Comparing Nested GPSJ Queries
in Multidimensional Databases

Matteo Golfarelli
DEIS — University of Bologna
Viale Risorgimento, 2
40136 Bologna- ltaly
+39-0547-642862

golfare@csr.unibo.it

ABSTRACT

A multidimensional database can be seen as a collection of
multidimensional cubes, from which information is usually
extracted by aggregation; aggregated data can be calculated
either from cubes containing elemental data or from views in
which partially aggregated data are stored. Thus, view
materialization and run-time optimization through query
rewriting become crucial issues in determining the overall
performance. The capability of matching two queries is
necessary to address both issues; unfortunately, most works in
this field consider only simple categories of queries. In this
paper we focus on a relevant class of queries, those modeled by
Nested Generalized Projection / Selection / Join (NGPSJ)
expressions, in which different aggregation functions may be
applied in sequence to the same measure and selections may be
formulated, at different granularities, on both dimensions and
measures of the cube. Given two NGPSJ expressions, we show
how to recursively compute their ancestor, i.e., the coarsest
expression on which both can be rewritten. The ancestor has a
key role in view materialization, since it may be used to
determine a restricted set of candidate views; given the
ancestor, determining if one expression can be rewritten on the
other is straightforward.

1. INTRODUCTION

Multidimensional databases have gathered wide research and
market interest as the core of decision support applications
such as data warehouses. A multidimensional database (MD)
can be seen as a collection of multidimensional cubes centered
on facts of interest (for instance, the sales in a chain store);
within a cube, each cell contains information useful for the
decision process, i.e., a set of numerical measures, while each
axis represents a possible dimension for analysis. Typically,
for each dimension, a hierarchy of aggregation levels is
defined.

The basic mechanism to extract useful information from
elemental data in MDs is aggregation. Within typical

Stefano Rizzi
DEIS — University of Bologna
Viale Risorgimento, 2
40136 Bologna- ltaly
+39-051-2093542

srizzi@deis.unibo.it

multidimensional queries, the values of measures are
summarized according to some combination of aggregation
levels from the different dimensions, which defines the
coarseness of aggregation. The aggregated data which solve
the query can be calculated either from cubes containing
elemental data or from cubes where partially aggregated data
are pre-calculated and stored (views). Thus, both the problem
of deciding which views should be materialized and that of
finding if and how a given query can be rewritten on a view
(i.e., it can be answered using that view) assume a crucial role
in determining the system overall performance.

The capability of matching two queries is necessary in the
context of both view materialization [1][6][7] and query
rewriting aimed at run-time optimization [2][8]. Unfortunately,
most works consider only simple categories of queries; to the
best of our knowledge, only one approach [9] considers both
query nesting and multidimensional aggregation, and it
pragmatically proposes a list of patterns for rewriting multi-
block SQL queries on views.

In the MD context, a particularly interesting and general class
of queries are those represented by Nested Generalized
Projection / Selection / Join (NGPSJ) expressions, in which
different aggregation functions may be applied in sequence to
the same measure and selections may be formulated, at
different granularities, on both dimensions and measures to
properly restrict the data to be aggregated. In [3] we introduced
this class of queries and proposed an original approach to
materialization in which views themselves are defined by
NGPSJ expressions.

Typically, the first step in view materialization consists in
determining a restricted set of candidate views, i.e., views
which are potentially useful for query answering. In [1], the
authors found their definition of candidate views on an
ancestor operator which, given two queries, returns the
smallest view on which both can be answered. Computing the
ancestor in their approach is straightforward, since queries are
characterized only by the coarseness of aggregation.

In this paper we show how to compute the ancestor between
two NGPSJ expressions. The nested structure of NGPSJ
expressions suggests to execute matching in a piece-by-piece
fashion; thus, we propose a set of incremental rules and show
how their recursive application leads to computing the
ancestor.

Given two NGPSJ expressions and their ancestor, determining
if one expression can be rewritten on the other is
straightforward. In this paper we do not specifically address
the problem of actually determining the rewrite of an

expression on another due to the lack of space; however, the
rules presented here can be easily extended to recursively
determine also the rewriting of the two source expressions on
their ancestor.

The paper is organized as follows. In Section 2 we present our
working example and demonstrate the utility of NGPSJ
modeling with an example. After introducing the concept of
pattern in Section 3 and defining NGPSJ expressions in
Section 4, in Section 5 we define the relationship of
rewritability between expressions, introduce the rules for
determining the ancestor and show how they can be applied.

