Towards OLAP Query Reformulation in
Peer-to-Peer Data Warehousing

Matteo Golfarelli
DEIS - Univ. of Bologna
V.le Risorgimento 2
Bologna, Italy
matteo.golfarelli@unibo.it

Stefano Rizzi
DEIS - Univ. of Bologna
V.le Risorgimento, 2
Bologna, ltaly
stefano.rizzi@unibo.it

ABSTRACT

Inter-business collaborative contexts prefigure a distributed
scenario where companies organize and coordinate them-
selves to develop common and shared opportunities. Tra-
ditional business intelligence systems do not provide sup-
port to this end. Peer Data Management Systems (PDMSs)
have been proposed as architectures to support sharing of
operational data across networks of peers while guaranteeing
peers’ autonomy, based on semantic mappings that mediate
between the heterogeneous schemata exposed by peers. In
line with the PDMS infrastructure, in this paper we envi-
sion a peer-to-peer data warehousing architecture based on
a network of heterogeneous peers, each exposing query an-
swering functionalities aimed at sharing business informa-
tion. To enhance the decision making process, an OLAP
query expressed on a peer needs be properly reformulated
on the other peers. In this direction, we present a language
for the definition of mappings between the multidimensional
schemata of peers, and we introduce a query reformulation
framework that relies on the translation of these mappings
towards relational schemata. Finally, we sketch the query
reformulation algorithm by outlining the reformulation steps
of typical OLAP queries.

Categories and Subject Descriptors

H.4.2 [Information Systems Applications]: Types of
Systems—decision support; H.3.4 [Information Storage
and Retrieval]: Systems and Software—distributed sys-

tems; H.2.5 [Database Management]: Heterogeneous Data-

bases

*Research affiliation: IEIIT - CNR, Bologna, Italy

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

DOLAP’10, October 30, 2010, Toronto, Ontario, Canada.

Copyright 2010 ACM 978-1-4503-0383-5/10/10 ...$10.00.

P
Federica Mandreoli
DIl - Univ. of Modena
Via Vignolese, 905/b
Modena, ltaly
federica.mandreoli@unimo.it

Wilma Penzo*
DEIS - Univ. of Bologna
V.le Risorgimento, 2
Bologna, ltaly
wilma.penzo@unibo.it

Elisa Turricchia
DEIS - Univ. of Bologna
V.le Risorgimento, 2
Bologna, Italy
elisa.turricchia2@unibo.it

General Terms
Algorithms

1. INTRODUCTION

Business intelligence (BI) transformed the role of com-
puter science in companies from a technology for passively
storing data into a discipline for timely detecting key busi-
ness factors and effectively solving strategic decisional prob-
lems. However, in the current changeable and unpredictable
market scenarios, the needs of decision makers are rapidly
evolving as well. To meet the new, more sophisticated user
needs, a new generation of BI systems (often labeled as BI
2.0) has been emerging during the last few years.

One of the key features of BI 2.0 is the ability to become
pervasive and extend the decision-making process beyond
the boundaries of a single company [12]. Users need to ac-
cess information anywhere it can be found, by locating it
through a semantic process and performing integration on
the fly. This is particularly relevant in inter-business col-
laborative contexts where companies organize and coordi-
nate themselves to share opportunities, respecting their own
autonomy and heterogeneity but pursuing a common goal.
In such a complex and distributed business scenario, tradi-
tional BI systems —that were born to support stand-alone
decision-making— are no longer sufficient to maximize the
effectiveness of monitoring and decision making processes.
Accessing local information is no more enough, users need
to transparently and uniformly access information scattered
across several heterogeneous BI platforms [8].

Peer Data Management Systems (PDMSs) have been pro-
posed in the literature as architectures to support sharing of
operational data across networks of peers while guaranteeing
peers’ autonomy, based on interlinked semantic mappings
that mediate between the heterogeneous schemata exposed
by peers [7]. In line with the PDMS infrastructure, we en-
vision a peer-to-peer data warechousing architecture called
Business Intelligence Network (BIN) and sketched in Figure
1. A BIN is based on a dynamic and collaborative network of
heterogeneous and autonomous peers; each peer is equipped
with an independent data warehouse system, that relies on a
local multidimensional schema to represent the peer’s view

Business
Intelligence
Network

EE]

peer 1

e e W s P ey B i
| -g |
[local query query result access policies o l
l processing reconciliation resolution -1

|
| |
} .Iocal MD i
| schema |
| query e |
! reformulation forwarding .mappings. i
I_—______________IT ________________ |

local Bl platform I

Figure 1: Envisioned architecture for a BIN

of the business and exposes query answering functionalities
aimed at sharing business information.

To enhance the decision making process, BIN users trans-
parently access business information distributed over the
network. A typical user interaction is the following: (1)
A user formulates an OLAP query ¢ by accessing the local
multidimensional schema of her peer. (2) Query ¢ is for-
warded to the network and reformulated on the other peers
in terms of their own multidimensional schemata. (3) Each
involved peer locally processes the reformulated query and
returns its results to the querying peer. (4) Finally, the re-
sults are integrated and returned to the user based on the
lexicon used to formulate gq.

