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Abstract

The most effective technique to enhance performances of multidimensional databases consists in
materializing redundant aggregates called views. In the classical approach to materialization, each view
includes all and only the measures of the cube it aggregates. In this paper we investigate the benefits of
materializing views in vertical fragments, aimed at minimizing the workload response time. We formalize
the fragmentation problem as a 0-1 integer linear programming problem, which is then solved by means of
a standard integer programming solver to determine the optimal fragmentation for a given workload.
Finally, we demonstrate the usefulness of fragmentation by presenting a large set of experimental results
based on the TPC-H benchmark.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Recently, multidimensional databases (MDs) have gathered wide research and market interest
as the core of decision support applications such as data warehouses. A MD can be seen as a
collection of multidimensional cubes centered on facts of interest (for instance, the line items in the
orders issued by a company). A cube is composed by cells which contain a set of numerical
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measures conveying useful information for the decision process (for instance, the price and the
quantity of a line item). The cube dimensions are attributes which represent possible dimensions
for analysis (for instance, products, suppliers and orders) [1]. From the logical point of view, the
set of dimensions functionally determines every measure. Furthermore, each dimension may be
associated to a hierarchy of attributes which describe it (for instance, the city and the nation of a
supplier).

An MD implemented on a relational DBMS is usually organized according to the so-called szar
scheme [2], in which each cube is represented by one fact table storing the measures and one
denormalized dimension table for each dimension of analysis. The primary key of the fact table is a
set of foreign keys, each referencing the (usually surrogate) key of a dimension table. Besides the
key, each dimension table contains all the attributes which describe the corresponding dimension.

In MDs, the response to the workload is improved by materializing a set of views which store
the pre-computed results to frequent/critical queries, thus introducing some degree of data
redundancy. Since the basic mechanism to extract useful information from elemental data in MDs
is aggregation, a view on a cube is typically defined by a SQL query which groups data by a set of
attributes taken from dimension tables (grouping set) and computes summarized values for
measures by means of some aggregation operators (see Fig. 1). Even views are organized into star
schemes. In the following, with a slight abuse in terminology, we will call views all the star
schemes for a cube: the one storing elemental data (primary view) and those containing aggregated
values (secondary views).

Since pre-computing and storing all the possible secondary views is infeasible, several tech-
niques have been proposed to select the subset to materialize in order to optimize the response to
the workload (e.g., [3-6]). In these approaches, each view includes the attributes in the grouping
set and all and only the measures of a single cube, without considering which measures are re-
quired together by the queries in the workload; we will globally refer to them as classic ap-
proaches.
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Fig. 1. Two views on the line item cube.
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In this paper we investigate how the response to the workload can be enhanced by materializing
views in vertical fragments, each including a subset of measures possibly taken from different
cubes, aggregated on the same grouping set. Thus, as compared to classic materialization, our
approach may achieve the goal of unifying two or more views into a single fragment as well as that
of partitioning a view into two or more fragments. The most evident motivations for applying
vertical fragmentation techniques to views in MDs can be stated as follows:

e As compared to operational databases, in MDs the benefits of fragmentation are further en-
hanced by the multiple query execution plans due to the presence of redundant secondary
views. These benefits are particularly relevant if the MD is implemented on a parallel architec-
ture; if disk arrays are adopted and fragmentation is coupled with an allocation algorithm, the
queries requiring multiple fragments allocated on different disks can be effectively parallelized
[7,8].

e While every measure of each cube must be stored in its elemental form to avoid loss of infor-
mation, the same is not true for aggregated values. Thus, depending on the workload, some
measures may be not materialized at all in aggregated fragments, leading to space saving as
compared to classic materialization. When a space constraint is posed, this saving can be pro-
fitably employed to store other useful fragments.

e Though partitioning a view entails replicating its key, fragmentation entails no significant stor-
age overhead since surrogate keys require few bytes to be stored and the number of measures
typically exceeds the number of dimensions (especially in secondary views). Furthermore, stor-
ing in the same fragment measures taken from different cubes leads to saving space.

Vertical fragmentation for MDs has already been proposed in the literature [7,9,10]; in this
paper we give the following new contributions:

o Optimality. In the other approaches, no suggestions on how to determine a good fragmentation
were given. In this paper, the fragmentation problem is formalized as a 0-1 integer program-
ming (IP) problem, which is then solved by means of a standard IP solver. Given a core work-
load, a constraint on the global disk space for materialization and a function to estimate the
cost for executing each query on each fragment, an optimal fragmentation is thus produced.

e Generality. Our approach subsumes the classic one: in fact, if every query in the workload re-
quires all and only the measures of a single cube, all the views obtained are unfragmented.

e Testing. The results of a large set of experiments is reported in the paper in order to quantify
and discuss the benefits of fragmentation from different points of view.

In particular, with reference to previous contributions [10,11], this paper introduces a new
mathematical formulation of the vertical fragmentation problem and exploits its potential by
directly applying an efficient IP solver (namely CPLEX, [12]) to the algebraic translation of the
problem elements. In this way it is possible to solve to optimality real-world sized instances much
larger than those solved in [10]: there, in fact, a branch-and-bound approach was adopted, and
time constraints forced to pre-maturely stop the search, thus producing sub-optimal solutions.

The paper is structured as follows. In Section 2 we introduce the basic definitions and notations
for the paper. In Section 3 the fragmentation problem is motivated and formalized as a 0-1 IP
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problem. Section 4 presents a large set of experimental results based on the TPC-H benchmark. In
Section 5 the related work is surveyed, while Section 6 draws the conclusions. Appendix A de-
scribes the cost function used for optimization.

2. Background

This section introduces some necessary background knowledge for the paper. In particular,
Section 2.1 introduces the basics on cube schemes, Section 2.2 discusses the assumptions made on
the workload for the MD, and Section 2.3 identifies the candidate views for materialization.

2.1. Cubes

Definition 1 (Cube scheme and cube). A cube scheme € is defined by a set of dimensions, Gby(%),
and a set of measures, Meas(%). A cube instance of a cube scheme is a partial function which maps
from the Cartesian product of the domains of dimensions to the Cartesian product of the domains
of measures.

Typically, each dimension is associated with a set of attributes which describe it; these attributes
are organized into a directed tree, called hierarchy, whose root is the dimension and whose arcs
represent functional dependencies.

Definition 2 (Multidimensional scheme). A multidimensional scheme & is a set of cube schemes.