2. WORKING EXAMPLE

An MD implemented on a relational DBMS is usually
organized according to the so-called star scheme, in which
each cube is represented by one fact table storing the measures
and one denormalized dimension table for each dimension.
The primary key of each dimension table (usually a surrogate
key, i.e., internally generated) is imported into the fact table;
the primary key of the fact table is defined by the set of these
foreign keys. Each dimension table contains a set of attributes
defining a hierarchy of aggregation levels.

The simple Safles star scheme used as a working example is
defined below:

STORE (Storeld, SName, SCity)

TIME (Timeld, TDay, TMonth, TYear)

PRODUCT (Productld, PName, PType, PCategory)
SALE (Timeld, Storeld, Productld, Qty, Prc)

The denormalized dimension tables leave out the following
hierarchies of functional dependencies:

SName—SCity, TDay—TMonth—TYear,
PName—PType—PCategory

In the rest of the paper, we denote with T the join between the

fact and the dimension tables: T =
SALED<PRODUCTDPD<ISTORE PATIME.

Given a star scheme S, we denote with Par#(S) the set of key
attributes of the fact table; we denote with A#tr(S) and Meas(S)
the sets of non-key attributes of, respectively, the dimension
tables and the fact table:

Patt(Sales) = {SName, TDay,PName}, Meas(Sales)={Qty,Prc},
Attr(Sales) = { SName,SCity,TDay, TMonth,TYear,PName,PType,
Pcategory}

In order to demonstrate the utility of using NGPSJ expressions
to model queries and views, consider the following queries,
belonging to the workload on the Safes star scheme:

q" “For each product, find the average selling price and the
maximum total quantity sold for the stores which sold
more then 1000 units of that product”

q": “For each product of type beverage and for each year,
find the total quantity sold and the average of the total
monthly revenues that are higher than 1000

In Section 4 we will show how these queries can be modeled by
NGPSJ expressions. Among the possible views defined
according to the approach proposed in [1], none could be used
to answer either ¢’ or ¢": in fact, within such views, Qty and Prc
would be aggregated only by means of the sum and the average

operators, respectively. Thus, both queries would be
necessarily answered on the base fact table, with a high
execution cost. On the other hand, if NGPSJ views were
materialized, new possibilities for on-line query optimization
would arise. For instance, let a view v be defined as follows:

v: “For each product, store and month, store the total
quantity sold, the average price, the total revenue and the
number of sales”

Both ¢' and ¢"” can be answered on it, significantly decreasing
the execution costs.

3. MODELING PATTERNS

The concept of aggregation pattern plays a basic role in
multidimensional databases since it allows different levels of
aggregation to be modeled:

Definition 1. Given a star scheme S, an aggregation pattern (or

simply pattern) on S is a set PCAttr(S) such that no functional
dependency exists between each pair of attributes in P:
Va, EP(ﬂaj €P | g, —>aj).

Definition 2. Given two patterns P'and P” on scheme S, we say
that P’ is coarser than P" (P' =< P") iff
Ya, €P’ (a‘ EP”)V (Elaj €P" | a; —>ai).

Manipulating patterns also requires, given two patterns, to
determine their ancestor:

Definition 3. Given two patterns P’ and P"” on scheme S, the
ancestor of P’ and P" is the pattern P’C:)P” such that (1) (P’ =<
P’EI:-)P”) A (P < P’EI:-)P”) and (2) for each other pattern P
which satisfies (1), P’éP” < P holds.

Theorem 1. Given two patterns P’ and P” on scheme G,

,
P@P ={q,€PUP" |30, €P UL 4,2 0,|0,~ a}.

Proof. Let P*= {a/. €L UL | da,€P VP a,=a,|a,— a/}.
Proving that P* is the ancestor requires proving that (a) P'< P*
A P"< P*;and that (b) VP | P <PAP" sP(P*sP).
(a) Applying Definition 2 we find

P sPreNa €P(3a, €L | a,—a)v(a, €L (1)

Let a;€P"; either a,£P* or aP* hold. In the first case, (1) is

proved. In the second, necessarily 3o, €' UP" | a, —a,. For
Definition 1, a;&P' hence a;€P". Thus, e, EP' UP" | @, —a,,

J

which means that ¢/ €P* so (1) is proved. Similarly for P".

