
Data warehouse design from XML sources
Matteo Golfarelli

DEIS — University of Bologna
Viale Risorgimento, 2
40136 Bologna — Italy

+39-051-642862

mgolfarelli@deis.unibo.it

Stefano Rizzi

DEIS — University of Bologna
Viale Risorgimento, 2
40136 Bologna — Italy

+39-051-2093542

srizzi@deis.unibo.it

Boris Vrdoljak

FER - University of Zagreb
Unska 3

10000 Zagreb — Croatia
+385-(0)1-6129756

boris.vrdoljak@fer.hr

ABSTRACT
A large amount of data needed in decision-making processes is
stored in the XML data format, which is widely used for e-
commerce and Internet-based information exchange. Thus, as
more organizations view the web as an integral part of their
communication and business, the importance of integrating XML
data in data warehousing environments is becoming increasingly
high. In this paper we show how the design of a data mart can be
carried out starting directly from an XML source. Two main
issues arise: on the one hand, since XML models semi-structured
data, not all the information needed for design can be safely
derived; on the other, different approaches for representing
relationships in XML DTDs and Schemas are possible, each with
different expressive power. After discussing these issues, we
propose a semi-automatic approach for building the conceptual
schema for a data mart starting from the XML sources.

Keywords
Data warehouse design, Data warehousing and the web, XML

1. INTRODUCTION
A large amount of data needed in decision-making processes is
stored in the XML (Extensible Markup Language) data format.
The structure of XML, composed of nested custom-defined tags
that can describe the meaning of the content itself, makes it usable
as a semantic-preserving data exchange format on the web. As the
Internet has evolved into a global platform for e-commerce and
information exchange, the interest in XML has been growing and
large volumes of XML data already exist.

XML can be considered as a particular standard syntax for the
exchange of semi-structured data [1]. One common feature of
semi-structured data models is the lack of schema, so that the data
is self-describing. However, XML documents can be associated
with and validated against either a Document Type Definition
(DTD) or an XML Schema, both of which allow the structure of
XML documents to be described and their contents to be
constrained. DTDs are defined as a part of the XML 1.0

Specification [15], while XML Schemas have recently become a
W3C Recommendation [16]. XML Schemas considerably extend
the capabilities of DTDs, especially from the point of view of data
typing and constraining. With DTDs or Schemas, the applications
exchanging data can agree about the meaning of the tags and, in
that case, XML reaches its full potential.

During the recent years, the enterprises have been asking for
support in the process of extracting useful, concise and handy
information for decision-making out of the tons of data stored in
their expensive and complex information systems. Consequently,
a substantial effort has been made in the academic world to devise
methodologies for designing data warehousing systems capable of
seamlessly integrating information from different sources, in
particular from heterogeneous databases. Now, as more
organizations view the web as an integral part of their
communication and business, the importance of integrating XML
data in data warehousing environments is becoming increasingly
high. Some commercial tools now support data extraction from
XML sources to feed the warehouse, but both the warehouse
schema and the logical mapping between the source and the target
schemas must be defined by the designer.

In this paper we show how multidimensional design for data
warehouses can be carried out starting directly from an XML
source. Two main issues arise: on the one hand, different
approaches for representing relationships in XML DTDs and
Schemas are possible, each achieving a different expressive
power; on the other, since XML models semi-structured data, not
all the information needed for design can be safely derived. Thus,
our contribution in this work is twofold: first, we propose a
warehouse-oriented review and comparison of the approaches for
structuring XML documents; then, we outline an algorithm in
which the problem of correctly inferring the needed information is
solved by querying the source XML documents and, if necessary,
by asking the designer’s help.

One alternative approach to design from XML sources consists in
first translating them into an equivalent relational schema, then
starting from the latter to design the warehouse. Some approaches
for translating XML documents into a relational database can be
found in the literature, both leaning on the DTD [10][13] or not
[5], but insufficient emphasis is given to the problem of
determining the cardinality of relationships, which instead has a
primary role in multidimensional design.