Example 1. The multidimensional scheme we will use as a working example derives from the
TPC-H [13]; it includes two cube schemes, Lineltem (L.I) and PartSupplier (PS), which respec-
tively describe the composition of the orders issued from a company and the company supplies:
Gby(LI) = {Part, Supplier, Order, ShipDate, ShipMode, ReturnFlag, Status,
CommitDate, ReceiptDate}

Meas(LI) = {UnitPrice, Qty, ExtPrice, Discount, DiscPrice, Charge, Tax}
Gby(PS) = {Part, Supplier, Date}

Meas(PS) = {AvailQty, SupplyCost}

LI and PS are characterized by the hierarchies represented graphically in Fig. 2 where, for in-
stance, Supplier —» SNation, and SNation — SRegion. On relational DBMSs, cube schemes are
usually implemented through a star scheme [2]. The star scheme for L[ is:

PART(Part, Brand, MFGR, Type, Container, Size)

SUPPLIER(Supplier, SNation, SRegion)

ORDER(QOrder, ODate, OMonth, OQuarter, OYear, OWeek, Customer, CNation, CRegion,
MktSegment, OPriority, OStatus, ShipPriority, Clerk)
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Fig. 2. Hierarchies in the LI and PS schemes (in gray the dimensions).

LINEITEM(Part, Supplier, Order, ShipDate, ShipMode, ReturnFlag, ReceiptDate, CommitDate,
Status, UnitPrice, Qty, ExtPrice, Discount, DiscPrice, Charge, Tax)

where LINEITEM is the fact table and the others are dimension tables. '

2.2. The workload

In principle, the workload for an MD (meant as the set of queries commonly formulated on the
MD) is dynamic and unpredictable. Nevertheless, in agreement with several research papers (for
instance [5,14]), we claim that a core workload can be determined a priori. In fact, on the one
hand, the user typically knows in advance which kind of data analysis (s)he will carry out more
often for decisional or statistical purposes; on the other, a substantial amount of queries are aimed
at extracting summary data to fill standard reports. Furthermore, some commercial tools enable
the workload to be monitored while the MD is operating: in this case, fragmentation could be
carried out periodically considering the current workload in order to tune performances at best.

In the following we will consider the GPSJ class of queries, very common in OLAP applica-
tions. A GPSJ (generalized projection/selection/join) query is a selection over a generalized pro-
jection over a selection over a join, where the generalized projection operator is an extension of
duplicate eliminating projection which captures grouping and aggregation [15]. In a GPSJ query
within the OLAP context, the join relates one or more fact tables with the dimension tables; the
selection may be applied to both measures (non-key attributes of the fact table) and attributes
(non-key attributes of dimension tables); the generalized projection groups the tuples on a set of
attributes (grouping set) and determines which aggregated measures are returned. Given query g,
we will denote with Gby(q), Meas(q), Sel(q) € [0...1], and Fregq(q) € [0...1], respectively, the
grouping set of ¢, the measures it returns, its selectivity, and its frequency within the workload.

Given a cube scheme %, let 94 denote the set of the grouping sets of all the possible queries on
%. A query g on % is well-formed if Meas(q) C Meas(%) and Gby(q) € Y.

! We will assume for simplicity that the primary key of each dimension table is a dimension. In practice, surrogate
keys are typically introduced instead.
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Example 2. On LI, the query asking for the total quantity of each medium polished part ordered
from American suppliers is characterized by Gby(q) = {SRegion, Part}, Meas(q) = {Qty} and
Sel(g) = 0.01 (assuming that 5 supplier regions and 20 part types are present, that attribute values
are uniformly distributed and that selection predicates are independent, it is Sel(q) =1 -, Its

5 20
SQL formulation on the star scheme defined in Example 1 is:

SELECT S.SRegion, P.Part, SUM(LIL.Qty)

FROM LINEITEM AS LI, PART AS P, SUPPLIER AS S
WHERE LI.Part=P.Part AND LI.Supplier =S.Supplier

AND P.Type =‘Medium Polished” AND S.SRegion =‘USA’
GROUP BY S.SRegion, P.Part

A query g may also require measures taken from distinct cube schemes %, ..., %,. In this case, ¢
is well-formed if Meas(q) C |J;_, Meas(%;) and Gby(q) € (|, Y«,-

Example 3. The query which compares the total available quantity and the total quantity sold for
each part, characterized by Gby(q) = {Part}, Meas(q) = {AvailQty, Qty}, and Sel(q) = 1, is for-
mulated in SQL as follows:

SELECT  P.Part, SUM(PS.AvailQty), SUM(LI.Qty)

FROM  LINEITEM AS LI, PART AS P, PARTSUPPLIER AS PS
WHERE  LI.Part =P.Part

AND PS.Part = P.Part

GROUP BY P.Part

As observed in [3], the functional dependencies which relate the attributes of hierarchies in %
induce a partial ordering, called roll-up (<), on %4: given two grouping sets g; and g;, itis g; < g;
iff g; — g; (g; functionally determines g;). The roll-up ordering identifies a lattice in which the top
element is Gby(%) (the finest grouping set) and the bottom element is the empty grouping set, ()
(the coarsest possible one). While Gby(%) will be called the primary grouping set of €, all the other
grouping sets in %, will be called the secondary grouping sets of €.

Example 4. Some examples of grouping sets on LI are

Gby(LI) = {Part, Supplier, Order, ShipDate, Status, ShipMode, CommitDate,
ReturnFlag, ReceiptDate}

g1 = {Part, OMonth, SNation}
2> = {Brand, Type}

g3 = {OYear, SNation}

=0

The roll-up relationships between them are summarized in Fig. 3.
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Gby(LI)
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Fig. 3. Roll-up relationships between grouping sets on the L/ scheme.

2.3. Candidate views

In MDs, the response to the workload is typically improved by materializing, besides the
primary view storing elemental data, a set of secondary views which store the pre-computed results
to frequent/critical queries. In the classical approaches to materialization, each view includes all
and only the measures of one cube scheme; thus, in principle, each grouping set on a given cube
scheme determines exactly one possible view to be materialized.

Several algorithms have been proposed to determine the set of materialized views which
minimizes the workload cost by respecting a constraint posed on the total storing space. Most
approaches [3,4,10] start by determining the set of views which may potentially reduce the cost for
executing the workload (candidate views); * then, the views to be materialized are chosen by
applying some (exact or heuristic) optimization technique to the set of candidate views. In par-
ticular, in [3] the authors supply a criterion for defining candidate views and prove that materi-
alizing a non-candidate view can never decrease the workload cost.

