of PLs in D. For instance, Figure 4
shows the spanning trees from viewpoints PART and SUPPLIER in the SPD, whose
database graph is acyclic. Note that the UVR does not automatically connect identical
attributes; for instance, the existence of the attribute "City" in both relation schemes
PART and SUPPLIER of the SPD does not create inconsistencies.

PART

SUPPLY

SUPPLIER

PART

SUPPLY

SUPPLIER
(a) (b)

Fig. 4. Spanning trees from viewpoints PART (a) and SUPPLIER (b) on the database graph
for the SPD.

If the database graph D contains one or more cycles, several spanning trees can be
defined for each PR. In order to ensure unambiguous interpretation of sentences of the
query language, exactly one of them must be chosen to generate the UVR. Since we are
primarily interested in the query inference problem from the position of the software
developer, we choose the optimal tree for a given PR by evaluating how concisely each
given query can be formulated.

We define the formulation cost of a query q, c(q), as the number of joins which
must be explicitly written in a sentence of the query language in order to produce q.

The global cost for formulating the queries of a given workload W is:

U = ∑
q∈ W

 c(q) . f(q)

where f(q) is the expected formulation frequency of query q. In a query language where
no inference technique is adopted, c(q) is equal to the number of arcs in the query graph
of q, u(q). The adoption of a user viewpoint Rp reduces the global cost of query
formulation. In fact, let Tp be a spanning tree with root Rp. The cost of implicit
queries is c(q) = 0; as to explicit queries, some of the arcs of their query graphs may
belong to Tp, in which case the corresponding joins must not be written: in general,
c(q) ≤ u(q). With respect to workload W, the optimal tree for viewpoint Rp is the
spanning tree which minimizes the global cost of query formulation U.

In general, during the software development phase, workload W is not precisely
known; for this reason, for each PR the cost of query formulation is minimized
according to a synthetic workload including only the queries whose query graphs are
included in the database graph and are paths from the PR to any other relation scheme
Ri in R. The frequencies of the queries in the synthetic workload are estimated by
taking into account the semantics of the database scheme, which we believe is decisive
in making the inference predictable. Hence, each query is assigned a frequency which
depends on the strength and multiplicity of the PLs involved: coarsely, we assume that
the most frequent queries are those which require joins corresponding to strong and
single PLs. A detailed definition of the synthetic workload can be found in [2].

It can be proved that, on the assumptions made, calculating the optimal spanning
tree is equivalent to solving a shortest path problem; the complete demonstration can
be found in [1]. The algorithm employed by the query inference manager to construct
the optimal tree derives from Dijkstra's shortest path algorithm. The complexity in
time of the Dijkstra algorithm does not exceed O(n2), where n is the number of relation
schemes in R.

The database graph for the CD is cyclic; the optimal trees for the SUBMITTED and
the REFEREE user viewpoints are shown in Figure 5.

AUTHOR

WRITES

PAPER

SUBMITTED

INVITED

REFEREES

REFEREETOPIC

IS_EXPERT

AUTHOR

WRITES

PAPER

SUBMITTED

INVITED

REFEREES

REFEREETOPIC

IS_EXPERT

(a) (b)

Fig. 5. The optimal spanning trees with primary relations SUBMITTED (a) and REFEREE
(b) on the database graph for the CD.

5 An SQL Extension Supporting User Viewpoints
In this section we propose a standard-SQL extension which enables concise query

formulation from user viewpoints. In this extension, the clause from is used to
specify the user viewpoint(s) for the current query and, if necessary, to add one or more
joins to the optimal tree(s).

The syntax we propose may be expressed as follows:

<fromClause> ::= from <itemDef> {, <itemDef>}
<itemDef> ::= <uvDef> | <aliasDef>
<uvDef> ::= viewpoint <relName> [<aliasName>]
<aliasDef> ::= <relName> <aliasName>

The simplest form of the from clause allows for all implicit queries with single
viewpoint to be expressed:

select <list of expressions> from viewpoint Rp

Let Tp be the spanning tree corresponding to viewpoint Rp, and Rk1,...Rkm be the
relation schemes referenced in the query (within <list of expressions> and in other
clauses such as <where>, <group by>, etc.). Let Tp' be the tree union of the m paths
leading in Tp from Rp to the nodes Ri1,...Rim (Tp'⊆ Tp); we call local UVR the
derived relation associated to Tp'. In order to solve the query, the <where>, <group
by>, etc. clauses are applied to the local UVR.

The attributes of the local UVR are all the attributes of the relations schemes
mentioned in the query. An attribute whose name is non-ambiguous within the UVR
(for instance, Description) may be referenced directly; when addressing an attribute
whose name is ambiguous (for instance, a Name attribute exists in both AUTHOR and
REFEREE relation schemes), the name of the relation scheme must be specified.