The paper is structured as follows. In Section 2 the basics of
multidimensional modeling and design are given, while in Section
3 the design alternatives for modeling relationships in both DTDs

and XML Schemas are reviewed and discussed. In Section 4 our
approach to multidimensional design is presented with reference
to a case study, and in Section 5 the conclusions are drawn.

2. MULTIDIMENSIONAL MODELING AND
DESIGN
It is now widely recognized that an accurate conceptual design is
the necessary foundation for building a data warehouse which is
both well-documented and fully satisfies requirements. In order to
be independent of the specific issues involved in logical and
physical modeling, the approach proposed here is referred to the
conceptual level, from which the logical schemas of the data marts
can be easily derived.

2.1 Conceptual Modeling
Several conceptual models for data warehouses were devised in
the literature [2][3][6][7][8][14]; they mainly differ for the
graphical representation of concepts, with small differences in
expressive power. In this paper we will adopt the Dimensional
Fact Model (DFM) [7], which represents the data mart by means
of a set of fact schemas.

In the following we will briefly discuss the DFM representation of
the main concepts of the multidimensional model with reference
to the fact schema CLICK, which describes the analysis of the
web site traffic. The reason for choosing this example is that, due
to the significant role now played by the web in attracting new
clients and supporting sales, analyzing the web server traffic may
be crucial for improving the enterprise business. In this context,
multidimensional modeling allows many unpredictable complex
queries to be answered, such as:

• What is the trend for the most and the least accessed pages?

• Is there a relationship between business events (for instance,
sale promotions in an e-commerce site) and the number of
accesses?

For such an analysis, we need information about the hostname or
IP address of the computer requesting the file, the date and time of
the request, and the URL of the file being requested.

no. of clicks

CLICK

date

URL

host
(hostname/
IP address)

domain
(category /
 nation) file type

hour

month

holiday

day of week

Figure 1. Fact schema for click-stream analysis

In the fact schema shown in Figure 1, the fact CLICK, focus of
interest for the decision-making process, is associated to the

measures which describe it, i.e. no. of clicks, and to the
dimensions determining its minimum granularity, namely host,
date, hour, and URL. Each dimension is the root of a hierarchy
which determines how the fact may be aggregated and selected
significantly for the decision-making process; each hierarchy
includes a set of attributes linked by functional dependencies. For
instance, the URL of the file being requested determines the file
type, and the hostname or IP address of the computer requesting
the file determines its domain. The values for the domain attribute
can be extracted from the hostname suffix that is indicating either
the category (for instance, “.com” for commercial companies) or
the nation.

Within the DFM, as in all the other conceptual models, a strong
relevance is given to functional dependencies, since they represent
many-to-one relationships between attributes which enable
flexible aggregation of data in OLAP queries [9]. Thus, the main
problem in building a conceptual data mart schema is to identify
those relationships in the business domain.

2.2 Conceptual Design
In most approaches to design of data marts, the conceptual schema
is built starting from the (logical or conceptual) schema of the
operational sources [2][7][8]. The common core of these
approaches consists in navigating the functional dependencies in
the source schema in order to determine the hierarchies for the
fact. In particular, the methodology to build a fact schema from an
E/R schema proposed in [7] consists of the following steps:

1. Choosing facts.

2. For each fact:

2.1 Building the attribute tree.

2.2 Rearranging the attribute tree.

2.3 Defining dimensions and measures

For briefly illustrating the methodology, we will use the E/R
diagram describing the web site traffic shown in Figure 2.

Facts typically correspond to events occurring dynamically in the
enterprise world. On the E/R schema a fact may be represented
either by an entity F or by an n-ary relationship R. In our example,
the fact of primary interest is represented by entity CLICK.

Given a portion of interest of a source schema and an entity F
belonging to it, we call attribute tree the tree such that:

• each vertex corresponds to an attribute - simple or compound
- of the schema;

• the root corresponds to the identifier of F;

• for each vertex V, the corresponding attribute functionally
determines all the attributes corresponding to the descendants
of V.

The attribute tree for F may be constructed automatically by
navigating, starting from F, the functional dependencies expressed
by many-to-one relationships between entities in the source
schema. Each entity E analyzed is represented in the attribute tree
by: (1) a node corresponding to the identifier of E; (2) a child
node for each of the non-identifier attributes of E; (3) a child node
for each entity G connected to E by a many-to-one relationship.