(b) Suppose ab absurdo that 32 | P <P AP <P AP*4P.
P*4 P holds iff

3z, €P* | (Ya,€P(a,+7,)| 1 (7, &7) @)

If @, €2 *then either @, €/ or a, EP". In the first case, since
P <P then Va, EP’(EQ/ EP | a, —>a/.)v(a/ EF’); thus, either

@, EP or Ja, EP | a,— a;, which contradicts (2). Similarly if
a, eP'. 0

It is straightforward to verify that the ancestor operator is
reflexive, commutative and associative.

Example 1. On the Sales scheme, example of patterns are P’ =
{SCity,TMonth,PType}, P" = {SCity,TYear}, P"" = {SCity,TDay}. In
Figure 1 the relationships between these patterns are shown;
an arrow from one pattern to another denotes that the second is

»
coarser than the first: P” < P, P" < P" P ®P"=
{SCity,TDay,PType}. [

Pr@ P"
P PW

P"
Figure 1. Coarseness of patterns.

4. MODELING NGPSJ EXPRESSIONS

A GPSJ (Generalized Projection / Selection / Join) expression
[5] is a selection o) over a generalized projection m over a
selection o0y over a set of joins x: oimoyy. The generalized

projection operator, mpu(R), is an extension of duplicate
eliminating projection, where P denotes a pattern and M
denotes a set of aggregate measures, each defined by applying
an aggregate function to an algebraic expression involving
attributes in R.

Nesting GPSJ expressions means using the result from an
expression as the input for another; it adds expressive power
to GPSJ expressions since:

* Sequences of aggregate functions may be applied to a
measure (e.g., the maximum of the sums);

* Multiple selections can be applied to measures at different
granularities.

On the other hand, nesting requires issues related to partially
aggregated data to be addressed: in particular, some
aggregations require support measures in order to be correctly
calculated from partial aggregates (e.g., the average function
requires the cardinality of each partial aggregate).

In this paper we consider NGPSJ expressions applied to star
schemes. We define them by induction, by supplying four
construction rules; each expression e is described by its outer
pattern, ExtP(e), the aggregate measures returned, ExtM(e), and
the outer selection predicate on measures, ExtS(e).

Construction Rule A. Given a star scheme § with base fact table
FT and dimension tables DT4,...DT,, e = FTD><DT,...><DT, is an
NGPS]J expression, described by ExtP(e) = Patt(S), ExtM(e) =
Meas(S) and ExtS(e) = TRUE.

Construction Rule B. If e is an NGPSJ expression, and given a
predicate PredA expressed as a conjunction of Boolean

predicates each involving one attribute in A#r(S), e’ = Opred(e)

is an NGPSJ expression, described by ExtP(e’) = ExtP(e),
ExtM(e") = ExtM(e) and ExtS(e") = ExtS(e).

Construction Rule C. If e is an NGPSJ expression, and given a
pattern P < ExtP(e) and a set M of aggregate measures, each
defined by applying an aggregate function to algebraic
expressions involving measures in ExtM(e), e’ = mpyu(e) is an
NGPS]J expression, described by ExtP(e’) = P, ExtM(e") = M and
ExtS(e") = TRUE.

Construction Rule D. If e is an NGPSJ expression, and given a
predicate PredM expressed as a disjunction of conjunctions of
simple Boolean predicates on measures in ExtM(e), e’ =

opream(e) is an NGPSJ expression, described by ExtP(e) =
ExtP(e), ExtM(e") = ExtM(e) and ExtS(e") = PredM.

We say an NGPSJ expression is in normal form when (1)
selections on attributes are pushed below all projections and
selections on measures' and (2) projection and selections are
coalesced as much as possible. Within the normal form, no two
consecutive selections on measures can be present; on the
other hand, two consecutive projections may be necessary to
allow two or more different aggregate functions to be applied
in sequence on a measure.

We wish to emphasize that the order in which operators appear
within the expressions does not reflect the execution plans
that will be used to calculate them. Besides, we assume for
simplicity that the fact table is always joined to all the
dimension tables (though in some expressions, depending on
the pattern required, it may be possible to omit one or more of
them).