It should be noted that, in general, the local UVR is not a projection of the UVR.
In fact, while the UVR entails a join for each arc in Tp, in the local UVR only the
joins corresponding to arcs in Tp' are executed. Since joins are of inner type, it is
possible that some tuples appearing in the local UVR are absent from the UVR
because they do not match on a PL not included in Tp'.

Consider for instance the implicit query

select AUTHOR.Name from viewpoint SUBMITTED
where Description = "Query Inference"

on the CD, which asks the names of the authors of submitted papers concerning the
query inference problem (the query graph is shown in Figure 3). The optimal tree from
viewpoint SUBMITTED is shown in Figure 5.a; the local UVR used in this query can
be expressed in standard-SQL as follows:

select * from SUBMITTED, PAPER, TOPIC, WRITES, AUTHOR
where SUBMITTED.#Paper = PAPER.#Paper
and PAPER.AboutTopic = TOPIC.#Topic
and PAPER.#Paper = WRITES.#Paper
and WRITES.#Author = AUTHOR.#Author

Note that, due to the inner join between PAPER and INVITED, the UVR from
viewpoint SUBMITTED is empty (the IS-A hierarchy is exclusive).

When formulating an explicit query, aliases are used in order to add joins to the
local UVR. The query

select <list of expressions> from viewpoint Rp, Rk1 AL1, ... Rkj ALJ

defines the Cartesian product between the local UVR and the relation schemes Rk1,...
Rkj with aliases AL1,...ALJ, respectively. Thus, each of the relation schemes Rk1,...
Rkj appears in the query (at least) twice: with its name (connected to the PR through
the joins in the optimal tree) and with its alias (external to the local UVR, and
possibly joined with it through a selection predicate).

For instance, consider the query which asks, for each submitted paper, its title, its
topic and the topics in which its referees are expert with high confidence. This query is
explicit for the SUBMITTED viewpoint, since the UVR does not provide the join
between TOPIC and IS_EXPERT (see Figure 6). The missing join must be formulated
explicitly:

select Title, Description, T.Description
from viewpoint SUBMITTED, TOPIC T
where Expertise = T.#Topic and Confidence = "High"

PAPER

SUBMITTED REFEREES

T
O

PIC

IS_E
X

PE
R

T

#Paper

#Paper

#Referee

A
boutT

opic,#T
opic

#T
opic,E

xpertise

#R
eferee

REFEREE

Fig. 6. The query graph of an explicit query for viewpoint SUBMITTED.

This formulation is equivalent to the following standard formulation:

select Title, T1.Description, T2.Description
from SUBMITTED, PAPER, TOPIC T1, REFEREES, IS_EXPERT, TOPIC T2
where SUBMITTED.#Paper = PAPER.#Paper
and PAPER.AboutTopic = T1.#Topic and PAPER.#Paper = REFEREES.#Paper
and REFEREES.#Referee = IS_EXPERT.#Referee
and IS_EXPERT.Expertise = T2.#Topic and Confidence = "High"

When formulating nested queries, both the external and the internal queries may
have their own user viewpoints. Thus, in order to differentiate the local UVRs, an alias
should be given to each PR. The following correlated query returns the supplier-and-
part pairs such that the supplier's status is greater than the average status of the
suppliers which live in the same city and supply that part; both the external and the
internal queries are formulated from viewpoint SUPPLIER:

select SX.Name, SX.Description from viewpoint SUPPLIER SX
where SX.Status >
 (select avg (SY.Status) from viewpoint SUPPLIER SY

where SY.SUPPLIER.City = SX.SUPPLIER.City
and SY.SUPPLY.#P = SX.SUPPLY.#P)

Note that, for ambiguous attributes such as City, referencing requires both the PR alias
and the relation name; for non-ambiguous attributes such as Name, the PR alias is
sufficient.

In some cases, it may be useful to create two or more local UVRs within a single

query. Consider for instance the query asking for the couples of suppliers who supply
parts of the same colour:

select distinct SX.Name, SY.Name
from viewpoint SUPPLIER SX, viewpoint SUPPLIER SY
where SX.Colour = SY.Colour and SX.Name > SY.Name

Standard SQL allows for formulating only inner joins; instead, in several queries it
is necessary to return also unmatched tuples. The user viewpoint approach supports
outer joins as well; in particular, local UVRs can be generated by mixing inner and
outer equi-joins. The language we propose to support user viewpoints with outer joins
is an extension of SQL2:

<fromClause> ::= from <itemDef> {, <itemDef>}
<itemDef> ::= <uvDef> | <aliasDef> | <addJoinDef>
<uvDef> ::= viewpoint <relName> [<aliasName>] {, <uvrJoinDef>}
<addJoinDef> ::= <name> <joinType> <aliasDef> on <joinPredicate>
<uvrJoinDef> ::= <joinType> <relName>
<aliasDef> ::= <relName> <aliasName>
<name> ::= <relName> | <aliasName> | <aliasName>.<relName>
<joinType> ::= left outer join | right outer join | full outer join | inner

In this extension, the from clause allows for specifying which PLs must be
accomplished in the local UVR through outer joins. Since in the optimal tree only one
PL enters each relation scheme, an outer join on a PL can be declared by referencing
only the relation scheme where the PL ends up (<uvrJoinDef> production). Besides, it
is possible to add inner or outer joins to the local UVR; inner joins are still declared
through an alias definition, whereas outer joins are declared in the classic SQL2 syntax
(<addJoinDef> production).