At step (2), an OLAP query expressed on a peer needs
be properly reformulated on the other peers, which is a
challenging task due to the presence of aggregation and to
the possibility of having information represented at differ-
ent granularities and under different perspectives in each
peer. In this paper we focus on this task. The original
contributions we give are: (a) We present a language for
the definition of semantic mappings between the schemata
of peers, using predicates that are specifically tailored for
the multidimensional model (Section 4). To overcome possi-
ble differences in data formats, mappings can be associated
with encoding functions. (b) We introduce a query reformu-
lation framework that relies on the translation of mappings
towards the underlying relational schemata (Section 5). In
particular, we will use standard star schemata for simplicity.
(c) We sketch the query reformulation algorithm by outlin-
ing the reformulation steps of typical OLAP queries (Section
6).

2. RELATED WORKS

Decentralized sharing of data between autonomous sources
has been deeply studied as an evolution of mediator systems
in the data integration field [7]. In this context, declarative
schema-mapping languages are used to locally specify the
relationships between neighboring peers’ schemata. In [13],
the authors present a structural characterization of schema-

mapping languages and show the basic tasks that every lan-
guage ought to support. These languages have been con-
ceived for OLTP databases, so they do not accommodate
the peculiar characteristics of the multidimensional model.
Moreover, while in the literature the problems of differ-
ences in data formats have only marginally been considered,
declaring useful mappings in the OLAP context necessarily
requires also the level of instances to be taken into account.

Only a few works are specifically focused on strategies for
data warehouse integration and federation. Indeed, in this
context, problems related to data heterogeneity are usually
solved by ETL processes that read data from several data
sources and load them in a single repository. While this cen-
tralized architecture may fit the needs of stand-alone com-
panies, it is hardly feasible in the context of a BIN, where
the dynamic nature of the business network, together with
the independence and autonomy of peers, call for more so-
phisticated solutions. See [1] for a discussion of the benefits
of a peer-to-peer architecture for data warehousing.

In the context of a federated data warehouse architecture,
[14] describes two methods for integrating dimensions be-
longing to different data marts and provide a set of rules
to check their compatibility. The problem of how to define
mappings between concepts is not considered. The work
proposed in [2] present a complete algorithm for matching
multidimensional structures, with a strong emphasis on the
process of calculating similarity between complex concepts.
However, the data-related aspects —that could enrich the
matching definitions— are not considered, and no model is
provided to formalize the mapping predicates.

Another work centered on interoperability issues among
heterogeneous data warehouses is the one by [11], that em-
phasizes the importance of a semantic layer to enable com-
munication among different entities. This approach sup-
ports the exchange of business calculation definitions and al-
lows for their automatic linking to specific data warehouses
through semantic reasoning. The approach is flexible be-
cause it could be implemented by adopting different for-
malisms for each layer; however, the work proposes specific
techniques to deal with measures only, so it cannot be used
to completely solve a typical aggregate query.

Finally, in the distributed data warehouse context, in [10]
the authors propose a peer-to-peer architecture for support-
ing OLAP queries focusing on the definition of a caching
model to improve query rewriting. They also define adaptive
techniques that dynamically reconfigure the network struc-
ture in order to minimize the query cost. In [9] a hybrid ap-
proach between the centralized and the full-federation con-
figuration is described, suggesting the use of a federation
server to store aggregated data from different remote sources.
The goal is to improve the performance of complex OLAP
queries exploiting the correlation among different queries.

3. PRELIMINARIES

In this section we introduce a basic formal setting to ma-
nipulate and query multidimensional data, and we propose
a running example. In particular, our formalization of md-
schemata is an extension of the one used in [4]. At this
stage, to get rid of summarizability problems, we only con-
sider distributive operators for measure aggregation.

DEFINITION 1 (MD-SCHEMA). An md-schema is a triple
M = (A, H, M) where:

HOSPITALIZATION (@Rome)

organ disease date ward patient
P v P
week month LHD birthDate city segment gender
v
year region

ADMISSIONS (@Florence)

diagnosis date ward patientCity patientBirthYear patientGender

‘v v v v
category month unit patientNation
‘
year

Figure 2: Roll-up orders for the hierarchies in the
HOSPITALIZATION and ADMISSIONS md-schemata
(LHD stands for local health department)

e A={a1,...,ap} is a finite set of attributes, each de-
fined on a categorical domain Dom(a;);

e H = {hi,...,hn} is a finite set of hierarchies, each
characterized by (1) a subset Attr(h;) C A of attributes
(such that the Attr(h;)’s fori=1,...,n define a par-
tition of A) and (2) a roll-up tree-structured partial
order =, of Attr(h;);

e a finite set of measures M = {ma,...,m;}, each de-
fined on a numerical domain Dom(m;) and aggregable
through one distributive aggregation operator Agg(m).

For each hierarchy h;, the root attribute of the order is called
dimension, denoted by DIM,;, and determines the finest ag-
gregation level for the hierarchy.

A group-by set is a subset of A, and defines a possible way
to aggregate data.

DEFINITION 2 (GROUP-BY SET). Given M = (A, H, M),
a group-by set of M is a subset of attributes G C A.

EXAMPLE 1. In the working example we adopt in this pa-
per, a set of local health-care departments participate in a
collaborative network to integrate their data about admis-
sions so as to enable more effective analysis of epidemics
and health-care costs by the Ministry. For simplicity we will
focus on two peers: the first, located in Rome, hosting data
on hospitalizations at patient-level detail; the second, lo-
cated in Florence, hosting data on admissions grouped by pa-
tient gender, residence city, and birth year. The underlying
md-schema for the Rome peer is called HOSPITALIZATION
and includes the additive measures cost and durationOfS-
tay; the one for the Florence peer is called ADMISSIONS
and includes the additive measures totStayCost, totExam-
Cost, totLength, and numAdmissions. The roll-up orders for
the two md-schemata are shown in Figure 2. Assuming that
each hierarchy is named after its finest-level attribute, but
capitalized, it is DI Mpatient = patient and city > patient region.
An example of group-by set of HOSPITALIZATION is G =
{gender, region, month}.