Example 2. Consider the following queries on the Sales star
scheme:

q" “For each product, find the average selling price and the
maximum total quantity sold for the stores which sold
more then 1000 units of that product”

q": “For each product of type beverage and for each year,
find the total quantity sold and the average of the total
monthly revenues that are higher than 1000

These queries are expressed, respectively, by the following
NGPSJ expressions in normal form:

€' = TTpName,WAVG(P,C)MAX(Q)TQ>1000
J1:PName,SName.Q=SUM(Qty),P=AVG(F‘rc),C=COUNT(‘)(T)

e” = 0‘A>1OOOTETYear.PName.SUM(Q),A=AVG(R)J":TMomh,F’Name,C!=SUM(Qty).R:SUM(C!ty.F’rc)
0PType='Bev'(T)

where WAVG(m,w) computes the weighted average of measure

m based on the weights w. These expressions are characterized
by the following properties and SQL formulations:

ExtP(e") = {PName}, ExtP(e") = {TYear,PName},
ExtM(e") = {WAVG(P,C),MAX(Q)}, ExtM(e") = {AVG(R),SUM(Q)},
ExtS(e") = TRUE, ExtS(e") = (A>1000).

! While in general moving a selection on a measure in different
positions of an expression affects the expression semantics,
selections on attributes can be placed indifferently in any
position outside the joins.

e': SELECT PN,SUM(P*C)/SUM(C),MAX(Q)
FROM (SELECT PRODUCT.PName AS PN,
STORE.SName AS SN,
SUM(SALE.Qty) AS Q,
AVG(SALE.Prc) AS P,
COUNT(*)AS C
FROM SALE,PRODUCT,STORE
WHERE <...join conditions...>
GROUP BY PN,SN)
WHERE Q>1000
GROUP BY PN

e": SELECT PN,TY,SUM(Q),AVG(R) AS A
FROM (SELECT PRODUCT.PName AS PN,
TIME.TMonth AS TM,
TIME.TYear AS TY,
SUM(SALE.Qty) AS Q,
SUM(SALE.Prc*SALE.Qty) AS R
FROM SALE,PRODUCT,STORE
WHERE <...join conditions...>
AND PRODUCT.PType="BeV’
GROUP BY PN,TM)
GROUP BY PN, TY
HAVING A>1000
O

4.1 Aggregate functions

An aggregate function maps a multiset of values into a single
value. A classification of aggregate functions which is relevant
to our approach is presented in [4]:

* Distributive, that allows aggregates to be computed directly
from partial aggregates.

* Algebraic, that require additional information (support
measures) to calculate aggregates from partial aggregates.

* Holistic, that do not allow aggregates to be computed from
partial aggregates through a finite number of support
measures.

Consider aggregating a two-dimensional set of values {x; |
i=1,...1, j=1,...J}. As stated in [4], for a distributive or
algebraic aggregate function f; it is always possible to find an
aggregate function / and a finite set of aggregate functions {gx
| k=1,...K} such that fl{x;}) = A({g({xy | =1,...0}) |
=L g Agk({xy | =1,...03) | j=1,...J}). If f is distributive,
K=1 and g = f. Table I reports the g and % functions associated
to some common aggregation functions.

Table I. The g and & functions associated to some common
aggregation functions f.

f g h
SUM(m) m'=SUM(m) SUM(m")
MAX(m) m'=MAX(m) MAX(m")
COUNT(*) ¢=COUNT(*) SUM(¢)
AVG(m) m'=AVG(m), c= COUNT(*) WAVG(m',c)
WAVG(@m,c) | m'=WAVG(m,c), WAVG(m',c')

¢'= COUNT(*)

Given a set M of aggregate measures, we denote with G(M) and
H(M) the sets of aggregate measures obtained by substituting
each aggregate function f in M with its corresponding g
function(s) and # function, respectively.

5. COMPARING NGPSJ EXPRESSIONS

Two NGPSJ expressions e’ and e” on star scheme S are
equivalent (¢’ =e"”) when they return the same result for every
legal instance of , i.e., each column returned by an expression
matches with an equivalent column in the other. Among the
columns returned, testing the equivalence of those included in
the outer pattern is straightforward, since they correspond to
attributes in A#tr(S). On the other hand, the aggregate measures
returned are not base measures belonging to Meas(S); they are
computed from other measures which, in turn, may be defined
within a nested sub-expression. For this reason, the process of
comparing two NGPSJ expressions is inherently recursive.

Definition 4. Given two NGPSJ expressions e’ and e” on
scheme S, we say that e’ is rewritable on e" (e' < e") if, by

repeatedly applying Construction Rules B, C and D to e”, it is
possible to obtain a NGPSJ expression which is equivalent to

e

Intuitively, rewritability holds when every column returned by
e’ can be computed from those returned by e”.

