415

Schema Versioning in Data Warehouses

Matteo Golfarelli!, Jens Lechtenborger?, Stefano Rizzi!, and Gottfried Vossen?

! DEIS, University of Bologna, Italy
2 Dept. of Information Systems, University of Muenster, Germany

Abstract. As several mature implementations of data warehousing sys-
tems are fully operational, a crucial role in preserving their up-to-date-
ness is played by the ability to manage the changes that the data ware-
house (DW) schema undergoes over time in response to evolving business
requirements. In this paper we propose an approach to schema versioning
in DWs, where the designer may decide to undertake some actions on
old data aimed at increasing the flexibility in formulating cross-version
queries, i.e., queries spanning multiple schema versions. After introduc-
ing an algebra of DW schema operations, we define a history of versions
for data warehouse schemata and discuss the relationship between the
temporal horizon spanned by a query and the schema on which it can
consistently be formulated.

1 Introduction

Data Warehouses (DWs) are databases specialized for business intelligence ap-
plications, and can be seen as collections of multidimensional cubes centered on
facts of interest for decisional processes. A cube models a set of events, each
identified by a set of dimensions and described by a set of numerical measures.
Typically, for each dimension a hierarchy of properties expressing interesting
aggregation levels is defined. A distinctive feature of DWs is that of storing
historical data, hence, a temporal dimension is always present.

Data warehousing systems have been rapidly spreading within the industrial
world over the last decade, due to their undeniable contribution to increase the
effectiveness and efficiency of decision making processes within business and sci-
entific domains. Today, as several mature implementations of data warehousing
systems are fully operational within medium to large contexts, the continuous
evolution of the application domains is bringing to the forefront the dynamic as-
pects related to describing how the information stored in the DW changes over
time from two points of view:

— At the extensional level: Though historical values for measures are easily
stored due to the presence of temporal dimensions that timestamp the events,
the multidimensional model implicitly assumes that the dimensions and the
related properties are entirely static, which is clearly unrealistic.

— At the intensional level: The DW schema may change in response to the
evolving business requirements: new properties and measures may become
necessary, while others may become obsolete.

S. Wang et al. (Eds.): ER Workshops 2004, LNCS 3289, pp. 415-428, 2004.
© Springer-Verlag Berlin Heidelberg 2004


Used Distiller 5.0.x Job Options
This report was created automatically with help of the Adobe Acrobat Distiller addition "Distiller Secrets v1.0.5" from IMPRESSED GmbH.
You can download this startup file for Distiller versions 4.0.5 and 5.0.x for free from http://www.impressed.de.

GENERAL ----------------------------------------
File Options:
     Compatibility: PDF 1.3
     Optimize For Fast Web View: No
     Embed Thumbnails: No
     Auto-Rotate Pages: No
     Distill From Page: 1
     Distill To Page: All Pages
     Binding: Left
     Resolution: [ 2400 2400 ] dpi
     Paper Size: [ 439.37 666.142 ] Point

COMPRESSION ----------------------------------------
Color Images:
     Downsampling: Yes
     Downsample Type: Bicubic Downsampling
     Downsample Resolution: 1200 dpi
     Downsampling For Images Above: 1800 dpi
     Compression: Yes
     Automatic Selection of Compression Type: Yes
     JPEG Quality: Maximum
     Bits Per Pixel: As Original Bit
Grayscale Images:
     Downsampling: Yes
     Downsample Type: Bicubic Downsampling
     Downsample Resolution: 1200 dpi
     Downsampling For Images Above: 2400 dpi
     Compression: Yes
     Automatic Selection of Compression Type: Yes
     JPEG Quality: Maximum
     Bits Per Pixel: As Original Bit
Monochrome Images:
     Downsampling: Yes
     Downsample Type: Bicubic Downsampling
     Downsample Resolution: 2400 dpi
     Downsampling For Images Above: 3600 dpi
     Compression: Yes
     Compression Type: CCITT
     CCITT Group: 4
     Anti-Alias To Gray: No

     Compress Text and Line Art: Yes

FONTS ----------------------------------------
     Embed All Fonts: Yes
     Subset Embedded Fonts: No
     When Embedding Fails: Cancel Job
Embedding:
     Always Embed: [ ]
     Never Embed: [ ]

COLOR ----------------------------------------
Color Management Policies:
     Color Conversion Strategy: Leave Color Unchanged
     Intent: Default
Device-Dependent Data:
     Preserve Overprint Settings: Yes
     Preserve Under Color Removal and Black Generation: Yes
     Transfer Functions: Apply
     Preserve Halftone Information: Yes