The expressiveness we assume for OLAP queries is that
of GPSJ (Generalized Projection-Selection-Join) queries [5].
Without loss of generality, we will only consider atomic se-
lection predicates; besides, we will assume that each measure
m can only be aggregated using its own aggregation opera-
tor, Agg(m). To avoid getting burdened with the details of

a specific multidimensional query language, such as MDX,
we will express queries using an abstract syntax.

DEFINITION 3 (OLAP QUERY). An OLAP query is a
5-tuple ¢ = (M, G, m,p,a) where M = (A, H, M) is an md-
schema, G is a group-by set of M, m € M is a measure,
p s an optional Boolean predicate involving attributes in A
and/or m, a = Agg(m) is the aggregation operator used to
aggregate m.

EXAMPLE 2. The query, expressed at the Rome peer, that
computes the total hospitalization cost of female patients for
each region and year is formalized as ¢ = (HOSPITALIZATION,
{region, year}, cost, (gender = ’F), sum).

4. MAPPING LANGUAGE

In this section we describe the language we devised for the
definition of semantic mappings between the md-schemata
of peers. As mentioned in the Introduction, these mappings
play a key role in a BIN because, as we will show in Section
5, they enable query reformulation.

Let two peers in a collaborative BI network be given. The
language we propose to express how the local md-schema ¢
of the target peer maps onto the local md-schema s of the
source peer includes five mapping predicates, namely same,
equi-level, roll-up, drill-down, and related, that will be dis-
cussed in detail below. In general, a mapping establishes a
semantic relationship from an ordered list of concepts (ei-
ther measures or attributes) of ¢, ¢ = (a1,...,a;), to an
ordered list of concepts of s, d = (b1,...,bg), and enables
a query formulated on ¢ to be (exactly or approximately)
reformulated on s. Optionally, a mapping can be associated
with an encoding function that specifies how values of ¢ can
be obtained from values of d. If this function is available,
it is used during query reformulation and data integration
to return more query-compliant results to users. In this pa-
per, mappings on measures (same predicate) take a simpler
form (exactly one measure on the left side) to avoid incorrect
reformulations due to a wrong use of aggregation operators.

e same predicate: m samey d, where d only includes
measures. This mapping predicate is used to state that
measure m in ¢ has the same semantics as a set of
measures in s. If knowledge is available about how
values of m can be derived from values of d, it can
be expressed by an encoding function f : Dom(d) —
Dom(m) (where Dom(d) = Dom(b1)X...x Dom(by)).
The semantics of this function is that, whenever m is
asked in a query on ¢, it can safely be rewritten as f(d)
on s.

e equi-level predicate: c equi-level; d, where c and d only
include attributes. This predicate is used to state that
a set of attributes in ¢ has the same semantics and
granularity as a set of attributes in s. If knowledge
is available about a transcoding between c¢ and d, it
can be expressed by an injective encoding function f :
Dom(d) — Dom(c) that establishes a one-to-one total
relation between ¢ and d, and is used to integrate data
returned by the source and target peers.

e roll-up predicate: c roll-up; d. This predicate states
that a set ¢ of attributes in ¢ is a roll-up of (i.e., it
aggregates) a set d of attributes in s. If knowledge

o, | <cost same <totalStayCost, totExamCost>

o, | <durationOfStay> same <totLength>

@, | <LHD> roll-up <unit>

o, | <ward> equi-level <ward>

o, | <year equi-level <year

o, | <month> equi-level <month>

w, | <date> equi-level <date>

o, | <week> roll-up «date>))

o, | <disease, o_r?an> equi-level <diagnosis> .

o, | <patient> drill-down <patientGender, patientCity, patientBirthYear>
o,, | <gender equi-level <patientGender> o

, <ser%1ment> related <patientGender, patientCity, patientBirthYear>
o, | <birthDate> drill-down <patientBirthYear>

o,, | <city> equi-level <patientCity>

o, | <region> roll-up <patientCity>

Figure 3: Complete mapping from Rome (target
peer) to Florence (source peer)

is available about how to roll-up values of d to values
of ¢, it can be expressed by a non-injective encoding
function f : Dom(d) — Dom(c) that establishes a
one-to-many relation between c and d, and is used to
aggregate data returned by the source peer and inte-
grate them with data returned by the target peer.

e drill-down predicate: ¢ drill-downg d. This predicate is
used to state that c is a drill-down of (i.e., it disaggre-
gates) d. If knowledge is available about how to drill-
down values of d to values of ¢, it can be expressed by
the injective encoding function F : Dom/(d) — 2P°™()
that returns sets of values of ¢, thus establishing a
many-to-one relation between ¢ and d. The function
F' cannot be used to integrate data returned by ¢ and
s because this would require disaggregating data re-
turned by s, which obviously cannot be done univo-
cally; however, it can be used to empower the pre-
sentation of the results given to users, for instance by
emphasizing the values of ¢ each value of d drills down
to.

e related predicate: c relatedr d. This predicate is used
to state that ¢ has a many-to-many relationship with d.
The function F : Dom(d) — 2P°™©) is non-injective
and establishes a many-to-many relation between c and
d. Like in the previous case, though F' cannot be used
neither for query rewriting nor for result integration,
it could be used to improve result presentation.