Example 3. EXpression Terype Tvear,suM(@)0a>20007TPName, TMonth,Q=SUM(Qty)

0—F‘Category='Foodstuffs'/\T‘(ear>’1997’(T) is rewritable on
€ = 0Qq>1000TtPName, TMonth,a=sum(ty)(T)

by computing Terype Tvear,sum(@)Oa>20000PCategory="Foodstuffs'sTYear>1997'(€)-
On the other hand, CXpI'CSSiOI'I 0Qq>1000TTPName, TMonth,@=SUM(Qty)OPrc>10
Orpay>Febisor(T) 1S not rewritable on e since it specifies
additional selections on an attribute which did not appear in e

due to aggregation (TDay) and on a measure which in e is not
available at the granularity required (Prc). [

Definition 5. Given two NGPSJ expressions e’ and e” defined
on scheme §, the ancestor of e’ and e” is the NGPSJ expression
e'®@e”"such that (1) (e'=se' @ e") A (e"<e' @ e") and (2) for
each other NGPSJ expression e which satisfies (1), e’ @ e”" < e
holds.

Intuitively, the ancestor between two expressions is the
coarsest expression on which both can be rewritten. In some
view materialization techniques [1][3], this operator is
necessary since every expression which is ancestor of at least
two queries in the workload defines a candidate view.

Given two NGPSJ expressions, one and only one ancestor in
normal form always exists.

Theorem 2. The ancestor operator is reflexive, commutative
and associative.

Proof. Proving reflexivity and commutativity is
straightforward. Associativity holds iff both the following
relationships hold:

(e'@eN@e"zse'@(e"De"), e@D(e"De")<(e'@e")De"
Let us consider the first relationship. Applying part (1) of
Definition 5 to the rightmost expression, we find e’ < e’ @ (e”
De'"),e"se"De"se'D(e"@De")and e se"De"" e’ D (e
@ e""). Thus, due to part (2) of Definition 5, it must be ¢’ @ e” <
e' @ (e" @ e'"). Again, due to part (2) of Definition 5, we can

write (e’ @ e") D e = e’ @ (e” @ e'). The second relationship
can be symmetrically proved. U

The possible relationships between two NGPSJ expressions e’
and e" are sketched in Figure 2:

e Casc A: e'=e"<=e'@e"=e'=¢"

*Case B: e'se"e'@e"=¢"
*Case C: e"se'ee'@e"=¢'

*CaseD: e'£e"ne"te'=(e'<e'@e")nA(e"<e'De")

e e ev @ eu
¢ Qe

el e” ey e/'
Case A Case B Case C Case D

Figure 2. Different relationships between two NGPSJ
expressions; an arrow from one expression to another
denotes that the second is rewritable on the first.

In the following subsections we introduce a set of rules which
can be used to recursively determine the ancestor of two given
NGPSJ expressions. It is straightforward to prove that these
rules satisfy part (1) of Definition 5. We are currently working
to formally prove that they also satisfy part (2); however, the
large amount of sample expressions examined so far revealed
no counter-examples.

5.1 Predicates on attributes
Rule 1. Given two NGPSJ expressions

€'= Opreaa(FTDADT; ... DIDT,), " = Opreas{FTDCDT; ... >IDT,)
(where possibly PredA’'= TRUE and/or PredA" = TRUE), it is
e'® "= Oprega(FTDADT; ... DIDT,)

where PredA is a conjunction of Boolean predicates, each
involving one attribute aEAtr(S) and expressed as the
disjunction of the two predicates involving a; in PredA' and
PredA", respectively.

Example 4. Given e’ = Opcategory=x(T) and e"” = Opcategory IN (x,y'2) A
Tvear<1999(T), itise'®@e"= O((PCategory='x') v (PCategory IN (X.'y'2)) A (TRUE v

(TYear<1999))(T) = 0PCa1egory IN ('x‘.‘y','Z')(T)' D

5.2 Generalized projections

Rule 1 solves predicates on attributes by relaxing the most
restrictive condition for each attribute in the two source
expressions. When considering generalized projections, it is
necessary to consider the attributes involved in predicates that
have been relaxed: in fact, the external pattern of the ancestor
must be fine enough to allow the relaxed predicates to be
applied when rewriting the source expressions. Thus, given
two predicates on attributes, PredA' and PredA", we denote
with S’ and S” the sets of the attributes for which the condition
in the ancestor is relaxed with reference to that in PredA’ and
PredA", respectively.