CLICK URLHOST

NATION

HOST
CATEGORY

(1,1)

SITE

(1,N)

(1,1)

(1,N)
(1,N)

(0,1)

(1,n)

(0,1)

(1,1) (1,N)

(1,1)

(1,N)

URL
CATEGORY

(1,N)

(1,N)

FILE TYPE
(1,1) (1,N)

time date

Figure 2. E/R schema for web site traffic

The resulting attribute tree for the web site traffic analysis
example is shown in Figure 3. Starting from the CLICK entity,
new vertices are added by following many–to-one relationships.
The URL category attribute could not be included in the attribute
tree because there is a many-to-many relationship between URL
and URL category. The nation attribute is included twice in the
attribute tree because it can be added to the attribute tree by
navigating from both the host and the site entities.

Figure 3. Attribute tree for fact CLICK

Once the attribute tree has been built, some uninteresting nodes
may be dropped from it. The time attribute, that represents the
exact time of a click, is replaced with a coarser hour attribute.

Finally, dimensions and measures must be selected among the
children of the root. In our example, the attributes chosen as
dimensions are host, date, hour and URL; number of clicks,
determined by counting the clicks from the same host to the same
URL on a given date and hour, is chosen as a measure.

Some further minor arrangements must be made in order to obtain
the fact schema in Figure 1; in particular, the date dimension is
enriched by building a hierarchy which includes attributes month,
day of week, and holiday. Besides, the host category and nation
optional attributes are replaced by attribute domain, which
indicates either the category or the nation of the host.

3. MODELING RELATIONSHIPS IN XML
An XML document consists of nested element structures, starting
with a root element. Each element may contain component

elements (i.e. sub-elements) and attributes. Both elements and
attributes are allowed to have values. Document structures can be
nested to any level of complexity; between the opening and
closing tags for an element, any number of additional elements or
textual data may be present. Attributes are included, with their
respective values, within the element’s opening declaration. An
XML document that contains data about the web site traffic is
shown in Figure 4.

<webTraffic>
<click>

<host hostId=Óares.csr.unibo.itÓ>
<nation>italy</nation>

</host>
<date>23-MAY-2001</date>
<time>16:43:25</time>
<url urlID=ÓBL0023Ó>

<site siteID=Ówww.hrÓ>
<nation>croatia</nation>

</site>
<fileType>shtml</fileType>
<urlCategory>catalog</urlCategory>

</url>
</click>
<click>
É
</click>
É

</webTraffic>

Figure 4. An XML document describing the web site traffic

An XML document is valid if it has an associated schema, such as
a DTD or an XML Schema, and if it conforms to the constraints
expressed in that schema. Since our methodology for conceptual
design is based on detecting many-to-one relationships, in the
following we will focus on the way those relationships can be
expressed in the DTD and the XML Schema.

3.1 Relationships in DTDs
A DTD defines elements and attributes allowed in an XML
document, and the nesting and occurrences of each element. The

date

host
 nation

time

host category

URL file type

click

site

nation

structure of an XML document is constrained using element-type
and attribute-list declarations. Element-type declarations specify
which sub-elements can appear as children of the element;
attribute-list declarations specify the name, type, and possibly
default value of each attribute associated with a given element
type. Among the different attribute types, types ID, IDREF and
IDREFS have particular relevance for our approach: the ID type
defines a unique identifier for the element; the IDREF type means
that the attribute’s value is some other element’s identifier;
IDREFS means that its value is a list of identifiers. IDREF(S)
must match the value of some ID attribute in the document [1].

3.1.1 Modeling relationships by sub-elements
Relationships can be specified in DTDs by sub-elements that may
have different cardinalities. The optional character following a
child element name or list in the element-type declarations
determines whether the element or the content particles in the list
may appear one or more (+), zero or more (*), or zero or one
times (?); the default cardinality is exactly one.

Figure 5 presents a DTD according to which the XML document
presented in Figure 4 is valid. Element webTraffic is defined as a
document element, thus becomes the root of XML documents. A
webTraffic element may have many click elements, while in an url
element the site sub-element must occur exactly once, followed by
one fileType and many urlCategory sub-elements. A host element
may have either a category or a nation element.