EXAMPLE 3. The complete set of mappings for our health-
care example is reported in Figure 3. For instance, the pred-
icate (cost) samey (totStayCost, totExamCost) with

f((totStayCost, totExamCost)) = totStayCost + totExamCost

states that measure cost in Rome can be derived by summing

totStayCost and totExamCost in Florence. On the other

hand, the predicate (disease, organ) equi-level ; (diagnosis) with
f({diagnosis)) = (disease : substring(diagnosis, 1, 20),
organ : substring(diagnosis, 21, 40))

states that the diagnosis codes used in Florence are obtained
by concatenating the fized-length disease and organ codes

used in Rome. Finally, (week) roll-up, (date), with f((date)) =

(week : weekO f(date)), states that weeks are an aggregation
of dates.

5. A REFORMULATION FRAMEWORK

In the BIN architecture, OLAP queries are formulated on
a peer schema and answers can come from any other peer
which is connected to the queried peer through a chain of
mappings. The key step to this end is reformulating a peer’s
query over its immediate neighbors, then over their imme-
diate neighbors, and so on. More precisely, reformulation
takes in input an OLAP query on a target schema ¢ and the
mappings between ¢ and the schema of one of its neighbors,
the source schema s, and it outputs an OLAP query that
refers only to s.

In our proposal, queries are reformulated by means of the
underlying relational (star) schema.

Indeed, much research work has been done in the con-
text of OLTP databases, mostly with regard to mediator
systems for data integration as well as in the field of dis-
tributed semantic data sharing systems [6]. Research in the
data integration area has provided rich and well-understood
schema mediation languages. The two commonly used for-
malisms are the global-as-view (GAV) approach, in which the
mediated schema is defined as a set of views over the data
sources, and the local-as-view (LAV) approach, in which the
contents of data sources are described as views over the me-
diated schema. In the context of PDMSs both approaches
are possibly used, since each peer can serve as both a data
source and a mediator.

Schema mapping languages are used for specifying rela-
tionships between schemata and are typically based on logi-
cal formalisms, according to a set of formulas called source-
to-target tuple generating dependencies (s-t tgd’s) [13]. In-
formally, s-t tgd’s assert that if a pattern of facts appears
in the source, then another pattern of facts must appear in
the target. They are also known as global-and-local-as-view
(GLAV) dependencies, and can accommodate both GAV
and LAV formalisms.

Our approach uses s-t tgd’s for the translation of the se-
mantic mappings expressed between md-schemata. In this
way, we do not let our approach be guided by the syntax of
the language used at the OLAP level. Indeed, the mapping
language presented in Section 4 gives users powerful predi-
cates to express their specification needs. Nevertheless, re-
formulating queries at the OLAP level would mean adopting
a syntax-oriented approach. Instead, we abstract from the
mapping language syntax and we found our proposal on the
semantics of the transformations data is subjected to along
the reformulation process. This allows the mapping predi-
cates expressed at the OLAP level to be bound to classes of
mappings on the basis of two different types of transforma-
tions: depending on the presence or absence of the encoding
function for expressing the relationship between data values,
mappings can be either expressed as full s-t tgd’s, that are
logically equivalent to finitely many GAV dependencies, or
as LAV dependencies. This vision simplifies the query re-
formulation task. As to this point, several sound and com-
plete algorithms have been presented in the literature [6].
However, the existing solutions cannot be straightforwardly
applied to OLAP queries, thus they need specific extensions.
This is precisely the main objective of our work.

To this end, in this section we introduce the framework
for query reformulation depicted in Figure 4, where md-
schemata, OLAP queries, and mappings at the OLAP level
are translated to the relational model. An OLAP query is

Md-Schema@peer;

[
OLAP (%
Query__._._._._ >

Md-Schema@peer,

Semantic Mappings E
————————— >

Query Schema Mapping Schema

translation translation translation translation
==

— f— e P

o pa— — s-ttgds — = =

. EH B 0 e e e e m - > e St |

—— | — —

Relational pr— | —] — g

Query.._.__ s =1 H =B =

= _ —

Figure 4: Reformulation framework

HospFT(organ disease,date, ward,patient,cost,durationOfStay)

OrganDT(organ) DiseaseDT(disease)
DateDT(date,week,month,year) WardDT(ward,LHD)

PatientDT(patient,birthDate,city,region,segment,gender)

AdmFT(diagnosis,date ward patientCity, patientBirthYear, patientGender,
totStayCost, totExamCost,totLength,numAdmissions)
DiagnosisDT(diagnosis,category) ~ DateDT(date,month,year)
WardDT(ward,unit) PatientCityDT(patientCity, patientNation)
PatientBirthYearDT(patientBirthYear) PatientGenderDT(patientGender)

Figure 5: Star schemata for the Rome (top) and
Florence (bottom) peers

then reformulated starting from its relational form, using
the mappings expressed at the relational level as s-t tgd’s.

5.1 Translating schemata

Let M = (A, H, M) be an md-schema. Without loss of
generality, we assume that M is stored as a standard star
schema: a fact table, ft(DIM;,...,DIM,,m,...,m;), and
one dimension table for each hierarchy h;, dt;(DIM;, a;,,. . .,
ai,) where {DIM;, a;,,...,a;, } = Attr(h;). The star schema
corresponding to the HOSPITALIZATION and ADMISSION
md-schemata are shown in Figure 5.

