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ABSTRACT 
The approaches to data warehouse design are based on the 
assumption that source data are known in advance and available. 
While this assumption is true in common project situations, in 
some peculiar contexts it is not. This is the case of the French 
national project for analysis of energetic agricultural farms, that is 
the case study of this paper. Here, the above-mentioned methods 
can hardly be applied because source data can only be identified 
and collected once user requirements indicate a need. Besides, the 
users involved in this project found it very hard to express their 
analysis needs in abstract terms, i.e., without visualizing sample 
results of queries, which in turn would require availability of 
source data. To solve this deadlock we propose ProtOLAP, a tool-
assisted fast prototyping methodology that enables quick and 
reliable test and validation of data warehouse schemata in 
situations where data supply is collected on users’ demand and 
users’ ICT skills are minimal. To this end, users manually feed 
sample realistic data into a prototype created by designers, then 
they access and explore these sample data using pivot tables to 
validate the prototype. 

Categories and Subject Descriptors 
D.2.10 [Software Engineering]: Design – methodologies; H.4.2 
[Information Systems Applications]: Types of Systems – 
decision support 

Keywords 
Data warehouse design; Fast prototyping; UML profiles. 

1. INTRODUCTION 
Data Warehouses (DWs) are large repositories of data aimed at 
supporting the decision-making process by enabling flexible and 
interactive analyses. Data in DWs are normally represented 
according to the multidimensional model, which organizes them 
in facts described by measures and accessed via dimensions. 

OLAP clients allow decision makers to visualize and explore facts 
during querying sessions, whose results are displayed using 
interactive pivot tables and graphical displays. A basic Relational 
OLAP (ROLAP) architecture is composed of (i) a relational 
DBMS, that stores DW data; (ii) an OLAP server, that sits 
between the DBMS and the client to bridge the gap between the 
relational model used by the former and the multidimensional 
model used by the latter; (iii) an OLAP client, that combines and 
synchronizes tabular and graphical displays and allows query 
formulation; (iv) an ETL tool that extracts data from data sources, 
transforms them, and loads them into the DW. 
A basic distinction is made on DW design methodologies 
depending on the role given to user requirements [5]: in 
requirement-driven approaches, a conceptual schema of the DW 
is drawn starting from the requirements expressed by users; in 
source-driven approaches, a conceptual schema is derived starting 
from the schemata of the data sources that will feed the DW; in 
mixed approaches, the two activities are conducted in parallel. 
Some attempts have also been made to apply agile practices to 
DW design. For instance, 4WD aims to make the development 
process more efficient and predictable [6]; the main 
methodological principles adopted to this end are incrementality 
and iteration, prototyping, user involvement, and automated 
schema transformation. 

All the approaches mentioned above are based on the assumption 
that the source data for feeding the DW are known in advance and 
available. Source data play a key role in source-driven and mixed 
approaches because they are used to give a strong imprint to the 
conceptual schema; even in requirement-driven and agile 
approaches, knowledge and availability of source data during the 
initial project stages is necessary for testing the developed 
prototypes and for validating the requirements through 
preliminary loading tests [7]. 
The assumption of early source data availability is true in 
common project situations, in which case the existing approach 
have proven to work well. However, in some peculiar contexts, 
this assumption may not be true. This is the case for instance of 
the French national project for analysis of energetic agricultural 
farms, presented in [3], that is the case study of this paper. Here, 
the above-mentioned methods can hardly be applied because 
source data will be identified and collected a posteriori, according 
to the information needs represented in the conceptual schema. 
Besides, the decision makers involved in this project found it very 
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hard to express their analysis needs in abstract terms, i.e., without 
visualizing sample results of queries, which in turn would require 
availability of source data. To solve this deadlock, there is a need 
for a fast prototyping methodology that enables users to quickly 
and reliably test and validate the DW schemata created by 
designers in situations where (i) source data is not available 
initially but will only be collected once user requirements indicate 
a need, and (ii) users’ ICT skills are minimal. 

In this paper we address this issue by presenting ProtOLAP, a 
tool-assisted methodology whose steps can be summarized as 
follows: 

1. Designers create a DW conceptual schema in a requirement-
driven fashion, i.e., starting from the users’ analysis needs. 