<!DOCTYPE webTraffic [
<!ELEMENT webTraffic (click*)>
<!ELEMENT click (host, date, time, url)>
<!ELEMENT host (category | nation)>
<!ATTLIST host

hostId ID #REQUIRED>
<!ELEMENT category (#PCDATA)>
<!ELEMENT date (#PCDATA)>
<!ELEMENT time (#PCDATA)>
<!ELEMENT url (site, fileType,

urlCategory+)>
<!ATTLIST url

urlId ID #REQUIRED>
<!ELEMENT site (nation)>
<!ATTLIST site

siteId ID #REQUIRED>
<!ELEMENT nation (#PCDATA)>
<!ELEMENT fileType (#PCDATA)>
<!ELEMENT urlCategory (#PCDATA)>

]>

Figure 5. A DTD where relationships are specified by sub-
elements

If a one-to-one or one-to-many relationship must be represented in
XML, sub-elements with the above mentioned cardinalities can be
used without loss of information. However, given a DTD, we can
follow only one direction of a relationship. For instance,
according to the DTD in Figure 5, an url element may have many
urlCategory sub-elements, but it is not possible to find out, from
the DTD, whether an URL category can refer to many URLs.
Only by having some knowledge about the domain described by
the DTD, we can conclude that the latter is the case.

3.1.2 Modeling relationships by ID and IDREF(S)
Another way to specify relationships between elements in DTDs
is by means of ID and IDREF(S) attributes. The way these
attributes operate resembles the key and foreign key mechanism
used in relational databases, with some important differences and
limitations. For instance, if we take the last part of the DTD from
Figure 5 and let the relationships of the url element be defined by
ID and IDREF(S) attributes rather than by sub-elements, we
obtain the DTD in Figure 6.

<!ELEMENT webTraffic (click*, fileType+,
urlCategory+)>
É
<!ELEMENT url (site)
<!ATTLIST url

urlId ID #REQUIRED
fileTypeRef IDREF #REQUIRED
urlCategoryRef IDREFS #REQUIRED>

<!ELEMENT fileType EMPTY>
<!ATTLIST fileType

typeID ID #REQUIRED
typeDescription CDATA #IMPLIED>

<!ELEMENT urlCategory EMPTY>
<!ATTLIST urlCategory

urlCategoryId ID #REQUIRED
urlCategoryDesc CDATA #IMPLIED>

Figure 6. A DTD where relationships are specified by
IDREF(S)

In this example we assume that the fileTypeRef attribute of the url
element references the fileType element. On the other hand, an
instance of urlCategoryRef references many instances of
urlCategory. Therefore, for one URL there is exactly one file type
while there may be several categories. The problem is that, using
IDREF(S), the participating elements cannot be constrained to be
of a certain element type. For instance, fileTypeRef could also
contain a reference to an urlCategory element, while obviously
we would like to constrain such references to fileType elements
only. Further, though the value of an ID attribute is unique within
the whole document, element types are not required to have an ID,
and even if an element type has an ID, its usage may be optional.
For these reasons, there is no means to actually constrain the
allowed relationships by the ID/IDREF(S) mechanism.

3.2 Relationships in XML Schemas
XML Schemas give more accurate representation of the XML
structure constraints than DTDs; in particular, the cardinality can
be specified in more detail by using the minOccurs and
maxOccurs attributes. An XML Schema consists of type
definitions, which can be derived from each other, and element
declarations. The possibility of separating an element declaration
from the definition of its type enables the sharing and reusing of
simple and composite types. Further, besides ID and IDREF(S)
attributes, XML Schemas support the use of key and keyRef
elements for defining keys and their references.

The two different ways of specifying relationships in XML
Schemas, i.e. sub-elements and key/keyRef mechanisms, will be
described in the following.