It is worth noting that, while at the OLAP level both map-
pings and queries directly use the attributes and measures
names, the query and mapping languages we borrow from
the relational model use ROLAP tables under the unnamed
perspective, i.e., the specific attribute names are ignored,
and only the number of attributes of each relation schema is
available. These languages, both stemming from mathemat-
ical logic, view a database schema as a tuple R = (r1,...,72)
of relation symbols, each of which has a fixed arity. To
switch from the named perspective of the OLAP level to
the unnamed one of the relational level, a dimension table-
coding function d4¢+ : A — N is necessary to associate each
attribute a € Attr(h;) with the corresponding coordinate
(i.e., position) in dt;, as well as a fact table-coding function
O : M U{DIM,,...,DIM,} — N which associates each
measure and dimension with the corresponding coordinate
in ft.

5.2 Translating queries

Using a classical logic-based syntax, we represent a PSJ
query on a star schema as a conjunction of relational atoms
and a Boolean predicate having the following rule-based
form:

(@) —ri(T1), ..., (=), p(Y)

where each r; refers to a relation, each 7 is a tuple of vari-

ables and/or constants of the same arity of r;, p is an atomic
Boolean predicate (e.g., totStayCost + totExamCost < 9) in-
volving variables in | J,_; _ @, and all the variables of the
tuple T appear in the body.

A GPSJ query is then represented as a conjunctive query
with an aggregate term in its head:

q(T,a(z)) — body

where « is an aggregate function, no variable in T occurs in
Z, and all variables in T and Z appear in the condition body.

EXAMPLE 4. The OLAP query shown in Example 2 is
translated on the HOSPITALIZATION star schema as

q(R7 K S]Jm(C)) <_HospF-I—(77 - D7 - P7 C7 7)7
DateDT(D, ,_,Y),
PatientDT(P,, , R, ,G),G = 'F’

which corresponds to the following relational algebra expres-
ston:

T region,year, sun(cost) Ogender="1*(HOSpFT > DateDT pa PatientDT)

Formally, let ¢ = (M, G, m,p,a) be an OLAP query,
where G = {ai1,...,au}. Let hi,...,h;, be the hierar-
chies involved in ¢. The translation of ¢ to the relational
level relies on a variable-assignment function that associates
measure m and each attribute a involved in ¢ (either in
the group-by set or in the selection predicate) with a free
variable u(m) and p(a), respectively. To enable the join
between dimension tables and the fact table to be speci-
fied, also the dimension DIM; of each involved hierarchy is
associated with a variable u(DIM;), with the proviso that
u(a) = p(DIM;) whenever dimension DIM; is directly in-
volved in ¢q. The relational translation of ¢ is then the ag-
gregate query

q(puar), ..., plaw), a(u(m))) —
ft(f)’ dt’il (:17_1), o dts, (l'_z), /J'(p)

where

e the tuple T is such that T.05(DIM;) = pu(DIM;) for
the i-th involved hierarchy, and .6 ¢(m) = u(m). The
other variables in T are anonymous and denoted with
the symbol _;

e cach tuple Z; is such that T;.0q:(a) = u(a) for each
attribute a involved from the i-th hierarchy. The other
variables in Z; are anonymous;

e with a slight abuse of notation, u(p) denotes the sub-
stitution of the measure m and each attribute a in
p with the corresponding variable p(m) and p(a), re-
spectively.

We assume that, to enforce peer autonomy and privacy,
the underlying star schemata of each peer are not directly
accessible from outside. This means that the interface for
a peer is the set of all the possible OLAP queries (see Def-
inition 3) supported by the md-schema it exposes. From
the reformulation point of view, this means that each refor-
mulated query does not directly address the source tables,
but rather it refers to one out of all the possible OLAP
queries over the source md-schema s. To this end, we con-
sider each possible OLAP query as a (typically virtual) view
v(p(ar),. .., u(aw), a(p(m))) over source schema S.

5.3 Translating mappings

In line with the adopted approach, we represent mappings
as s-t tgd’s. More precisely, given a source schema S and a
target schema T, an s-t tgd has the form

vz(¢(T) — (7, 7))

where ¢(T) is a conjunction of atomic formulas over S and
¥(Z,y) is a conjunction of atomic formulas over T. In spite
of their syntactic simplicity, s-t tgd’s can express many data
interoperability tasks arising in applications. As mentioned
before, an s-t tgd can accommodate both GAV and LAV for-
malisms. In particular, in a GAV dependency the right-hand
side of the implication consists of a single atomic formula:

VI($(T) — U(a"))

where the variables in z’ are among those in T, while in a
LAV dependency the left-hand side of the implication con-
sists of an atomic formula:

VZ(R(T) — Fyy(T, 7))

In the following, we present the translation of the mapping
predicates proposed in Section 4 into s-t tgd’s.!

We start from those predicates that can contain encod-
ing functions to be used for translating source values to the
target domains, i.e. same, equi-level, and roll-up. The pro-
posed s-t tgd’s express the constraints between the two star
schemata given by the function that relates measure m to a
set of measures d, or the attribute sets d and c.