In the remainder we will assume that a set of candidate views has been determined for each cube
scheme involved in the workload. Let Cand(%) denote the set of grouping sets of the candidate
views (candidate grouping sets) determined for cube scheme %. For each cube scheme, every
measure must be materialized at the primary grouping set (i.e. in its non-aggregated form); thus,
Gby(%) € Cand(%) for every 4.

3. Materialization of fragmented views

While in the classical approach to materialization each view is univocally characterized by its
grouping set and by the cube scheme it is computed from, in our approach a view (which will be
more properly called fragment) is characterized by its grouping set and by a set of measures
belonging to the cube schemes in the multidimensional scheme.

2 For instance, a view whose grouping set is coarser than the grouping sets of all the queries in the workload is never
useful, thus it is not candidate.
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Definition 3 (Fragment). Given multidimensional scheme &, a fragment .# on & is defined by a
grouping set Gby(#) and by a set of measures Meas(# ), where Gby(F ) € 9, for each €, € ¥
such that Meas(F ) N Meas(€;) # 0.

In terms of relational implementation, fragment & corresponds to a fact table having the
attributes in Gby(Z ) as the key and the measures in Meas(Z ) as non-key attributes.

Example 5. The fact table for fragment # with Gby(#) = {Part} and Meas(F) =
{AvailQty, Qty} has scheme

LINEITEM_F(Part,AvailQty, Qty)
and is defined by the query in Example 3.

Definition 4 (Fragmentation). Let Cand(%,) be the candidate grouping sets for %; € 2. A
fragmentation on & is a set # of fragments with the following properties:

(1) Consistent. A fragment always corresponds to a candidate grouping set:

VF, € H, Nms; € Meas(F,;) €, € I : Gby(F;) € Cand(%;) N\ m; € Meas(%,) (1)

(2) Lossless. Each measure of every cube scheme is materialized at least at its primary grouping
set:

V6, €2, Vm; € Meas(6,) 3IF, € A : Gby(F ;) = Gby(€r) N m; € Meas(F ;) (2)

(3) Non-redundant. No overlap between fragments is allowed:
VT, F ;e H (Gby(F;) = Gby(TF ;) = (Meas(F ;) N\ Meas(F ;) = 0) (3)

Constraint (1) is meant to enforce the correspondence between cubes and grouping sets. The
reason for constraint (2) is to ensure that every possible query on & can be answered on 7.
Finally, the reason for constraint (3) is that a redundant fragmentation would heavily impact on
query processing.

Several fragments, even defined on different grouping sets, may be necessary to solve a given
query. Given a subset of fragments #' C #, query g can be answered on #" iff

Vmg € Meas(q) 3F; € H' : m; € Meas(F,;) \ Gby(q) = Gby(F)) (4)

If ¢ necessarily requires two or more fragments (since no fragment includes all the measures in
Meas(q)), it must be solved by first retrieving the necessary measures from the single fragments,
then performing a join between the results (the join attributes are those in Gby(q)).

In the remainder of this section we face the problem of determining the fragmentation which
minimizes the workload cost satisfying a given constraint on the global space for materialization.
After emphasizing the motivations for fragmentation by proposing a quantitative example on the
TPC-H benchmark, we will introduce the problem formulation and propose a mathematical
programming approach to determine the optimal fragmentation.
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3.1. Fragmentation vs. classical materialization: an example

In the classic approach to materialization, selecting a candidate grouping set g € Cand(%)
during the optimization process means materializing a view with grouping set g and measures
Meas(%). As a result, each view includes measures which describe the same cube scheme but,
within the workload, may be often requested separately. We argue that the system overall re-
sponse to the workload may be increased by materializing fragments which include all and only
the measures which typically appear together within the queries.

Let the workload on LI and PS include three queries defined as follows:

Meas(q,) = {DiscPrice, Charge, Tax},

Gby(q1) = {Brand, Supplier};

Meas(q,) = {UnitPrice, Qty, ExtPrice, Discount},
Gby(q,) = {Part, Supplier, ShipDate};

Meas(qs) = {Qty, AvailQty},

Gby(q;) = {Part, Supplier}.

While ¢, and ¢, are formulated on LI, g3 is formulated on LI and PS; all selectivities are assumed
equal to 1. The candidate grouping sets for this workload are

Cand(LI) = {Gby(LI), Gby(q1), Gby(q2), Gby(g3)},

Cand(PS) = {Gby(PS), Gby(q3)}-
Using a classical approach, the possible secondary views to materialize are ¥y, ¥, ¥"3, and ¥4
characterized by

Meas(?V") = Meas(?",) = Meas(7"3)
= {UnitPrice, Qty, ExtPrice, Discount, DiscPrice, Charge, Tax},

Meas(7"4) = {AvailQty, SupplyCost};
Gby(71) = Gby(q),
Gby(7"2) = Gby(q2),

Gby(773) = Gby(V"4) = Gby(q3)-
Consider now the five fragments %, ..., %5 defined as follows:
Meas(7 ) = {DiscPrice, Charge, Tax},

Gby(F1) = Gby(q);
Meas(F ) = {UnitPrice, Qty, ExtPrice, Discount},

Gby(F 1) = Gby(q»);
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Meas(F5) = {Qty, AvailQty},
Gby(73) = Gby(q3);
Meas(F 4) = {UnitPrice, Qty, ExtPrice, Discount, AvailQty},
Gby(74) = Gby(q2);
Meas(F 5) = {AvailQty},

Gby(7's) = Gby(gs).
The costs for executing each query on each view and fragment are summarized in Table 1. The
function cost used expresses the number of disk pages in which the tuples required to answer the
query are contained, and is detailed in Appendix A. In Table 2 some materialization solutions are
compared in terms of total disk space occupied and workload cost; primary views are not con-
sidered, assuming that they will be materialized within all solutions. In particular, materializing
three subsets of fragments is compared to materializing four subsets of views.
It clearly appears how fragmentation may reduce the overall workload cost since:

e While each view includes all the measures in its cube scheme, each fragment only includes those
measures which, aggregated at the given grouping set, are useful for the workload.

Table 1

Execution costs
View/fragment q1 9> q3
V) 2084 - -
vV 54932 54932 (54932)
Vs 6934 - (6934)
Y _ - (2051)
T 1028 - -
T, - 35157 (35157)
T, _ - 2051
T4 — 38086 38086
F . - (1172)

A dash denotes that a query cannot be executed on a view/fragment, the costs in parentheses denote that not all the measures required
by the query are found on the fragment.