2. The conceptual schema is automatically translated into a 
logical schema and prototyped. 

3. Users manually feed sample realistic data into the prototype. 
4. Users access and explore these sample data using simple pivot 

tables, so as to validate the prototype. If the prototype is not 
validated, go back to step 1 and start a new iteration. 

5. Once the prototype is validated and declared conformed to the 
analysis requirements, source data are collected, ETL is 
designed, and the prototype is engineered. 

2. RELATED WORK 
Several conceptual models (either based on the Entity-
Relationship formalism, or on UML, or on ad hoc graphical 
constructs —see [14] for a survey) and requirement models (such 
as [18]) for DWs have been proposed in literature to aid designers 
during development and give decision makers a reliable support in 
discussing and validating requirements. In particular, several 
works address the automatic implementation of requirements and 
conceptual schemata onto ROLAP architectures to encourage 
error-free design (e.g., [2][9]). However, these methods require a 
significant training about OLAP and multidimensional modeling 
to be delivered to users.  
Also in the field of ETL design, some works propose the use of 
conceptual models [17] and suggest the adoption of a model-
driven approach [1]. However, these models reflect the 
complexity of ETL procedures, and consume an important part of 
time and resources of the development process even when their 
implementation is automatic. This means that they are not well 
suited for the early stages of agile DW development, during which 
close and user-assisted iteration is crucial to guarantee that users 
and designers can agree on requirements quickly and reliably. 

In [8], the authors present a tool to feed a DW with sample data 
obtained using statistical methods applied to data sources. 
However, this tool is not integrated within a larger system for fast 
prototyping, thus it is not usable for our purposes. Finally, the DW 
testing framework proposed in [7] includes an early-loading test 
made by loading sample source data during the first design 
phases. This is aimed at letting users validate requirements when 
the design is not settled yet, so as to reduce the cost for correcting 
errors and misunderstandings; unfortunately, it requires some 
source data to be available, which is not the case in our context. 

3. CASE STUDY 
The EDEN project aims at providing ICT-based solutions to 
assess the energetic performance of farms. The technologies 
employed include for instance low-cost sensors and RFIDs, 
installed on agricultural equipment to provide reliable and 
continuous data to enable energetic performance indicators to be 
calculated at the finest detail (field, technical operation, etc.). 

In this context, the decision makers are farmers and life-cycle 
assessment (LCA) experts who want to analyze energetic 
indicators of their farms, such as liters of fuels by plot, days for a 
plowing operation, or number of animals used for milk production 
per year and farm according to LCA diagnostics. Noticeably, ICT 
technologies are installed on the farm equipment in function of the 
indicators to be analyzed, e.g., computing an indicator based on 
worked plots requires GPS sensors to be installed on tractors. 

In [3] we presented the spatial DW developed in the context of the 
EDEN project. The complexity of the queries supported is in line 
with those of common DW projects. However, the combined use 
of different aggregation operators along different dimensions to 
compute indicators, together with the relevant role played by the 
spatial dimensions, makes it very hard for non-skilled users to 
verify that the requirements elicited and modeled by designers are 
actually consistent with their analysis needs, which in turn makes 
the requirement validation process long and uncertain. The most 
effective approach to validation here would be to let users “play” 
with real data using an OLAP front-end —but this cannot 
apparently be done unless the relevant source data are identified 
and some basic ETL is provided. 

4. THE PROTOLAP METHODOLOGY 
In this section, before outlining ProtOLAP, we list a set of 
methodological requirements as emerged from the EDEN case 
study: 

1. The querying power of a DW directly depends on its 
underlying conceptual schema. Thus, it is widely recognized 
that the success of a DW project largely depends on a 
comprehensive specification of the users’ analysis 
requirements and on the accuracy of their translation into a 
conceptual schema. When decision makers have little or no 
experience with ICT and in particular with information 
systems and OLAP tools, and when they do not know in 
advance which indicators could be useful for analyses, using 
an iterative design methodology is necessary to enable a 
progressive refinement of the conceptual schema.  