EXAMPLE 5. With reference to Figure 5 and Example 3,
we report some examples of mapping translations:

e Mapping (cost) samey (totStayCost, totExamCost) trans-
lates to

VS, E,C(AdmFT(,...,,S,E,_,),C=S+E

— HospFT(,...,,C,.)
e Mapping (disease,organ) equi-level; (diagnosis) trans-
lates to

VD, D', 0(DiagnosisDT(D,_), D' = f(D).1,0 = f(D).2

— DiseaseDT(D"), OrganDT(0))
), D' = f(D).1,0 = f(D).2

vD, D', O(AdmFT(D,__,...
— HospFT(O,D',_,...,.))

o Mapping (week) roll-up; (date) translates to

VD, W (S.DateDT(D,_,), W = f(D)
— T.DateDT(_, W, _,)

The fact that two different predicates, equi-level and roll-up,
translate to the same s-t tgd form could sound strange. In-
deed, an equi-level predicate states that two attribute sets
have the same granularity, whereas the roll-up predicate states
a one-to-many relationship between them. Intuitively, differ-
ently from the equi-level predicate, when a roll-up predicate
is used to connect two attribute sets, users know that it is
necessary to aggregate source data in order to be compatible

'In case of ambiguity, we will use prefixes S and T to dis-
tinguish source tables from target ones.

with the target domain. On the other hand, in the trans-
lation of the mapping language to the relational level, we
disregard syntactic forms but, rather, we focus on the kind
of tuple dependencies each mapping predicate defines, which
is exclusively dependent on the function properties. For in-
stance, roll-up functions are non-injective and this implies
additional aggregations. Nevertheless, given the mapping
(disease, organ) equi-level ; (diagnosis), when only the disease
attribute is required, it is necessary to aggregate the diagno-
sis values returned by the source peer on their disease values
because f limited to the first co-domain could no longer be
injective.

Finally, whenever an encoding function for the same, equi-
level, and roll-up predicates is not available and for the other
predicates where encoding functions cannot be used for data
transformation, no constraint between the star schemata can
be stated and the proposed s-t tgd’s do not express any rela-
tionship between the right hand and the left hand variables.

EXAMPLE 6. If an encoding function f is not available,
then the equi-level mapping of the example above becomes:

VD(DiagnosisDT(D,_) —3D’, O(DiseaseDT(D"), OrganDT(0))

VYD(AdmFT(D,_,...,_) —3D',0(HospFT(D',0,_,...,.))

The formal translation of all the predicates is shown in
Table 1. Without loss of generality, we assume that each
involved attribute a; or b; is associated with the hierarchy
ha; or hy,, respectively, and that the first [attributes (0 <
1<3j)ai,...,a of cand I' attributes (0 <1’ <k) b1,...,by
of d are dimensions. Then, tuples are defined as follows (all
the unspecified variables are anonymous):

e the tuple z7* is such that z7".65(mi) = u(m;) for 4
from 1 to k;

e the tuple 7" is such that z7*.6¢:(m) = p(m);
e each tuple Tg, is such that Tq, .04 (a:) = p(a:);
e the tuple Ty, is such that Ty, .0a: (bs) = p(bs);

e the tuple z¢ is such that z2.0.(b;) = p(b;) for ¢ from
1tol;

e the tuple z{ is such that ©%.6¢:(a;) = p(a;) for i from
1tol.

6. THE REFORMULATION ALGORITHM

We are now ready to define the query reformulation prob-
lem at the relational level.

DEFINITION 4 (QUERY REFORMULATION). Given a GPSJ
query q on target schema T, a source schema S, and a set
of s-t tgd’s between S and T, a reformulation of ¢ on S is
a GPSJ query q' that refers only to the views of S, together
with a variable set mapping var : 2V — 2V x F where V is
the set of all possible variable names and F is the set of all
possible many-to-one and many-to-many functions F on the
attribute domains.

The set F includes the functions F' that can appear in the
drill-down and related mappings but do not participate to
the mapping translation. These functions are associated to
¢’ through function var because, as already mentioned in
Section 4, they could be used to improve result presentation.

| Predicate |

Translation |

m samey (M, ..., mk) Vi(ma), . .., plmae), p(m) (S.fE(x3), p(m) = f(p(ma), ..., p(mx)) — T.ft(z]"))
(a1,...,a;)equi-level ;(b1,...,by) | Vu(ai),. .,,u(a),,u(1), (b)) (S.dts, (Tvy), - - -, S.dts, (Tvy,),
plar) = f(p(br), ... p(br))-1, .. plag) = f(u(br), ... (b))
— T.dta, (Tay), - -, T.dle;(Ta;))
(a1, ...,az)roll-up (b1, ..., br) Vu(ar), .., plar), p(ba), ..o, p(bi)(S. ft(z2), p(ar) = f(p(br), ..., p(be))-1,. ..,
) = F(alb1), (b)) — T fH(7)
m same (my, ..., Mg) Vu(ma),. .., u(mg)(S.ft(@™) — Ju(m)(T. ft(xl)))
(a1, ...,aj)equi-level(by, ..., by) Vu(by), ..., u(be)(S.dty, (Toy), - - -, S.dtbk(b)
(a1, ...,aj)roll-up(bi,..., by) — Jp(ar), ..., pula;)(T.dte; (Tay), - - ;T.dtaj (Ta;)))
(a1, ...,a;)drill-downp (b1, ..., bx) Yu(bi), ..., u(by)(S.ft(x?) — Eu(al),...,,u(al)(T.ft(x?)))
<a1, e aj)relatedp<b1, Ceey bk>

Table 1: Translation of the mapping predicates

This section presents an algorithm that reformulates queries
in three steps. First, it matches the body of ¢ with the set of
mappings. Then, using the selected mappings, it reformu-
lates ¢ into a query ¢’ which only refers to the source schema,
S. Finally, it selects the set of views on S to be used for ¢.
In the following we provide an overview of each single step,
also by means of the following example.