3.2.1 Modeling relationships by sub-elements
Figure 7 presents a part of an XML Schema that defines the same
structure and constraints as the DTD in Figure 5. Since, for
defining elements, attributes minOccurs and maxOccurs default to
1, and only in the case of the urlCategory element the maxOccurs
attribute is set to “unbounded”, an url element will consist of one
site, one fileType and many urlCategory elements. We will not
further discuss this solution since, from the point of view of
cardinality modeling, it is essentially equivalent to the solution in
Section 3.1.1.

<element name=ÓclickÓ>
<complexType>

<sequence>
<element name=ÓhostÓ

type=ÓhostTypeÓ/>
<element name=ÓdateÓ type=ÓdateÓ/>
<element name=ÓtimeÓ type=ÓtimeÓ/>
<element name=ÓurlÓ type=ÓurlTypeÓ/>

</sequence>
</complexType>

</element>
É
<complexType name=ÓurlTypeÓ>

<sequence>
<element name=ÓsiteÓ type=ÓsiteTypeÓ/>
<element name=ÓfileTypeÓ

 type=ÓstringÓ/>
<element name=ÓurlCategoryÓ

 type=ÓstringÓ
 maxOccurs=ÓunboundedÓ/>

</sequence>
<attribute name=ÓurlIDÓ type=ÓstringÓ/>

</complexType>
É

Figure 7. An XML Schema where relationships are specified
by sub-elements

3.2.2 Modeling relationships by key and keyRef
elements
In addition to ID and IDREF(S) attributes, XML Schemas
introduce more powerful and flexible mechanisms, similar to the
relational concept of foreign key. The key element is used to
indicate that every attribute or element value must be unique
within a certain scope and not null. By using keyRef elements,
keys can be referenced.

For the purpose of describing the declaration of keys and their
references, an element named fileTypes (represented in Figure 8)
is added as a sub-element to the click element from the XML
document in Figure 4. The fileTypes element consists of type
elements with typeID attributes. Figure 9 presents an evolution of
the XML Schema in Figure 7, according to which every click
element also contains a fileTypes element. This element has a
composite type named fileTypesType (its definition is not
presented in Figure 9), according to which the XML document in
Figure 8 is valid.

XML Schemas allow to specify the scope for each key by means
of an XPath expression [17]. In our example, the key element is

named fileTypeKey. The typeID attribute from Figure 8 is
specified as the key by means of the selector and the field sub-
elements of the key attribute in Figure 9. The xpath attribute of the
selector element contains an XPath expression, fileTypes/type, that
selects the type elements that are sub-elements of the fileTypes
element. The xpath attribute of the field element contains the
@typeID expression, that specifies the typeID attribute of the type
element as the key. Further, the fileType element, that is a sub-
element of url, is declared as a keyRef; this means that, for every
value of fileType, a fileTypeKey with the same value must exist.

<fileTypes>
<type typeID=ÓhtmlÓ>
 hypertext markup language</type>
<type typeID=ÓgifÓ>
 graphic interchange format</type>
É

</fileTypes>

Figure 8. The fileTypes element as a sub-element of click

<element name=ÓclickÓ>
<complexType>

É
<element name=ÓurlÓ type=ÓurlTypeÓ/>
<element name=ÓfileTypesÓ

 type=ÓfileTypesTypeÓ/>
É

</complexType>
<key name=ÒfileTypeKeyÓ>

<selector xpath=ÓfileTypes/typeÓ/>
<field xpath=Ó@typeIDÓ/>

</key>
<keyref name=ÓfileTypeRefÓ

 refer=ÒfileTypeKeyÓ>
<selector xpath=ÓurlÓ/>
<field xpath=ÓfileTypeÓ/>

</keyref>
</element>

Figure 9. An XML Schema where relationships are specified
by key/keyRef

In conclusion, the key/keyRef mechanism may be applied to any
element and attribute content, and the scope of the constraint can
be specified, while an ID is a type of attribute whose scope is
fixed to be the whole document. Furthermore, combinations of
element and attribute content can also serve as keys and
references in XML Schemas.