Rule 2.1. Given two NGPSJ expressions ¢’ and e” and their
ancestor ¢’ @ e”, such that

(ExtP(e") = ExtP(e' ® e") = ExtP(e")) A
(ExtS(e”) = ExtS(e' ® e") = ExtS(e"))

for each P, M, P", M" such that mp (e and mprpr(e”) are
NGPSJ expressions in normal form, it is

J'|:P',M'(e’) @ J'EP”’Mn(e ") = nP,M(@’@ e,,)

P P P
where P=P'®P"®S'®S",
M'UM", itP'=P=pP"
M= G(M')UM”, ifP' <P =pP"
G(M')uG(M"), itP' <PAP"<P

This rule can be applied when both source expressions are
aligned to the ancestor as to their outer pattern and their
selection predicates: in this case, a new aggregation level can
be reached (see Figure 3). Pattern P cannot be coarser than S’
and S” to allow rewriting of predicates on attributes. As to
aggregate measures, they must be transformed through
function G when the outer pattern of the new ancestor, P, is
finer than P’and/or P": in fact, in this case, an intermediate
aggregation level is being added and each aggregate function
must be “decomposed”.

P PO P" O
Figure 3. Different cases for Rule 2.1; the gray circles
represent ExtP(e') = ExtP(e' ® e") = ExtP(e").
Example 5. Let

e’ = OR>10007TSName, TMonth,PName,N=MIN(Qty), R=SUM(Qty-Prc)
OpCategory IN (x.y2) » TYear<1999(T)
e"= 0R>1UOOTESName,TMomh,PName,Q=SUM(Qty),R=SUM(Qty.Prc)GPCategory='x'(T)
e’ ® e" = Or>10007TsName, TMonth, PName,Q=SUM(Qty).N=MIN(Qty),R=SUM(Qty.Prc)
0—PCategory IN ('x',‘y‘,‘z')(T)
P'={TMonth,PType}, P"={TMonth,SCity,PName},
M={AVG(N)}, M"={MIN(Q)}

It is

ExtP(e'y=ExtP(e)=ExtP(e"y={SName,TMonth,PName},
ExtS(e")=ExtS(e)=ExtS(e"y=(R>1000),
S={TYear}, S"={PCategory}

Since P={TMonth,SCity,PName}, it is
M={AVG(N),COUNT(*),MIN(Q)} and

P<P=P", hence

TCTMomh,PType,AVG(N)(e ') @ TCTMonth,SCity,PName, MIN(Q)(e ") =

TUTMonth, SCity,PName, AVG(N),counT(yminy(e’ @ e”) T

Rule 2.2. Given two NGPSJ expressions e’ and e” and their
ancestor ¢’ @ e”, such that

(ExtP(e") = ExtP(e' ® e") > ExtP(e")) A
(ExtS(e") = ExtS(e") = TRUE)

for each P', M’ such that mp (e’) is an NGPSJ expression in
normal form, it is

mip (e ® e =mpu(e’ D e”)
P P P
where P = P'@Exzp(e”)@S'@S”,

MU H(ExtM(e”)), if P' = P = ExiP(e"

6(m')u H(ExtM(e’ if P’ <P = ExtP(e

This rule can be applied when the outer pattern of one of the
source expressions is coarser than that of the ancestor,
meaning that an intermediate aggregation level has been
previously added (see Figure 4). The aggregate measures in e”
must be transformed through H when the new ancestor is

aligned with e” (since each aggregate function must be
“recomposed”), through G(H) otherwise.

)
))
M'U G(H(ExtM(e”))), if P' = P A ExtP e") <P
6(m')u G(H(ExtM(e”))) if P' <P nExtP(e") <P

P

Lo @
Figure 4. Different cases for Rule 2.2; the gray and the
black circles represent ExtP(e') = ExtP(e' ® e") and ExtP(e"),
respectively.