ADVANCED ----------------------------------------
Options:
     Use Prologue.ps and Epilogue.ps: No
     Allow PostScript File To Override Job Options: Yes
     Preserve Level 2 copypage Semantics: Yes
     Save Portable Job Ticket Inside PDF File: No
     Illustrator Overprint Mode: Yes
     Convert Gradients To Smooth Shades: Yes
     ASCII Format: No
Document Structuring Conventions (DSC):
     Process DSC Comments: Yes
     Log DSC Warnings: No
     Resize Page and Center Artwork for EPS Files: Yes
     Preserve EPS Information From DSC: Yes
     Preserve OPI Comments: No
     Preserve Document Information From DSC: Yes

OTHERS ----------------------------------------
     Distiller Core Version: 5000
     Use ZIP Compression: Yes
     Deactivate Optimization: No
     Image Memory: 524288 Byte
     Anti-Alias Color Images: No
     Anti-Alias Grayscale Images: No
     Convert Images (< 257 Colors) To Indexed Color Space: Yes
     sRGB ICC Profile: sRGB IEC61966-2.1

END OF REPORT ----------------------------------------

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Job Option File
<<
     /ColorSettingsFile ()
     /AntiAliasMonoImages false
     /CannotEmbedFontPolicy /Error
     /ParseDSCComments true
     /DoThumbnails false
     /CompressPages true
     /CalRGBProfile (sRGB IEC61966-2.1)
     /MaxSubsetPct 100
     /EncodeColorImages true
     /GrayImageFilter /DCTEncode
     /Optimize false
     /ParseDSCCommentsForDocInfo true
     /EmitDSCWarnings false
     /CalGrayProfile ()
     /NeverEmbed [ ]
     /GrayImageDownsampleThreshold 2.0
     /UsePrologue false
     /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>
     /AutoFilterColorImages true
     /sRGBProfile (sRGB IEC61966-2.1)
     /ColorImageDepth -1
     /PreserveOverprintSettings true
     /AutoRotatePages /None
     /UCRandBGInfo /Preserve
     /EmbedAllFonts true
     /CompatibilityLevel 1.3
     /StartPage 1
     /AntiAliasColorImages false
     /CreateJobTicket false
     /ConvertImagesToIndexed true
     /ColorImageDownsampleType /Bicubic
     /ColorImageDownsampleThreshold 1.5
     /MonoImageDownsampleType /Bicubic
     /DetectBlends true
     /GrayImageDownsampleType /Bicubic
     /PreserveEPSInfo true
     /GrayACSImageDict << /VSamples [ 1 1 1 1 ] /QFactor 0.15 /Blend 1 /HSamples [ 1 1 1 1 ] /ColorTransform 1 >>
     /ColorACSImageDict << /VSamples [ 1 1 1 1 ] /QFactor 0.15 /Blend 1 /HSamples [ 1 1 1 1 ] /ColorTransform 1 >>
     /PreserveCopyPage true
     /EncodeMonoImages true
     /ColorConversionStrategy /LeaveColorUnchanged
     /PreserveOPIComments false
     /AntiAliasGrayImages false
     /GrayImageDepth -1
     /ColorImageResolution 1200
     /EndPage -1
     /AutoPositionEPSFiles true
     /MonoImageDepth -1
     /TransferFunctionInfo /Apply
     /EncodeGrayImages true
     /DownsampleGrayImages true
     /DownsampleMonoImages true
     /DownsampleColorImages true
     /MonoImageDownsampleThreshold 1.5
     /MonoImageDict << /K -1 >>
     /Binding /Left
     /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
     /MonoImageResolution 2400
     /AutoFilterGrayImages true
     /AlwaysEmbed [ ]
     /ImageMemory 524288
     /SubsetFonts false
     /DefaultRenderingIntent /Default
     /OPM 1
     /MonoImageFilter /CCITTFaxEncode
     /GrayImageResolution 1200
     /ColorImageFilter /DCTEncode
     /PreserveHalftoneInfo true
     /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>
     /ASCII85EncodePages false
     /LockDistillerParams false
>> setdistillerparams
<<
     /PageSize [ 576.0 792.0 ]
     /HWResolution [ 2400 2400 ]
>> setpagedevice


416 Matteo Golfarelli et al.

Note that, in comparison with operational databases, temporal issues are more
pressing in DWs since queries frequently span long periods of time; thus, it is
very common that they are required to cross the boundaries of different versions
of data and/or schema. Besides, the criticality of the problem is obviously higher
for DWs that have been established for a long time, since unhandled evolutions
will determine a stronger gap between the reality and its representation within
the database, that will soon become obsolete and useless.

So far, research and DW vendors have mainly addressed changes at the ex-
tensional level (see [1, 2] for instance); schema versioning has only partially been
explored and no dedicated commercial tools or restructuring methodologies are
available to the designer. Thus, both an extension of tools and a support to de-
signers are urgently needed. In this paper we propose an approach to schema ver-
sioning in DWs, specifically oriented to support the formulation of cross-version
queries, i.e., queries spanning multiple schema versions. The main contributions
are:

1. Schema graphs are introduced in order to univocally represent DW schemata
as graphs (Section 2), and an algebra of graphs operations to determine new
versions of a DW schema is defined (Section 3.1).