4. CONCEPTUAL DESIGN FROM XML
SOURCES
In the previous section, we showed different approaches for
representing relationships in DTDs and XML Schemas. Three of
them are suitable for specifying relationships: sub-elements in
DTDs, sub-elements and key/keyRef in Schemas; though their
expressive power is different, in the context of this paper they
may be considered to be equivalent since with reference to
multidimensional design they allow the same knowledge to be
captured. We do not consider the fourth approach, ID/IDREF(S)

in DTDs, since it is not precise and useful enough in constraining
relationships.

In this section we propose a semi-automatic approach for building
the conceptual schema of a data mart starting from the XML
sources. Of the three above-mentioned approaches, we have
chosen sub-elements in DTDs for the presentation of our
methodology, since Schemas are still not as widely used as DTDs;
however, the methodology is essentially the same when dealing
with Schemas.

Starting with the assumption that the XML document has a DTD
and conforms to it, the methodology consists of the following
steps:

1. Simplifying the DTD.

2. Creating a DTD graph.

3. Choosing facts.

4. For each fact:

4.1 Building the attribute tree from the DTD graph.

4.2 Rearranging the attribute tree.

4.3 Defining dimensions and measures.

In the following paragraphs we will describe steps from (1) to
(4.1) referring to the web site traffic example; once the attribute
tree is built, steps 4.2 and 4.3 are identical, respectively, to steps
2.2 and 2.3 described in Section 2.3.

Simplifying the DTD

The sub-elements in DTDs may have been declared in a
complicated and redundant way. However, those details of a DTD
can be simplified [13]. The transformations for simplifying a DTD
include converting a nested definition into a flat representation:
for instance, in the web site traffic example,
host(category nation) i s t r a n s f o r m e d i n t o
host(category?,nation?). Further, the sub-elements having the
same name are grouped, and many unary operators are reduced to
a single unary operator. Finally, all “+” operators are transformed
into “*” operators.

Creating a DTD graph

After simplifying the DTD, a DTD graph representing its structure
can be created as described in [10] and [13]; its vertices
correspond to elements, attributes and operators in the DTD.
Attributes and sub-elements are not distinguished in the graph
since, in our methodology, they are considered as equivalent
nesting mechanisms. The DTD graph for the DTD in Figure 5 is
given in Figure 10.

Defining facts

The designer chooses one or more vertices of the DTD graph as
facts; each of them becomes the root of a fact schema. In our
example, we choose the click vertex as the only interesting fact.

Building the attribute tree

The vertices of the attribute tree are a subset of the element and
attribute vertices of the DTD graph. The algorithm to build the
attribute tree is sketched in Figure 11.

webTraffic

*

click

date timehost url

category nation

*hostId site

siteId

fileType
?

urlCategory

urlId?

Figure 10. DTD graph for web site traffic analysis

root=newVertex(F);
// newVertex(<vertex>) returns a new vertex
// of the attribute tree
// corresponding to <vertex>
// of the DTD graph
expand(F,root);

expand(E,V):
// E is the current DTD vertex,
// V is the current attribute tree vertex
{ for each child W of E do

if W is element or attribute do
{ next=newVertex(W);

addChild(V,next);
// adds child W to V
expand(W,next);

}
else

if W="?" do
expand(W,V);

for each parent Z of E such that
 Z is not a document element do

if Z="?" or Z="*" do
expand(Z,V);

else
if not toMany(E,Z) do

if askDesignerToOne(E,Z) do
{ next=newVertex(Z);

addChild(V,next);
expand(Z,next);

}
}

Figure 11. Algorithm for building the attribute tree

The attribute tree is initialized with the fact vertex F; then, it is
enlarged by recursively navigating the functional dependencies
between the vertices of the DTD graph. Each vertex V inserted in
the attribute tree is expanded as follows (procedure expand):

1. For each vertex W that is a child of V in the DTD graph:

When examining relationships in the same direction as in the
DTD graph, the cardinality information is expressed either
explicitly by “?” and “*” vertices or implicitly by their

absence. If W corresponds to an element or attribute in the
DTD, it is added to the attribute tree as a child of V; if W is a
“?” operator, its child is added to the attribute tree as a child of
V; if W is a “*” operator, no vertex is added.