Example 6. Let

e'= J'IZSName,TMv:Jmh,PName,Q=SUM(Qty)O‘PCa\tegory:'x'(T)
e'"= TCTMonth,PType,A=AVG(Qty)OPCategory IN (X.'y','Z)) A TYear<1999(T)
e'd@e"= TUSName, TMonth,PName,Q=SUM(Qty),A=AVG(Qty),C=COUNT(*)
GPCategow IN ('x','y‘,‘Z')(T)
It is
ExtP(e"y=ExtP(e)={SName,TMonth,PName},

ExtP(e")y={TMonth,PType},
ExtS(e'y=ExtS(e)=ExtS(e")=TRUE, S={PCategory}, S"={TYear}

and thus Tl?TYear,MlN(Q)(e 9 @ e" = TETMontn,SCity,PCategory,WAVG(A),MlN(Q)(e'@
e"). U
Rule 2.3. Given two NGPSJ expressions e’ and e” and their
ancestor e’ @ e”, such that neither Rule 2.1 nor Rule 2.2 can be
applied, it is

nP’,M’(er) @ e''= er@ err’

e'®@mpryle)=e' @ e",

TEP',M'(E') @ nprng(e ") =e'@e".

5.3 Predicates on measures
Rule 3.1. Given two NGPSJ expressions e’ and e” and their
ancestor e’ @ e”, such that

(ExtP(e') = ExtP(e' ® e") = ExtP(e")) A
(ExtS(e") = ExtS(e' ® e") = ExtS(e") = TRUE)

for each PredM', PredM" such that Opean(e’) and Opreanr(e”) are
NGPSJ expressions in normal form, it is

OP;‘edM(e') @ GPredM"(e") = OPredM’ PredM”(e’ ©) 6")
(where either PredM' = TRUE or PredM" = TRUE)

A new selection predicate on measures can be added to the
ancestor only if the source expressions are aligned to their
ancestor in terms of outer pattern. Disjoining the source
predicates allows rewritability to be preserved.

Example 7. Let

r—
e = J'l:SN'ame,TMonth,PName,Q=SUM(<’.}ty) 0PCategory='x'(T)

"_— T
e JTSName,TMomh,PName,N=MIN(Qty) 0‘PCa\tegory IN ('X,'y','z') A TYear<1999()

’ n —
e @ e = nSName,TMonth,PName,Q=SUM(Qty),N=MIN(Qty) OPCategory IN ('x',‘y','z')(T)

It is ExtP(e'y=ExtP(e)=ExtP(e") and thus o n>100(€") @ O as>1000(€")
= O 'N>100 v @>1000 (€' D e”). O

Rule 3.2. Given two NGPSJ expressions ¢’ and e” and their
ancestor e’ @ e”, such that Rule 3.1 cannot be applied, it is

O'PredM’(e,) @ O'PredM”(e”) =e' ® e”

5.4 The ancestor-building algorithm

Comparing two NGPSJ expressions means determining their
rewritability relationship; as already stated, this relationship
can be inferred from their ancestor. The ancestor can be
calculated by repeatedly applying the rules presented in the
previous subsections, proceeding from inside the two
expressions and, at each step, adding a new operator to the
result.

The conditions placed in the head of the rules ensure that, at
each step, exactly one rule can be applied; thus, the ancestor
determined is unique. It should be noted that rules may leave
the ancestor unchanged (for instance Rule 2.3, and Rule 3.1 if
one of the two predicates is true). It is possible to verify that,
in this case, any other rule further applied still leaves the
ancestor unchanged. Thus, the ancestor-building procedure
terminates when either no more rule can be applied (meaning
that both source expressions have been completely processed)
or the rule applied does not modify the ancestor.

Example 8. In the following we show how the ancestor between
two sample expressions e’ and e” is computed.

r—
€= JUTYear,MAX(D)TUTMonth,SCity,PName,D=MIN(Q)OR>1000
JTSName,TMonth,PName,Q=SUM(Qty),R=SUM(C)ty.Prc)O'PCategory='><‘(T)
[—
€ = TTYear,AVG(N)OR>1000TUSName, TMonth,PName,N=MIN(Qty),R=SUM(Qty.Prc)

0—PCategory IN ('X','y",'z') A TYear<1999(T)

STEP 1. By applying Rule 1:
0PCategory='x'(T) ©) Opcategory IN (X,'y',Z) A TYear<1999(T) =
= Opcategory IN ('x','y','z')(T)
STEP 2. Let
eh= 0PCategory='x'(T), e’ = Opcategory IN (x,y','Z)) A TYear<1999(T),
€2 = Opcategory IN ('x','y','z')(T)
By applying Rule 2.1:
TUSName, TMonth, PName, Q=SUM(Qty).R=SUM(Qty.Prc)(€2) @D
TUSName, TMonth, PName, N=MIN(Qty),R=SUM(ty.Prc)(€ 2) =