2. While conceptual and logical schemata represent a key tool 
for designers, they may be quite hard to understand by users. 
When users have little or no skills in ICT (and in OLAP in 
particular), the validation of requirements with users cannot 
hinge on an analysis of design schemata. 

3. OLAP queries can be quite complex (for instance, due to the 
combined use of different aggregation operators); delivering 
pivot tables with application domain data to let users 
interactively play with them, could definitely make the 
validation of the proposed conceptual schema faster and more 
effective. Indeed, pivot tables showing application domain 
data can be considered as mockups of DW prototypes.  

4. When relevant data sources cannot be identified in advance, 
so that the source data must be collected “on users demand” 
depending on the required analyses and on the indicators of 
interest, a requirement-driven approach must necessarily be 
followed. Besides, keeping the prototyping cycle fast and 
effective calls for postponing ETL design to the phase of late 
engineering of the prototype. 

The ProtOLAP methodology takes into account all the previous 
requirements. It is sketched in Figure 1 and can be described as 
follows. 

Initially, decision makers discuss their analysis needs with 
designers through natural language, mainly in terms of the 
indicators they need. At this time, designers can quickly draw a 
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draft conceptual schema; the Spatial Datacube UML profile  is 
used to this end [4]. The draft is then progressively refined thanks 
to a close interaction with decision makers. 

 
Figure 1. The ProtOLAP methodology 

When a 1.0 conceptual schema is produced, i.e., one that the 
designers judge to be consistent and possibly complete and 
accurate, the next phase is triggered to produce a prototype. Here, 
a logical (relational) schema and the related metadata are 
automatically generated and deployed starting from the 
conceptual schema. The target RDBMS is Oracle [11], while the 
target OLAP server is Mondrian [12]. 

Now decision makers can manually insert some realistic data into 
the prototype by means of a user-friendly interface. In particular, 
they directly insert sample values for members of hierarchies, 
while facts and measure values are automatically and randomly 
generated respecting user-defined constraints and ranges. 

Finally, decision makers can explore the data they inserted in an 
OLAP fashion using the JRubik front-end [16]. By doing so, they 
can understand whether the prototype (and, consequently, the 
underlying conceptual schema) correctly models their analysis 
needs. If not, a new iteration is triggered. Otherwise, the 
requirements are considered validated; the required data sources 
are traced, proper ETL procedures are set, and the prototype can 
be engineered. Of course, there is a possibility that the source data 
required are not actually available; in our EDEN project, this 
never happened because most data come from on-the-field sensors 
and decision makers have a precise knowledge of which types of 
sensors were available to acquire data. 

 
Figure 2.  The ProtOLAP Architecture 

5. THE PROTOLAP SYSTEM 
In this section, we describe the ProtOLAP system that implements 
our methodology. The architecture, shown in Figure 2, is based on 
a ROLAP platform and is composed of four tiers: the requirement 
tier, used by designers to draw UML-based conceptual schemata 
by means of the MagicDraw CASE tool [10]; the deployment tier, 
that includes the Oracle RDBMS, the Mondrian OLAP server, and 
the tool that creates relational schemata for Oracle and metadata 
for Mondrian starting from the conceptual schema; the analysis 
tier, that allows decision makers to query data stored in the 
deployment tier using the JRubik OLAP client; and the feeding 
tier, that automatically generates a visual interface through which 
decision makers can feed the deployment tier with application 
domain data. These tiers will be described in some detail in the 
following subsections. 

5.1 The Requirement Tier 
The ProtOLAP methodology is iterative, i.e., it operates by 
progressively refining a conceptual schema and the related 
prototype. So, the requirement tier must effectively support 
designers in easily and rapidly define multidimensional 
conceptual schemata that can be automatically deployed. For 
these reasons, we have chosen to adopt the Spatial Datacube UML 
profile and its implementation on the MagicDraw CASE tool. 
The Spatial Datacube profile [4] extends UML with stereotypes 
for complex OLAP applications, and it guarantees that well-
formed multidimensional schemata are created by means of a set 
of OCL constraints. It is organized in two models representing the 
static and dynamic elements of OLAP applications: the SDW 
model (Figure 3.a) and the Aggregation model (Figures 3.b-c). 