Table 2

Comparison of materialization solutions
Mater. views/fragments Size (MB) Workload cost (pages)
Hy={1V"2, 7 4} 456 166 847
Hy={V"1,7 2,7 s} 473 113999
Hs={V"2,7"3,7 4} 511 70851
Hs={V"1,7"2775,7 4} 528 66001
Hs ={F,F2,F3} 306 38236
He={F1,F4} 313 77200

Hy = {F\, Fr, Fs} 299 72514
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o Materializing small fragments instead of large views leads to decreasing the query cost both di-
rectly, since smaller fact tables are to be read, and indirectly, since the storage space saved can
be used to materialize extra fragments.

¢ Including measures from different cube schemes in the same fragment reduces the cost of que-
ries since no join between fact tables is required.

e The extra space required by key duplication quickly decreases when the grouping set decreases;
it is further reduced when junk dimensions * are present.

o The effectiveness of fragmentation for MDs may be higher than for operational non-redundant
databases; in fact, in MDs the presence of fragments storing the same measures at different
levels of aggregation makes multiple solutions possible.

3.2. Problem formulation

In this section we propose the vertical fragmentation problem (VFP) as a combinatorial opti-
mization problem and discuss a possible IP formulation.

Recent IP results, both on exact [16] and heuristic [17,18] techniques, have in fact reached a
point where even complex real-world problems can be solved in acceptable CPU time. It is thus
worthwhile an investigation of efficient IP formulations, as these provide a key to directly access
robust and effective solution techniques.

We begin by observing that, while in principle VFP should be solved for the whole set of cube
schemes in the multidimensional scheme, in practice it may be convenient to mix measures
belonging to two different cube schemes in the same fragment only if the workload includes at
least one query that requires measures from both. In most cases, this allows to dramatically cut
the complexity by adopting a simple divide-and-conquer approach and applying fragmentation
separately on subsets of cube schemes based on partial workloads. In the following, & will stand
for one of these subsets.

Given a workload, the measures of each cube scheme in & can be partitioned into subsets
(minterms) such that all the measures in a minterm are requested together by at least one query
and do not appear separately in any other query. We call terms the sets of measures, even of
different cube schemes, recursively defined as follows:

(1) a minterm is a term;
(2) the union of two terms including measures required from the same query is a term.

For instance, given the workload on LI and PS proposed in Section 3.1, the minterms are:
mt; = {DiscPrice, Charge, Tax},

mt, = {UnitPrice, ExtPrice, Discount},

3 In [2], the term junk dimensions is used to denote the case in which two or more hierarchies are represented jointly
within the same dimension table.
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mt; = {AvailQty},

mty = {Qty}.

The corresponding set of terms is:
T = {mt,, mty, mty, mty, mty U mty, mty U mty, Meas(LI ), Meas(PS)}

Given the multidimensional scheme Z and workload O, let G = |J,., Cand(%) be the set of all
candidate grouping sets and 7 the set of all terms. In the following we will show how VFP can be
modeled by expressing linear IP constraints over two sets of 0—1 binary variables, {x;; } and {yu},
whose indexes correspond to the indexes of the queries ¢; € O, of the grouping sets g; € G and of
the terms 7, € T, respectively. Setting y; = 1 means stating that a fragment .# ; with grouping set
Gby(F ;) = g; and measures Meas(F ;) = t, will be created. Setting x;; = 1 means stating that,
when answering ¢;, fragment 7 ; will be accessed. Thus, a solution at the same time denotes a
fragmentation,

%:{‘%]kyjkzl} (5)

and specifies on which fragment(s) each query in Q is assumed to be executed. Fig. 4 shows the
solution which represents fragmentation #s proposed in the example in Section 3.1, featuring 3
fragments. The solution also denotes that, for instance, ¢; is executed on .

0000000 O
0000000 O
Q 0000000 O
0000000 O
G3A 0000010 O
0000000 O
0000000 O
0000000 O
0000100 O
a5 0000000 O G
G 0000000 0 GbylL) 0000000 O
0000000 0 GbyPS) 0000000 O
17000000 0 Gbya,) 1000000 O
0000000 0  Ghyg,) 0000100 O
a4 0000000 O ; Gby(qs) 0000010 Q .
XEEREERST0 XEEREET0
££88553¢ ££85553¢
o O'® € 2 0 O® 2
8z 39238 $a< 3938
g 29 < @ %8
g o< 38 o
o @ o @
=X O = o
% W i Gu x
E= ke = 2
2 % 2 o
= =
2 2

Fig. 4. Sets of the x;; (left) and yy (right) for fragmentation s in Section 3.1.
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Table 3
Notation employed for index sets in the IP formulation of VFP

2 Index set of the queries in Q

Y Index set of the grouping sets in G

T Index set of the terms in T’

M Index set of the measures in | J, ., Meas(%)

Y, CY Index set of the useful grouping sets for query i € 2

M; C M Index set of the measures in Meas(q;)

T, CT Index set of the terms at grouping set j € ¥

07 CT Index set of the useful terms for query i € 2 at grouping set j € %;
w7 s ST Index set of the useful terms for measure s € .# at grouping set j € ¥

Definition 5 (VFP). Given a multidimensional scheme &, a workload Q on Z, a set of candidate
grouping sets Cand(%) for each cube scheme % € &, and a constraint B on disk space, VFP
consists in determining, among the fragmentations of & which require no more than B disk space,
the one which minimizes the cost of workload Q.

Using the notation for index sets summarized in Table 3, the IP formulation of VFP is as

follows:

Cost(VFP) = Min Z Z Z CijkXijk (6)

i€2 jeY; kepTi;

st Y Y xp=l i€l sed, (7)

JEY: ke T js

> w<l je9Y sc (8)
keM'a/—js
Xijk <yjk i€ Q, j € {qi, ke Qg-ij (9)

Z Z by <B (10)

JjEY kEg-/'
vk €{0,1} je9 ke T, (12)

where:

Cost(VFP) denotes the optimal cost of VFP, i.e. the cost of Q on the optimal fragmentation;
x;x = 1 iff, when answering query i, the measures in term k are read at grouping set j;

yie = 1 iff x; = 1 for at least one query i;

c;i 1s the cost for (partially) answering query i on fragment .7 ; defined by g; and #, i.e. for
reading the relevant term £ on grouping set j (estimated for instance as in formula (A.2) in
Appendix A);

bji 1s the disk space required to store fragment .7 ; (calculated as in formula (A.1) in Appendix
A).