= JTSName,TMomh,PName,Q=SUM(Qty),N=MIN(Qty),R=SUM(Qty.Prc)(92)

STEP 3. Let

el = TCSName,TMonth,PName,Q:SUM(Qty),R:SUM(Q:y.Prc)(e /2),

e’y = nSName,TMonth,PName,N=MIN(Qty),R:SUM(Qty.Prc)(e "2),

e3 = JTSName,TMonth,PName,Q=SUM(Qty),N=M|N(Qty),R=$UM(Qty.Prc)(€2)
By applying Rule 3.1:
0R>1000(€'3) &) OR>1000(€ ”3) = 0R>1ooo(63)
STEP 4. Let
e's= 0R>1ooo(€'3), e'y= 0R>1000(€ "3), es4= OR>1000(6’3)

By applying Rule 2.1:

JTTMomh,SCity,PName,D=M|N(Q)(€ /4) @ TETYear,AVG(N)(e "4) =

= TtTMonth ,SCity,PName,A=AVG(N),C=COUNT(*),N=MI N(Q)(e4)

STEP 5. Let
e's= JTTMomh,SCity,PName,D=M|N(Q)(€ '4), e's= TETYear,A:AVG(N)(e ”4),
es = TCTMomh,sCity,PName,A:AVG(N),C:COUNT(*),N=M|N(Q)(€4)
By applying Rule 2.2:
TCTYear,MAX(D)(e '5) ®@e's= nTYear,PCategow,MAX(N),WAVG(A,C)(eS)
Since e’ @ e” is different from both e’ and e”, the rewritability
relationship between e’ and e” falls in case D (see Figure 2). U

6. CONCLUSIONS

In this paper we showed how to compare two NGPSJ
expressions by determining an ancestor expression on which
both can be rewritten, and we proposed a set of rules which
recursively compute the ancestor.

NGPSJ expressions can be used to model expressively
multidimensional queries; in this case, query rewriting is at

the core of the optimization process. On the other hand, in [3]
we showed that, in multidimensional databases, materializing
summary views defined by NGPSJ expressions may lead to a
relevant performance improvement as compared to
materializing classical views as in [1]: on a TPC-D-based
benchmark, and using a cost function which expresses the
total number of disk pages which must be accessed in order to
solve each query, the workload cost drops in the average to
about 50%.

REFERENCES

[1] Baralis, E., Paraboschi, S., and Teniente, E. Materialized
view selection in multidimensional database. In Proc.
23rd Int. Conf. on Very Large Data Bases (Athens, Greece,
1997), 156-165.

[2] Cohen, S., Nutt, W., and Serebrenik, A. Algorithms for
rewriting aggregate queries using views. In Proc. Int.
Workshop on Design and Management of Data
Warehouses (Heidelberg, Germany, 1999).

[3] Golfarelli, M., and Rizzi, S. View Materialization for
Nested GPSJ Queries. In Proc. DMDW’2000 (Stockholm,
Sweden, 2000).

[4] Gray, J., Bosworth, A., Lyman, A., and Pirahesh, H. Data-
Cube: a relational aggregation operator generalizing
group-by, cross-tab and sub-totals. Technical Report
MSR-TR-95-22, Microsoft Research, 1995.

[5]1 Gupta, A., Harinarayan, V., and Quass, D. Aggregate-query
processing in data-warehousing environments. In Proc.
21st Int. Conf. on Very Large Data Bases (Zurich,
Switzerland, 1995).

[6] Gupta, H., and Mumick, L.S. Selection of views to
materialize under a maintenance cost constraint. In Proc.
Int. Conf. on Database Theory (Jerusalem, Israel, 1999).

[7]1 Theodoratos, D., and Sellis, T. Data warchouse
configuration. In Proc. 23rd Int. Conf. on Very Large Data
Bases (Athens, Greece, 1997), 126-135.

[8] Yan, W.P., and Larson, P. Eager and lazy aggregation. In
Proc. 21st Int. Conf. on Very Large Data Bases (Zurich,
Switzerland, 1995), 345-357.

[9] Zaharioudakis, M., Cochrane, R., Lapis, G., Pirahesh, H.,
and Urata, M. Answering complex SQL queries using
automatic summary tables. In Proc. ACM SIGMOD 2000
(Dallas, TX, 2000), 105-116.