• The SDW model defines dimensions using the package UML 
element. Dimensions are composed of levels, and facts (e.g., 
class PRODUCTION with the «Fact» stereotype) are 
described by measures that are represented as attributes. Each 
element is typed as either spatial, thematic, or temporal (e.g., 
«TemporalAggLevel» for a temporal level like class 
DAY).  

• The aggregation model represents how measures are 
aggregated along dimensions («BaseIndicator» 
stereotype). Aggregation rules can be defined using 
dimensions, hierarchies, and levels in order to define complex 
aggregations. In particular, measures are represented with the 
aggregatedAttribute tagged value; an aggregation 
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function, Aggregator, is defined as a parameter of a method 
of the fact class. 

Figure 3.a shows a simplified version of the SDW model of our 
case study [3] where the QUANTITY measure, representing the 
milk produced, is analyzed according to two dimensions: a spatial 
dimension representing farms and cooperatives, and a temporal 
dimension that organizes days by cultivation campaigns. In the 
example of Figure 3.b, a base indicator summing the QUANTITY 
measure along all dimensions is represented. This indicator 
supports OLAP queries like: “What is the total quantity of 
produced milk per cooperative and campaign?”. As previously 
stated, decision makers also need more complex aggregations. For 
example, the QUANTITY measure must be aggregated using the 
sum on the temporal dimension and the max on the spatial 
dimension in order to identify what is most productive farm by 
cooperative. This kind of queries can be addressed using the base 
indicator shown in Figure 3.c, that aggregates QUANTITY using 
the Sum operator along the Time dimension and the Max operator 
along the Cooperatives dimension.  

 
(a) 

 
(b) 

 
(c) 

Figure 3. Conceptual schema for our case study; (a) SDW 
model, (b) Sum base indicator, (c) Max-Sum base indicator 

MagicDraw [10] is a commercial CASE tool for drawing UML 
models and architecture environments, which supports the UML 
profiling extension mechanism as well as declaration and 
automatic checking of OCL constraints. The implementation of 
the Spatial Datacube profile in MagicDraw allows designers to 
rapidly define well-formed conceptual schemata in a few clicks 
through a well-structured organization of the profile elements. For 
example, when a designer wants to change the aggregation 
function of a base indicator according to the decision makers 
needs, she can simply click on the aggregator tagged value and 
choose another aggregation function among the UML profile 
elements, as shown in Figure 4. 

 
Figure 4. Conceptual tier: design with MagicDraw 

5.2 The Deployment Tier 
In our implementation data storage is achieved using Oracle 
Spatial [11], a DBMS that provides native support for spatial data 
and allows tables with spatial columns and indexes on these data 
to be created, while Mondrian is used as an OLAP server. 
Mondrian [12] is an open-source OLAP server belonging to the 
Pentaho Business Intelligent Suite, and it uses XML metadata to 
induce a multidimensional schema on top of relational schemata 
hosted on any RDBMS. For querying, Mondrian uses the standard 
OLAP query language MDX, that allows complex aggregations 
and operations to be defined.  

 
Figure 5. Parsing of the XMI file representing the UML 
profile 
ProtOLAP takes as input the XMI (XML Metadata Interchange) 
file representing a conceptual schema in the form of a Spatial 
Datacube UML class diagram. XMI is a standard used to 
represent and exchange UML models and it is automatically 
generated by MagicDraw. A visual interface allows users to load 
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the XMI file and to choose the type of schema to use (star or 
snowflake) (Figure 5); then the tool  automatically generates : 

• A visual representation of DW elements. 
• The star or snowflake relational schema for Oracle that 

enables the persistent storage of multidimensional data. 
Relational schemata are generated using an extended version 
of OCL2SQL [13], a Java open source tool capable of 
automatically translating OCL constraints into SQL code for 
Oracle. Its output is SQL code to create the DW physical 
schema in Oracle, together with a set of SQL queries and 
triggers to implement the data integrity checks modeled by 
OCL constraints. 

• The Mondrian XML metadata representing spatio-
multidimensional elements (facts, levels, etc.) and the MDX-
based calculated members for complex indicators according to 
previously generated SQL schemata.  