Given i€ 2, 9, ={j:Gby(q;) g N (3¢ € & : g; € Cand(¥) A Meas(q;) N Meas(€) # 0)} is
the index set of the grouping sets which might be used to solve g;.
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e Given je Y and se€ M, yT s={k:mecty N\(3€ € Z:g; € C and (¢) A m; € Meas(¥))} is
the index set of the terms which might be used to retrieve m, at grouping set g;.

e Giveni€ 2and j € %;, 07 ;j = U, 4 u7 js is the index set of the terms which might be used to
solve ¢; at grouping set g;.

e Given j € 9, the index set of the terms at grouping set g; is 7 ; = U, 07 iy = Use.y 47 js-

The explanation of the elements of formulation VFP is as follows. The objective function (6)
states that the solution must minimize the sum of the costs for answering all queries in Q on each
fragment required (see Appendix A). Inequalities (7) impose that each measure required by a query
is read on at least one grouping set, i.e. that the solution satisfies the workload. Inequalities (8)
require that, for each grouping set, a measure belongs to at most one term, i.e. that the frag-
mentation is non-redundant as stated in property (3) of Definition 4. Inequalities (9) link the x and
y variables and inequality (10) is the memory knapsack constraint, stating that the disk space
required by fragmentation must be less than B. Finally, (11) and (12) are the integrality constraints.
As to the other fragmentation properties, consistency (1) is implicitly expressed by formulating the
IP constraints on the restricted index sets 4;, .7 ;;, and 7 ;; instead of their supersets ¥ and .7 .
Lossless fragmentation (2) is enforced by inserting in the workload, for each cube scheme %, a
dummy query g4 such that Meas(qq) = Meas(%), Gby(q4) = Gby(%), and Freq(q4) = 0: this trick
allows for making fragmentation lossless without altering the workload cost.

Notice the structure of VFP. There are essentially three blocks of constraints: inequalities (7),
(8) and (10). Inequalities (7), the query satisfaction constraints, are actually set covering con-
straints imposing that exactly one x;; variable enters the solution for each i and for each measure
in .#;: problem costs are attached only to variables x;;, thus this set covering part directly affects
the objective cost. Inequality (10), as mentioned, is a knapsack constraint, while inequalities (8)
are needed to impose measure-term surjectivity in the form of set packing constraints. Problem
VFP is NP-hard, since when no constraint is imposed on memory (i.e. B is very big) and only one
query i € 2 is defined for each j € %, and k € ,.7 ;;, it becomes a standard set covering problem,
which is NP-hard. When memory is tight, VFP is further complicated by the interplay of set
covering, set packing and knapsack.

With reference to the example introduced in Section 3.1 and solved in Fig. 4, the different
constraints impose the following. Constraints (7) essentially force each G-T bit plane in the left of
the figure to have at least one “1”” for each measure required by the query associated to it, but the
more they are the more the solution costs. Constraints (8) require that for each row on the right-
hand side bit plane there is at most one “1” corresponding to terms with common measures.
Constraints (9) impose that whenever there is a ““1”” in any bit plane on the left of the figure, there
must be a “1”” also in the corresponding G-T position in the array on the right, whose values are
then used to check the memory constraint (10), not be shown in the figure, that asks, having
computed the b;; load associated with each y,;; element of the G-T bit plane, to choose a subset of
the y;; elements whose total associated load does not exceed a given parameter B.

By a linear relaxation of integrality constraints, that is by substituting constraints (11) and (12)
with:

x,:/‘kgl ZGQ,]Eg,,kGQg-U (13)
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we get problem LVFP: a linear problem that can be solved in polynomial time and whose optimal
solution value Cost(LVFP) constitutes a lower bound to Cost(VFP), the optimal solution cost of
problem VFP.

The formulation proposed closely matches the problem description and at the same time shows
common features of good mathematical formulations [19]: it uses as few variables as possible, it
needs a polynomial number of constraints, it allows for efficient decompositions, and it allows for
a tight linear relaxation. Nevertheless, different mathematical formulations are obviously possible.
For example, formulation VFP can be equivalently translated into formulation VFP’, where
constraints (9) are surrogated over the queries: this does not affect the integer optimum, however
it could affect the linear relaxation, as a much greater variable fragmentation could result. Yet
another formulation was used in [11] where, instead of constraints (7), equality constraints were
used: this implies that a subproblem to solve is a set partitioning problem, one of the nastiest
problems one could happen to meet, and in fact the computational results in this paper sub-
stantially improve over those reported in [11].

4. Experimental results

An extensive set of tests have been carried out in order to verify the effectiveness of frag-
mentation. Tests are aimed at comparing our approach to the classic solution to view material-
ization and at emphasizing the specific characteristics of the fragmented solutions. Tests are based
on the well-known TPC-H benchmark [13], sized at 1 GB and loaded on Red Brick Decision
Server 6.0. The operational scheme proposed within TPC-H has been used to obtain the two cube
schemes, LI and PS, whose simplified versions have been used as working example in the previous
sections. In our implementation, LI consists of 7 hierarchies with 40 attributes and 10 measures,
PS of 3 hierarchies with 20 attributes and 3 measures.

The tests are organized according to three different workloads with increasing size. Q; (20
queries) tightly models the TPC-H benchmark including all the queries that can be formulated as
GPSJ expressions, as well as the GPSJ subqueries that are contained in non-GPSJ ones. O, and 0s
(30 and 40 queries, respectively) extend TPC-H by adding new queries with different grouping sets
and whose measures are chosen consistently with the application logic defined in the benchmark.
For each workload, the bulk of the queries works on LI, while the percentage of queries requiring
both schemes ranges between 15% and 20%.

Maintaining a realistic clustering of measures in the test workloads is important to avoid to
excessively emphasize the effect of fragmentation. On the other hand, measures are naturally
clustered by the level of correlation of the information they carry. The level of affinity of a couple
of measures, m; and m;, within workload Q can be evaluated as the percentage of queries that
require both m; and m;. For all three workloads we used, the average affinity is about 0.2.