2. For each vertex Z that is a parent of V in the DTD graph:

When examining relationships in this direction, vertices
corresponding to “*” and “?” operators are skipped since they
only express the cardinality in the opposite direction. Since
the DTD yields no further information about the relationship
cardinality, it is necessary to examine the actual data by
querying the XML documents conforming to the DTD. This is
done by procedure checkToMany , which counts the number
of distinct values of Z corresponding to each value of E. If a -
to-many relationship is detected, Z is not included in the
attribute tree. Otherwise, we still cannot be sure that the
cardinality of the relationship from E to Z is -to-one. In this
case, only the designer can tell, leaning on her knowledge of
the business domain, whether the actual cardinality is -to-one
or -to-many (procedure askDesignerToOne). Only in the
first case, Z is added to the attribute tree. The reason why
document elements are not considered is that they have only
one instance within XML documents, thus they have no
interest for aggregation and should not be modeled in the data
mart.

host url file type

click

site

nation

 nation

host category

hostId

urlId

siteId

date time

Figure 12. Attribute tree derived from the DTD graph

In our example, no uncertain relationships are navigated. Vertex
urlCategory is not added to the attribute tree because it is a child
of a “*” vertex in the DTD graph. The resulting attribute tree for
the web site traffic analysis example is given in Figure 12. Some
further arrangements should be made to this tree: for instance,

since there is no need for the existence of both host and hostId
vertices, only host should be left; the same logic should be applied
for urlId and siteId. Finally, the time attribute is replaced with the
hour attribute.

In the following some general considerations on the proposed
approach are reported.

The problem of checking cardinalities in XML documents is
related to that of discovering functional dependencies in relational
databases, which was widely investigated in the literature on
relational theory and data mining [11][12]. In our case, the
situation is much simpler since no inference is necessary, so it
comes down to properly querying the data with an XML query
language supporting aggregate queries. For instance, in W3C
XQuery [18] the use of the distinct function is proposed for that
purpose, while the use of the group-by function is proposed in [4].
The main question arising is how many XML documents we must
see to reasonably confirm our presumption that the cardinality is
-to-one.

Clearly, the semi-structured nature of XML sources increases the
level of uncertainty on the structure of data as compared to E/R
sources, thus making recourses to the designer’s experience more
frequent. In our algorithm, we chose to ask questions interactively
during the tree building phase in order to avoid unnecessary
queries on the documents. An alternative solution consists in first
building the tree by emphasizing all the uncertain relationships,
then handing on the complete tree to the designer in order to have
it rearranged (step 4.2) with specific attention to uncertain
relationships, which could be dropped together with their subtree.
While this solution allows the designer to have a wider point of
view on the tree, it may be less efficient since a vertex, dropped
later, might have been (uselessly) expanded by querying the XML
documents.

As a matter of fact, the problem of inferring the relationship
cardinalities is present also when the source to be used for design
is a relational schema [7]. In fact, the presence in a relation R of a
foreign key F referencing the primary key K of a relation S ,
implies that F functionally determines K and, consequently, all the
other attributes of K, but tells us nothing about the number of
distinct tuples of R related to each tuple of S. Thus, in principle, in
order to guess the uncertain cardinalities we should query the
database as in the case of XML sources. On the other hand, in the
relational case this issue is much less relevant than in the XML
case. In fact, while the designer of an XML document chooses the

webTraffic

host

category nation

? ? hostId

*

url

+
fileType

urlCategory

urlId site

siteId

click

*

date hour

*

Figure 13. Another possible DTD graph describing the web site traffic

direction of each link without considering the cardinality of the
relationship to be modeled, the designer of a relational schema is
constrained (by the need to satisfy the first normal form) to
represent each relationship in the -to-one direction. Thus, in
general, the relationship from S to R is one-to-many, hence, not
interesting for multidimensional modeling; the only case in which
it might be interesting is when the foreign key mechanism has
been used by the designer to model a one-to-one relationship – but
this is not very frequent.