An example of implicit query on a local UVR including an outer join is:

select REFEREE.Name, Title
from viewpoint REFEREE, left outer join REFEREES

which returns all the referee names together with the titles of the papers they have
reviewed, if any (the optimal tree for the REFEREE viewpoint is shown in Figure
5.b). This query would be formulated in SQL2 as:

select REFEREE.Name, Title
from REFEREE, REFEREE left outer join REFEREES

on REFEREE.#Referee = REFEREES.#Referee, SUBMITTED, PAPER
where REFEREES.#Paper = SUBMITTED.#Paper
and SUBMITTED.#Paper = PAPER.#Paper

An example of explicit query which adds an outer join to the UVR is:

select REFEREE.Name, Description, Title
from viewpoint REFEREE, TOPIC left outer join PAPER P

on TOPIC.#Topic = P.AboutTopic
where TOPIC.#Topic = P.AboutTopic

which returns all the referee names together with the topics they are expert in and the
titles of the papers on that topics, if any. This query would be formulated in SQL2 as:

select REFEREE.Name, Description, Title
from REFEREE, IS_EXPERT, TOPIC, TOPIC left outer join PAPER

on TOPIC.#Topic = PAPER.AboutTopic

where REFEREE.#Referee = IS_EXPERT.#Referee
and IS_EXPERT.Expertise = TOPIC.#Topic
and TOPIC.#Topic = PAPER.AboutTopic

6 Conclusions
This paper has presented an SQL extension which supports query inference through

user viewpoints. From any viewpoint the user can formulate queries in a very concise
and straightforward way, leaving to the system the task of activating paths between
relations and executing joins. The queries which are not implicitly supported can be
formulated by means of explicit joins.

The user viewpoint approach could be integrated within a graphic database develop-
ment tool. This tool should manage the different viewpoints, in particular by display-
ing and navigating the UVR corresponding to each of them. The designer would thus
be allowed to immediately verify the system's interpretation of the queries. Should this
interpretation be inadequate, the designer could choose to interactively modify the tree
in order to take extra semantic information not supported by the system into account.

We conducted extensive testing of the user viewpoint approach by developing
medium-size applications. The most significant example is the information system of
the Faculty of Engineering of the University of Bologna, which was entirely developed
by a team of non-skilled programmers. In all the applications the user viewpoint
approach reveals its robustness and flexibility of use; the inference provided by the
system fits the user expectations in most cases.

We believe that the development of object-oriented applications, where the database
scheme evolves rapidly, will take advantage of the user viewpoint approach. Suppose
we add to the CD a new relation COMPANY which stores the companies for which
authors work. COMPANY is automatically included in all the UVRs, and its attributes
can be directly addressed. Of course, modifications which impact on cycles in the
database graph may alter the trees. The most simple solution to face this problem
consists in alerting the user issuing the modifications with a message reporting
whether the UVRs will be altered, and to what extent.

References
[1] G. Bellavia, D. Maio and S. Rizzi. Resolving the query inference problem by

optimizing the query-formulation cost. Technical Report CIOC-C.N.R. n. 85
(1992).

[2] G. Bellavia, D. Maio and S. Rizzi. Minimizing the cost of query formulation
through User Viewpoint Relations. Atti del Secondo Convegno Nazionale su
Sistemi Evoluti Per Basi Di Dati, Rimini, Italy, 141-159 (1994).

[3] R. Fagin, A.O. Mendelzon and J.D. Ullman. A simplified universal relation
assumption and its properties. ACM Trans. Database Syst. 7, 3, 343-360
(1982).

[4] W. Kent. Consequences of assuming a universal relation. ACM Trans. Database
Syst. 6, 4, 539-556 (1981).

[5] A. Motro. Constructing queries from tokens. Proc. ACM SIGMOD Int. Conf.
Management of Data. Washington D.C., 120-131 (1986).

[6] E. Sciore. Query abbreviation in the entity-relationship data model. Information
Syst. 19, 6, 491-511 (1994).

[7] J.A. Wald and P.G. Sorenson. Resolving the query inference problem using
Steiner trees. ACM Trans. Database Syst. 9, 3, 348-368 (1984).