In the following subsections, the workload execution cost is expressed in terms of disk pages. It
is remarkable that all the data presented in the tests were directly measured on the DBMS rather
than obtained from simulations, thus avoiding that the simplifications induced by the cost
function proposed in Appendix A invalidate our results. As to indexing of data, we adopted a
standard solution which provides a B-Tree index on each primary key of both fact and
dimension tables.
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The algorithms for view materialization and fragmentation are implemented within WAND
[20], the data warehouse design tool we developed. In selecting the classic approach to materi-
alization to be compared with fragmentation, we observed that: (1) all approaches to materiali-
zation are characterized by an objective function to be optimized and an optimization algorithm;
(2) any objective function could be adopted in principle, but the comparison is sound only if the
same function used for fragmentation is adopted; (3) as to the optimization algorithm, all ap-
proaches to materialization we are aware of are based on heuristic algorithms which deliver sub-
optimal solutions [21]. Thus, adopting one or the other of the materialization algorithms proposed
in the literature would not alter significantly the comparison results: the one we implemented is
described in [3] and selects views using a tabu search heuristics; the objective function is the one
described in Appendix A, which estimates the execution cost of the workload.

4.1. Benefit

The aim of this set of tests is to analyze to which extent fragmentation reduces the workload
cost and which factors determine the reduction. Fig. 5 compares the execution costs for the
fragmented and unfragmented solution of O;, O, and Qs. For each workload, the space con-
straint ranges from 700 to 2200 MB; since the primary views globally require 640 MB, the space
reserved for secondary views varies from 60 to 1560 MB.

The cost reduction, that ranges from 18% to 73% and is 38% in the average, is due to two
interrelated factors: on the one side, each query requires less disk pages to be answered since only
relevant measures are stored in fragments; on the other, the saved space can be used to materialize
more fragments which further enhance performances. It should be noted that the previously
mentioned factors participate differently in reducing the cost, according to the available space.
When only a limited space is available for materialization, most of the saving comes from the
reduced size of fragments while, when more space is available, the saving is mainly due to the
execution of queries on fragments that do not fit the disk space constraint in the classic solution.
The rationale for this behavior is that, the more the materialized views, the more the disk space
saved by dropping unuseful measures, the more the extra fragments materialized; this is confirmed
by Fig. 6 which compares the number of fragments and the number of views for different space
constraints, showing that the former increases more quickly than the latter.

4.2. Processing

In MDs, when views have been materialized at different aggregation levels, query processing
typically relies on an aggregate navigator capable of selecting, among the different views on which
each query can be solved, the cheapest one. In the absence of fragmentation, the smallest view is
generally chosen to this end.

When fragmentation has been carried out, the problem of choosing the best fragments for
answering a query is apparently harder. For instance, let 4, B, C, D be disjoint sets of measures,
and let query ¢ require all measures in 4 U B (for brevity, 4B). Let three fragments be materialized:

Meas(F,) = AC,
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Fig. 5. Fragmented and unfragmented workload costs for Q; (top), O, (middle), and Qs (bottom) varying the space
constraints.

Gby(F1) = Gby(q);
Meas(#,) = BD,
Gby(F2) = Gby(q);
Meas(F ;) = AB,
Gby(75) = g,

where Gby(q) = g. In this situation, the optimizer should choose whether to answer ¢ on fragment
Z 3 only, or to answer it by accessing both %, and % ,: in the first case, the number of pages to be
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read could be high due to the high cardinality of the fragment; in the second, it could be high due
to the presence of additional (non-required) measures.

The results reported in the previous subsection were computed assuming that an “ideal”
aggregate navigator was available, i.e. that each query was answered on the fragment(s) yielding
the minimum execution cost. This implies that the navigator should solve, for each query for-
mulated, a complex optimization problem, which would lead to a significant overhead on query
processing.

In practice, in order to limit the complexity of query processing, a reasonable heuristics must be
devised. Considering the peculiar characteristics of MDs, a good polynomial heuristics consist in
retrieving each measure required from the coarsest available fragment. With reference to the
example above, such heuristics would answer ¢ on %, and %,. In the following, we give a
quantitative justification to assess the validity of this approach.

Considering again the general example above, we can roughly estimate the execution costs for
the two solutions as the total amounts of data to be read. Let K; denote the primary key of
fragment % ;:

Cost,(F1,F,) = Card(F ) x (len(AC) + len(BD) + 2len(K,))

Cost, (7 3) = Card(F3) x (len(AB) + len(K3))

where function Card(% ;) returns the cardinality of a fragment and function /en() returns the
length in bytes of a set of attributes. * The first solution, i.e. the one returned by the heuristics, is
convenient when Cost,(F |, 7,) < Cost,(F3), 1.e.:

Card(F3) _ len(ABCD) + 2len(K;)

Card(F) len(AB) + len(K3)
The algorithms for choosing candidate views tend to avoid materializing views with similar
grouping sets [3]. Hence, it commonly is Card(# ) < Card(F ;) (at least one order of magnitude)

* Note that Card(F ) = Card(ZF,) and len(K;) = len(K>) since the two fragments share the same grouping set.
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and the inequality will most likely be satisfied since (1) it is almost impossible that /en(CD) >
len(AB); and (2) it is len(K3) = len(K;).

The validity of this approach is confirmed by experimental results showing that, with reference
to the workloads introduced in Section 4, adopting the heuristics leads to a neglectable increase in
the execution costs as compared to those reported in Fig. 5.

4.3. Optimality

Solving the fragmentation problem on the full set of candidate views becomes unfeasible for
large workloads; the solution we adopted, proposed in [3], preliminarily reduces the cardinality of
each set by repeatedly dropping the candidate views whose grouping set is very close to the one of
another candidate view. The reason for this heuristic criterion, that is well-known and accepted by
data warehouse designers [2], relies on the observation that it is useless to materialize fragments/
views on very similar grouping sets. When comparing fragmented solutions to unfragmented ones,
the same starting set of candidate views is always used. Table 4 shows how the preliminar
reduction of the candidate view sets affects the solution optimality. All test has been carried out on
0, and show that this heuristic criterion actually degrades the solution only in the classic ap-
proach when dramatic reductions are operated. It is remarkable that, even when significant
reductions are applied, the extra flexibility induced by fragmentation limits the shift from opti-
mality.