As seen in Section 3, several DTDs representing the same subject
may be designed; for each of them, the resulting attribute tree may
look different. For instance, the attribute tree for the DTD graph in
Figure 13 is presented in Figure 14. Having click as a fact,
navigating from hostId to host and from urlId to url entails
analyzing the data to check the uncertain relationship. After
inverting hostId with host and urlId with url (it can be done since
they are related by a one-to-one relationship), the resulting
attribute tree becomes the same as the one in Figure 12.

host url file type

click

site

nation

 nation

host category

hostId urlId

siteId

date time

Figure 14. Attribute tree for the DTD graph in Figure 13

5. CONCLUSIONS
In this paper we described a semi-automatic approach to
conceptual design of a data mart from an XML source. We
showed how the semi-structured nature of the source increases the
level of uncertainty on the structure of data as compared to
structured sources such as database schemas, thus requiring access
to the source documents and, possibly, the designer’s help in order
to detect -to-one relationships. The approach was described with
reference to the case in which the sources are constrained by a
DTD using sub-elements, but it can be adopted equivalently when
XML Schemas are considered.

Using XML sources for feeding data warehouse systems will
become a standard in the next few years. Adopting a technique to
derive the data mart schema directly from the XML sources is not
the only possible approach: the data mart schema may also be
designed “manually”, meaning that facts, measures and
hierarchies are determined starting from the user requirements and
the logical connection with the source schemas is established only
a posteriori. On the other hand, the main problem with this
solution is that, very often, the requirements expressed by the
users cannot be fully supported by the existing data; besides, the
process of mapping each requirement back to the source schema
may be very complex.

6. REFERENCES
[1] Abiteboul, S., Buneman, P., and Suciu, D. Data on the Web:

From Relations to Semistructured Data and XML. Morgan
Kaufman Publishers, 2000.

[2] Cabibbo, L., and Torlone, R. A logical approach to
multidimensional databases. In Proc. EDBT, 1998.

[3] Datta, A., and Thomas, H. A conceptual model and algebra
for on-line analytical processing in data warehouses. In Proc.
WITS, 1997.

[4] Deutsch, A., Fernandez, M., Florescu, D., Levy, A., and
Suciu, D. A Query Language for XML. In Proc. 8th World
Wide Web Conference, 1999.

[5] Florescu, D., and Kossmann, D. Storing and Querying XML
Data using an RDBMS. IEEE Data Engineering Bulletin 22,
3, 1999.

[6] Franconi, E., and Sattler, U. A data warehouse conceptual
model for multidimensional aggregation. In Proc. DMDW,
1999.

[7] Golfarelli, M., Maio, D., and Rizzi, S. The Dimensional Fact
Model: a conceptual model for data warehouses. Int. Jour. of
Cooperative Inf. Systems 7, 2&3, 1998.

[8] Hüsemann, B., Lechtenbörger, J., and Vossen, G. Conceptual
data warehouse design. In Proc. DMDW, 2000.

[9] Kimball, R. The data warehouse toolkit. John Wiley & Sons,
1996.

[10] Lee, D., and Chu, W.W. Constraints-preserving
Transformation from XML Document Type Definition to
Relational Schema. In Proc. 19th ER (Salt Lake City), 2000.

[11] Mannila, H., and Räihä, K.J. Algorithms for inferring
functional dependencies. Data & Knowledge Engineering,
12, 1, 1994.

[12] Savnik, I., and Flach, P. Bottom-up induction of functional
dependencies from relations. In Piatesky-Shapiro (ed.),
Knowledge Discovery in Databases, AAAI, 1993.

[13] Shanmugasundaram, J., et al. Relational Databases for
Querying XML Documents: Limitations and Opportunities.
In Proc. 25th VLDB (Edinburgh), 1999.

[14] Vassiliadis, P. Modeling multidimensional databases, cubes
and cube operations. In Proc. 10th SSDBM Conf. (Capri,
Italy), 1998.

[15] World Wide Web Consortium (W3C). XML 1.0
Specification. http://www.w3.org/TR/2000/REC-xml-
20001006.

[16] World Wide Web Consortium (W3C). XML Schema.
http://www.w3.org/XML/Schema.

[17] World Wide Web Consortium (W3C). Xpath Specification
1.0. http://www.w3.org/TR/xpath.

[18] World Wide Web Consortium (W3C). XQuery 1.0: An XML
Query Language (Working Draft),
http://www.w3.org/TR/xquery/.