ExXAMPLE 7. Consider a query asking for the total hospi-
talization cost for each disease and LHD:

q = (HOSPITALIZATION, {disease, LHD}, cost, £, sum)
translated at the relational level into
q(D, L,sun(C)) «HospFT(_, D, ,W,_,C,),
DiseaseDT (D), WardDT(W, L)
In relational algebra:
q = Tdisease,LHD,sun(cost) (HOSPFT >t DiseaseDT 1 WardDT)

Due to the lack of space, we do not provide the full set of s-t
tgd’s corresponding to the mappings shown in Figure 3, but
we only show the s-t tgd’s used in the reformulation process.

Step 1 (s-t tgd’s matching) In this step we match the
body of ¢ against the set of s-t tgd’s, denoted with Q =
{wi,...,wn}. A matching of a mapping w; is a subset of
the atomic predicates in ¢ that together (partially) covers
the right-hand of w; through a variable unifier which asso-
ciates at least one non-anonymous variable of w; to a non-
anonymous one in ¢. In this way, we associate each atomic
predicate p(T) with the set Q(p(T)) of matching s-t tgd’s.

EXAMPLE 8. The s-t tgd’s matching with the body of q
are (assuming that no encoding function is provided for ws
and f is the identity function for ws):?

w1 VS, E,C(AdmFT(,...,_,S,E,_,)),C =S +E

— HospFT(_,...,_,C,))
ws : YU(S.WardDT(_,U) — 3L(T.WardDT(_, L)))

wia : VW, W' (S.WardDT(W,_), W' = W — T.WardDT(W’,_))

wap : YW, W/ (AdmFT (L, W,_,...,), W' =W

— HospFT(_,_,,W',_,...,))

When a single mapping translates into two s-t tgd’s, we
distinguish them by means of suffixes a and b.

weq : VD, D', O(DiagnosisDT(D,_), D’
O = f(D).2 — DiseaseDT(D

= f(D).1,
"), OrganDT(0O))

o : VD, D', O(AdmFT(D,_,...,), D' = f(D).1,
O = f(D).2 — HospFT(O,D’,_,...,.))

Q(HOSpFT(_7 D7 - W7 - C’ _))
{w9a}7

Therefore,
Q(DiseaseDT(D)) =
{UJg, w4a}.

{w1, wap, wop },
and Q(WardDT(W, L)) =

Step 2 (query expansion) This step expands the body
of g using the left side of the selected s-t tgd’s. In par-
ticular, for each atomic predicate p(T), we compute the re-
formulation ref(p(T)) of p(T) as follows. Starting from an
empty reformulation refo(p(T)), we consider the sequence of
the matching s-t tgd’s Q(p(Z)) = {w?,...,w}} and, at each
step, for i = 1,..., k, we expand the reformulation obtained
at step i—1, refi—1(p(T)) by using the left-hand of w;. Then
refk(p(T)) = ref(p(T)).

More precisely, if w; is a GAV-style mapping then the
algorithm expands refi_1(p(Z)) with the left-hand of wj
where w; is the result of unifying p(Z) with the right-hand
of w;. If w; is a (G)LAV-style mapping VZ(¢(Z) — Jyv (7)),
then the algorithm expands refi—1(p(Z)) with the left-hand
of w;. In this case, it also adds a variable set mapping
var : y' — (T, F) where 3/ is the result of unifying p(%) with
¥(y) and F is the function associated with the mapping w,
if it exists, or a null function otherwise.

Finally, it could be necessary to also modify the head of
q. Indeed, if var is not empty, some of the variables in the
head of ¢ may not be in the body. Therefore, the algorithm
replaces each variable set V' € dom(var) with var(V'). If the
substitution involves the queried measure m, then the algo-
rithm also replaces the aggregation function with Agg(m).

EXAMPLE 9. By following the steps described above, given
that var : L — U, ¢ is defined as follows:
¢ (D,U,sum(C)) «AdmFT(D',_,W,_,_, S, E,_,),
C=S+E,
DiagnosisDT (D',
WardDT (W, U)

0,0 = f(D)1,

Note that q, which originally asked for costs aggregated on
LHD values, has been transformed to return costs aggregated
by unit because there is no knowledge about how to trans-

form wunits into LHDs. On the contrary, disease values are
extracted from diagnosis ones through function f.

Step 3 (view selection) In the third step, the algorithm
selects the views on the source schema S to be used for
rewriting ¢’. Note that each view is univocally identified
by the set of atomic predicates in its body. Indeed, the
variables specified in the dimension tables correspond to the
selected attributes while the remaining variable specified in
the fact table correspond to the involved measure. Finally,
the involved aggregate function is the one associated with
the selected measure. Therefore, the algorithm first identi-
fies the set of candidate views V in the body of ¢'.