4.4. Impact on design

In principle, within the optimal materialization solution, when no constraints on space are
posed, each query in the workload should be answered on a view with the same grouping set
required by the query. In the classic approach, this is achieved by materializing one view for each
grouping set required by at least one query; in the fragmented approach, materializing only the
subset of relevant measures will suffice. Consequently, as confirmed at first glance by analyzing the
graphs, fragmented curves flatten for smaller disk space than unfragmented ones. When the space
constraint is not fixed a priori and is left to the designer’s choice, the best trade-off between
performance and space should be determined by a threshold on the extra-space benefit (i.e. such
that the cost decreases for each MB further devoted to materialization); in the fragmented ap-
proach, such threshold will be crossed for lower disk spaces.

Table 4
Shift from optimality induced by the heuristic reduction of the set of candidate views on the materialization solution for
0, with 1.4 GB available

Number of views Cost Shift from optimality
Unfragmented Fragmented Unfragmented (%) Fragmented (%)
100 3286453 538372 256 6
300 1284958 520 647 0 2
500 1284958 510230 0 0
743 1284958 510230 0 0
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4.5. Robustness

Although it is very likely that the core workload is available to the designer a priori, it is not
possible to know in advance all the queries that will be submitted to the warehouse. Extemporary
queries formulated by the users during OLAP sessions may decrease the global saving induced by
the vertical fragmentation solution which is tailored on a specific workload. The effects of
extemporary queries have been experimentally evaluated by comparing the performances of the
unfragmented and fragmented solutions on workloads containing also queries not included in the
reference workloads used for optimization. In particular, in Table 5 we compare the costs for
executing 0,(Q;) on the (fragmented and unfragmented) materialization solutions optimized for
0,(0;) and for Qy, respectively. It is apparent that, as we might expect, the workload cost rises
quickly for both the fragmented and unfragmented solutions as soon as extemporary queries are
considered. When increasing their percentage, the performance for the fragmented solution decays
a little more quickly than that of the unfragmented solution: in our tests, the two costs are
comparable when 40% of the queries are extemporary. The reason for this behavior is that,
though the extra-measures included in each view can be potentially useful to solve extemporary
queries, its grouping set is often too coarse. Furthermore, the probability that a view can be used
to answer a query increases for views with finer grouping sets which, unfortunately, determine
lower cost savings.

4.6. Storage space

One of the main objections often moved to vertical fragmentation is that it causes a waste of
disk space due to replication of keys. We wish to emphasize that our approach is based on
reducing the size of fact tables by decreasing the number of measures included, while key repli-
cation occurs as a side effect only when multiple fragments are materialized on the same cube
scheme and on the same grouping set. This is confirmed by the results reported in this section,
where the incidence of key replication on fragmentation effectiveness is evaluated.

When the space constraint ranges from 700 to 2200 MB, the average number of surrogate keys
composing the primary key of fragments varies between 2.5 and 3. Some dimensions are com-
pletely grouped, which proves that fragments are, in the average, much coarser than primary
views. In fact:

e OLAP queries are intrinsically aggregated in order to allow summary information to be easily
analyzed by a human user.

Table 5
Cost of a workload when executed on the materialization solution optimized for itself and for O, (with space constraint
1 GB)

Materialization 0, 0
solution Optimized for O, Optimized for Q, Optimized for Qs Optimized for Q,
Unfragmented 4138 12989 6424 49537

Fragmented 3411 11204 4565 52772
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Fig. 7. Percentage of replicated keys and percentage of measures (data are averaged on the three workloads).

o The cost reduction induced by materialization is due to the reduced number of tuples that are
read when answering a query on a view. On the other hand, due to the sparsity of primary
views, only coarse grouping sets actually produce a significant reduction of the cardinalities
of secondary views. Thus, most views are materialized on very coarse grouping sets.

The shortness of surrogate keys reduces the effects of redundancy since the space devoted to
them is percentually lower for coarse fragments. As already stated, the effects of redundancy are
further smoothed since our approach is inclined to materialize one fragment on each grouping set
rather than more fragments on the same one. This behavior is confirmed by Figs. 6 and 7 showing
that the increase in the number of fragments is much faster than the increase in the number of
replicated keys when rising the space constraint. The percentage of replicated keys (calculated as
the fraction of the total number of attributes in the fact tables) is lower for tight constraints and
never exceeds 19%.

Fig. 7 also shows the average percentage ratio between the number of measures materialized in
the fragmented and in the unfragmented solutions, which decreases when more space is available
since fragments become more specialized (i.e. few queries are answered on each fragment).

4.7. Computation

We implemented an exact methodology for solving instances of VFP. The computational
testing was performed using a commercial IP solver (CPLEX 6.6 by Ilog Inc.) to produce first an
optimal LVFP solution, thus a lower bound, and then the optimal integer solution. All tests were
run on an Intel platform with 512 MB of RAM, running at 933 MHz under Windows Me. We
first generated some simple instances to fine-tune the CPLEX parameters and then solved the
instances described above.

We directly applied an IP solver, i.e., a general program which is able to solve any problem
expressed as a (Mixed) IP problem, instead of writing a more tailored code because formulation
VFP is sufficiently well structured to permit to exploit the effectiveness of the solution procedures
implemented in CPLEX. It is surely possible to further improve the results presented here by a
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more tailored code, but the huge design and implementation work involved in obtaining a better
code than the current one would probably not be repaid by the expectedly small improvement
which could be achieved.

A full account of the computational testing can be found in Table 6. The columns show the
following data:

e Probl: problem identifier;

e n: number of queries in the workload;

e B: size of memory constraint;

e Cost(LVFP): optimal linear relaxation solution cost;

e err: percentage distance from IP optimality of Cost(LVFP);

e {(LVFP): CPU time to obtain Cost(LVFP);

e Cost(VFP): optimal integer solution cost;

e {(VFP): CPU time to obtain Cost(VFP);

Problem instances Qa to Qe are used to tune the final algorithm and can all be easily solved by
CPLEX. The other instances are those described in the previous sections. Besides the increase in
their dimension, it is apparent from column #(VFP) how they are structurally more complex than
the training ones. As expected, the tighter the memory constraints, the harder the instance. This
can be seen both from the higher error of the bound w.r.t. the optimal IP cost and from the time
needed to get the optimal IP solution. Instances Q2S7 and Q3S7 are the hardest ones, they could
be solved with the available RAM, but the CPU time needed is huge. This increased difficulty
arises from the interplay of all problem constraints, whereas with loose memory requirements the
active constraints are essentially the set covering ones.