Remarkably, this phase is completely automated without any 
intervention of designers; according to [6], this accelerates 
software development and promotes standard processes. 

 
Figure 6. Deployment tier: Oracle snowflake physical schema 
generated from the conceptual schema of Figure 3.a 

 
Figure 7. Deployment tier: excerpt of the Mondrian XML 
metadata generated from UML profile of Figure 3.c 
For example, starting from the conceptual model of Figure 3, 
ProtOLAP generates the Oracle SQL physical schema and the 
corresponding Mondrian-compliant XML code shown in Figures 
6 and 7, respectively. Note that a snowflake schema has been 
chosen for implementation, as shown in Figures 5 and 6. 

5.3 The Feeding Tier 
This tier offers a visual interface to feed both dimensions 
members and facts. Dimensions can be fed in two ways: 
manually, by letting decision makers insert the name of members; 
and automatically, by letting them automatically create a number 
of dummy members. Since dimensions’ members are organized 
into hierarchies, the feeding tier in manual mode checks that 
decision makers correctly built the relationships between 
members. In automatic mode, hierarchical relations are 
automatically generated. Of course, while the automatic mode 
saves time, the manual mode is more effective because the data 
inserted are supposed to be part of the application domain and, as 
such, better understood by decision makers. 

An example of the feeding process of the spatial dimension 
Cooperatives is shown in Figure 8.a. Remarkably, decision 
makers can manually input names of real farm and cooperatives 
without any knowledge of the multidimensional model. 
Aggregation levels and hierarchical relationships are intuitively 
represented by the user interface. 

Once all dimensions are fed, users can set a range of possible 
values for measures; for example, for the QUANTITY measure she 
can choose value range [0..224]. The feeding tier automatically 
populates the fact tables with all possible combinations of 
dimension members and gives each fact a randomly-generated 
measure value included in the range (Figure 8.b). Then the 
feeding process is completed by automatically creating SQL 
insertion scripts to populate the physical schema. 

 
(a) 

 
(b) 

Figure 8. Feeding tier: (a) manually fed dimensions; (b) 
automatically generated measures values 
ProtOLAP also handles a simple form of versioning that enables 
decision makers to retrieve data previously inserted during 
another session. In this way they can incrementally check the 
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requirements for their DW focusing on different dimensions at 
different times. 

5.4 The Analysis Tier 
This tier is implemented using JRubik [16], a Java-based client 
developed on top of Mondrian and compatible with any RDBMS, 
such as Oracle. Using JRubik, with a few clicks decision makers 
can access and explore the data stored in the deployment layer. 

Figure 9 presents an example of aggregated query using the base 
indicator of Figure 3.c. The pivot table allows aggregation rules to 
be more easily understood and validated. Indeed, by selecting data 
by farm and aggregating data on the temporal dimension using the 
OLAP client, decision makers can easily verify their sum 
aggregation value on the temporal dimension. In the same way, 
when they roll-up on the spatial dimension, the max aggregation 
function is applied by the OLAP server and they can 
verify/understand the modeled aggregation defined during 
conceptual design. As to aggregation rules, the OLAP client offers 
a tree visualization of dimensions members (Figure 9) which 
makes it easier for decision makers to validate the schemata of 
dimensions hierarchies. 

 
Figure 9. Analysis tier: exploring domain data with JRubik 

6. CONCLUSION 
In this paper we have proposed ProtOLAP, a fast prototyping 
methodology for DW projects that addresses project situations 
where source data are to be collected on-demand and users have 
little or no ICT skills. The methodology is requirement-based and  
does not require users to read and understand conceptual 
schemata; it is iterative and coupled with a set of tools that 
support, and in some cases automate, each single phase. In the 
context of the EDEN project, it has successfully been used to 
develop prototypes for 16 data marts. 

To complete and improve our approach we are currently working 
in different directions: (i) provide project versioning features, 
aimed at letting designers effectively trace and manage the 
different iterations; (ii) pefine and carry out usability tests for the 
methodology and in particular for the feeding tier in the context of 
the EDEN project; and (iii) investigate how conceptual design can 
be achieved in a by-query-example fashion, like in [15], so as to 
decrease the probability of misunderstood requirements and make 
the overall process faster. 
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