EXAMPLE 10. The candidate views of query ¢’ are:

vl (D/7 U7 Sum(E)) HAdeT(D/’_’ W’ it Bt B B | E7_’ _)7
DiagnosisDT (D',), WardDT (W, U)
v2 (D/7 U’ Sum(S)) HAdeT(D/’_’ W’ =)= = S’ - _)7

DiagnosisDT(D’,_), WardDT(W, U)

View vi computes the total exam cost while va computes the
total staying cost for each diagnosis and unit:

v1 :ﬂ—diagnosis,unit,su.m(totExamCost) (AdeT > DiagnOSiSDT >1 Ward DT)
V2 =T diagnosis,unit,sum(totStayCost) (AdeT X DiagnOSiSDT > Ward DT)

The next step consists in rewriting ¢’ using V), i.e., to derive
a query r over V such that r is equivalent to ¢’. This problem
has been deeply investigated in [3], that shows how aggregate
views can be safely used to rewrite aggregate queries when
the involved aggregate function is a commutative-semigroup
one. Examples of this kind of functions are sum, max, prod,
and count. Moreover, the paper also identifies special cases
where it is possible to use aggregate views for functions that
are not commutative-semigroup aggregation functions, such
as avg. In our case, to have a safe rewriting, we also re-
quire that for each same mapping with encoding function
f, a(f(@) = flar(),...,an(zy)), where a = Agg(m),
a; = Agg(bi), and x = (x1,...,zk) € Dom(d).

ExXaAMPLE 11. The resulting rewriting s
¢ (D,U,sun(C)) «v1 (D', U, sumE),v2(D’, U, sumS),
C = sumFE + sumS,D = f(D").1

Note that the query computes the total cost for each diag-
nosis and unit through the involved views. Then, it further
aggregates the returned values by disease, whose values are
extracted from the diagnosis ones through function f:

’
q = Tsubstring(diagnosis,1,20),unit,sun(totExamCost-+totStayCost) (Ul > UQ)

We finally remark that, whenever ¢ contains a Boolean
predicate x (op) val, it can be reformulated on the source
schema only if the mapping associated with x contains an
encoding function. Indeed, only in this case it is possible to
compare the extracted values with val.

7. CONCLUSIONS

Extending the PDMS paradigm to the BI context is a
challenging task that lays the foundations for BI 2.0. This
paper is a first, significant step in this direction. Our future
work on this topic will concern enhancing the reformulation
algorithm to handle more complex queries (such as those
using non-distributive aggregation operators).

Though query reformulation is at the core of a distributed
approach, several other issues must be tackled to complete
the BIN framework, namely: how to efficiently process queries
across the peer network, how to reconcile multidimensional
data returned by different peers through object fusion tech-
niques, how to rank peer results depending on how compliant
they are with the original local query, and how to deal with
security depending on the degree of trust between the BIN
participants.

8. REFERENCES

[1] S. Abiteboul. Managing an XML warehouse in a P2P
context. In Proc. CAiSE, pages 4-13, Klagenfurt,
Austria, 2003.

[2] M. Banek, B. Vrdoljak, A. M. Tjoa, and Z. Skocir.
Automated integration of heterogeneous data
warehouse schemas. IJDWM, 4(4):1-21, 2008.

[3] S. Cohen, W. Nutt, and Y. Sagiv. Rewriting queries
with arbitrary aggregation functions using views.
ACM TODS, 31(2):672-715, 2006.

[4] M. Golfarelli, S. Rizzi, and P. Biondi. MYOLAP: An
approach to express and evaluate olap preferences.
IEEE TKDE, to appear, 2010.

[5] A. Gupta, V. Harinarayan, and D. Quass.
Aggregate-query processing in data warehousing
environments. In Proc. VLDB, pages 358-369, Zurich,
Switzerland, 1995.

[6] A. Halevy, Z. Ives, D. Suciu, and I. Tatarinov. Schema
mediation for large-scale semantic data sharing.
VLDB Journal, 14(1):68-83, 2005.

[7] A. Y. Halevy, Z. G. Ives, J. Madhavan, P. Mork,

D. Suciu, and I. Tatarinov. The Piazza peer data
management system. IEEE TKDE, 16(7):787-798,
2004.

[8] T. A. D. Hoang and T. B. Nguyen. State of the art
and emerging rule-driven perspectives towards
service-based business process interoperability. In
Proc. Int. Conf. on Comp. and Comm. Tech., pages
1-4, Danang City, Vietnam, 2009.

[9] H. Jiang, D. Gao, and W.-S. Li. Exploiting correlation
and parallelism of materialized-view recommendation
for distributed data warehouses. In Proc. ICDE, pages
276-285, Istanbul, Turkey, 2007.

[10] P. Kalnis, W. S. Ng, B. C. Ooi, D. Papadias, and K.-L.
Tan. An adaptive peer-to-peer network for distributed
caching of OLAP results. In Proc. SIGMOD Conf.,
pages 25-36, Madison, Wisconsin, 2002.

[11] M. Kehlenbeck and M. H. Breitner. Ontology-based
exchange and immediate application of business
calculation definitions for online analytical processing.
In Proc. DaWakK, pages 298-311, Linz, Austria, 2009.

[12] N. Raden. Business intelligence 2.0: Simpler, more
accessible, inevitable. http://intelligent-enterprise.
informationweek.com, 2007.

[13] B. ten Cate and P. G. Kolaitis. Structural
characterizations of schema-mapping languages.
Commun. ACM, 53(1):101-110, 2010.

[14] R. Torlone. Two approaches to the integration of
heterogeneous data warehouses. Distributed and
Parallel Databases, 23(1):69-97, 2008.