5. Related work

The problem of determining the optimal partitioning given a workload has been widely
investigated within the context of centralized as well as distributed database systems, considering
non-redundant allocation of fragments (for instance, see [8,22,23]); unfortunately, the results
reported in the literature cannot be applied here since the redundancy introduced by materializing
views at different aggregation levels binds the partitioning problem to that of deciding on which
view(s) each query should be executed. Thus, ad-hoc approaches must be devised for MDs.

While horizontal partitioning has been widely investigated and is currently adopted by
designers [24], to the best of our knowledge only a few approaches to vertical fragmentation in
MDs have been devised. In [7], fragmentation is extended to both measures and non-key
dimensions (i.e. dimensions functionally determined by other dimensions); on the other hand, no
algorithm for determining the optimal fragmentation is proposed. In [9], views are partitioned
vertically in order to build dataindexes to enhance performance in parallel implementations of
MDs; still, no suggestion is given on how to determine the optimal partitioning. In [10], mate-
rialization and fragmentation are seen as separate steps; the views are determined by the mate-
rialization algorithm and then fragmented, thus compromising the process overall optimality.



Table 6
Computational test summary results

Probl. n B Cost(LVFP) err t(LVFP) Cost(VFP) t(VEP)

Qa 3 1400 50475 0.00 0.05 50475 0.00
Qb 5 1400 281816 2.13 0.22 287957 0.00
Qc 10 1400 65190 0.00 0.66 65190 0.00
Qd 10 1400 33976 0.00 0.06 33976 0.00
Qe 10 1400 116463 0.00 0.11 116463 0.00
Q187 20 700 322535 13.77 63.65 374047 847.94
Q1S10 20 1000 152816 0.70 904.95 153894 5308.99
Q1S14 20 1400 98 046 1.16 306.48 99201 3327.66
QISI18 20 1800 96270 0.00 342.41 96270 52.73
Q1822 20 2200 96270 0.00 370.59 96270 31.30
Q287 30 700 564786 11.60 346.97 638882 24563.01
Q2810 30 1000 353786 0.47 1343.03 355456 4738.76
Q2514 30 1400 274042 2.14 645.87 280029 6880.08
Q2818 30 1800 248205 1.94 513.66 253117 1677.59
Q2822 30 2200 241330 0.00 607.91 241330 162.80
Q387 40 700 718601 10.14 1824.24 799 666 76703.28
Q3S10 40 1000 464241 0.06 653.83 464 535 8539.98
Q3514 40 1400 376 146 1.78 551.29 382947 3780.41
Q3S18 40 1800 336431 1.37 680.53 341090 4362.62
Q3822 40 2200 316795 0.11 668.17 317155 2561.45
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At the physical level, vertical fragmentation is partially implemented by projection indexes that
store a single column of a relational table [25]; the correspondence between the rows of the index
and the rows in the main table is transparently maintained by the DBMS. The rationale for this
kind of index, which is particularly useful for selection and aggregation queries, is that scanning a
smaller structure is faster than scanning the whole table. Though projection indexes are usually
considered as auxiliary structures to improve retrieval efficiency, the SYBASE IQ commercial
DBMS [26,27] pushes their use to the limit by replacing the data themselves, i.e. by storing data by
columns instead of rows. Thus, in practice, SYBASE implements an extreme fragmentation in
which each fragment includes a single measure. In this case, since the correspondence between
values belonging to the same row is maintained by row identifiers, fragmentation does not require
the replication of the key attributes.

Currently, to the best of our knowledge, no DBMS allows to include multiple columns into one
projection index, thus our fragmentation technique cannot be applied at the physical level.
However, given the competitive performance of SYBASE, it is easy to predict a relevant utility for
a workload-based fragmentation if multiattribute projection indexes will be implemented. In this
case, the optimal fragmentation could be determined using our approach by considering, in the
function estimating the access costs, that keys are not replicated.

6. Conclusions

In this paper we have proposed a technique for materializing views in vertical fragments, aimed
to tightly fit the reference workload. In the context of MDs, due to both the redundancy of data
guaranteed by materialization and to the nature of queries, fragmentation is more complex than
for traditional relational databases on the one hand, on the other it may yield more significant
benefits.

The experimental tests suggest the effectiveness of our approach in reducing the workload cost
as compared to the classical approach to view materialization. The robustness of fragmentation
has been evaluated even with reference to extemporary queries. The tests also allowed to confute
the main drawback typically ascribed to fragmentation, i.e. the replication of keys, showing that
its impact on the storage requirements is not relevant. Besides, key replication could be completely
avoided when applying fragmentation at the physical level, implementing it for instance by means
of multiattribute projection indexes.

Appendix A. The cost function

Among all the feasible solutions to the fragmentation problem, we are interested in the one
which minimizes the cost for executing the workload. We believe it is convenient to keep logical
design independent on access plans in order to both provide a more general solution and reduce
complexity. Thus, the cost function we propose intentionally abstracts from any assumptions on
the access paths, being based on the number of disk pages in which the tuples of interest for a
given query are stored.
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Let ¢; be a query requiring at least one measure in fragment . ; defined by Gby(# ;) = g; and
Meas(F ) = t, and Freq(q;) be its frequency. The number of tuples of % ; which must be ac-
cessed in order to answer g; is Sel(q;) - Card(Z j), where Card(Z j) is the cardinality of F ;
estimated for instance as in [28]. The total number of pages in which 7 ; is contained is

Card (7 j)
B
where 8, is the number of tuples per disk page for 7 ;. The expected, frequency-weighted number

of pages in which the tuples of % ; necessary for ¢; are stored, c;, can be estimated with the
Cardenas formula @ [29] as follows:

ci = Freq(q;) - @(Sel(q;) - Card(F i), by) (A.2)
With reference to the index set notation summarized in Table 3, the cost of executing query i
against the fragmentation denoted by X = {x;;} is then estimated as the total number of disk
pages which must be accessed in order to retrieve all the measures in ¢;:

Cost;(X) = Z Z CijiXijk (A.3)

JjE€Y; kegﬂ-é/

by = (A1)

where x;; = 1 if, when answering ¢;, the measures in Meas(q;) Nt are read from F 4, x; =0
otherwise. Finally, the overall cost for workload Q is:

Cost(X) = Z Cost;(X) = Z Z Z CijkXijk (A.4)

ic2 i€c?2 je%; kEQ.T,‘,‘

This is the cost function minimized in (6) within the IP formulation of VFP. Though the actual
number of pages read when executing the workload may be higher depending on the access path
followed, we believe that this function represents a good trade-off between generality and accu-
racy.
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