2. Augmented schemata are introduced in order to increase flexibility in cross-
version querying (Section 3.2). The augmented schema associated with a
version is the most general schema describing the data that are actually
recorded for that version and thus are available for querying purposes.

3. The sequencing of versions to form schema histories in presence of aug-
mented schemata is discussed (Section 3.3), and the relationship between
the temporal horizon spanned by a query and the schema on which it can
consistently be formulated is analyzed (Section 4).

1.1 Approach Overview and Motivating Example

In this section we introduce our approach based on a working example. Consider
a schema Sy modeling the shipments of parts to customers all over the world. A
conceptual schema for the shipment fact is depicted in Fig. 1(a) using the DFM
formalism [3]. The fact has two measures, QtyShipped and ShippingCostsDM, and
five dimensions, namely Date, Part, Customer, Deal, and ShipMode. A hierarchy
of properties is attached to each dimension; the meaning of each arc is that of a
many-to-one association, i.e., a functional dependency.

Suppose now that, at ¢t; = 1/1/2003, Sy undergoes a major revision. In the
new version Si: (a) The temporal granularity has changed from Date to Month;
(b) A classification into subcategories has been inserted into the part hierarchy;
(c¢) A new constraint has been modeled in the customer hierarchy, stating that
sale districts belong to nations; (d) The incentive has become independent of
the shipment terms. Then, at to = 1/1/2004, another version Ss is created as
follows: (a) Two new measures ShippingCostsEU and ShippingCostsLIT are added;
(b) The ShipMode dimension is eliminated; (c) A ShipFrom dimension is added;
(d) A descriptive attribute PartDescr is added to Part. The conceptual schemata
for S, is depicted in Fig. 1(b).



Schema Versioning in Data Warehouses 417

Category Category
Brand ~ Brand Subcategory
Container Container
Type PartDescr Type
Part Size Size i
Region
Region
SHIPMENT Customer Nation
Month SHIPMENT Customer Month ‘
QtyShipped
Date QtyShipped City Nation Shipping CostsLIT -
ShippingCostsDM ShippingCostsEU ShoFrom SaleDistrict
Year SaleDistrict voar  LShipppingCostsDM

Ship Deal Deal
Mode
Type X Incentive Terms
Carrier Allowance Terms Allowance O Incentive

(a) (b)

Fig. 1. Conceptual schemata for two versions of the shipment fact: Sy (a) and
Sy (b)

In our approach, the schema modifications occurring in the course of DW
operation lead to the creation of a history of schema versions. All versions are
available for querying purposes, and those relevant for a particular analysis sce-
nario may either be chosen explicitly by the user or implicitly by the query
subsystem. In order to improve cross-version querying, when creating a new
schema version the designer may choose to create augmented schemata that ex-
tend previous schema versions to reflect the current schema extension, both at
the schema and the instance level. To be more precise, let S be the current
schema version and S’ be the new version. Given the differences between S and
S’ a set of possible actions on past data are proposed to the designer; they may
entail checking past data for additional constraints or inserting new data based
on user feedback. The set of actions the designer decides to undertake leads to
defining and populating an augmented schema S4AVC, associated with S, that
will be used, instead of S, to determine if a given query ¢ spanning the validity
interval of S is correct, i.e., if the data required by ¢ can be consistently queried
under the schema specified by g. Importantly, SAV% is always an extension of S,
i.e. the instance of S can be computed as a projection of the instance of SAVE.

Consider for instance the schema modification operation that introduces at-
tribute Subcategory, performed at time ¢; = 1/1/2003 to produce version 5.
For all parts shipped after ¢; (including both parts introduced after ¢; and parts
already existing before t1), a subcategory will clearly have to be defined, so
that queries involving Subcategory can be answered for all shipments from ¢; on.
However, if the user is interested in achieving cross-version querying on years
2002 and 2003, i.e. if she asks to query even old data (shipments of parts no
more existing at ¢1) on Subcategory, it is necessary to: (1) define an augmented
schema for Sy, denoted Sg‘UG, that contains the new attribute Subcategory; (2)
migrate old data entries from Sy to S(?UG; and (3) assign the appropriate values
for Subcategory to old data entries in S§'V¢. This process will allow queries in-
volving Subcategory to be answered on old data via the instance of S§'V¢. Note



418 Matteo Golfarelli et al.

(QtyShippedj (ShippingCostsDMj

Fig. 2. Schema graph Sy

that, while the first two steps will entirely be managed by the versioning system,
the last one requires further input from the designer.

2 Schema Graphs

Following standard notation for relational databases, capital letters from the
beginning (ending) of the alphabet denote single (sets of) attributes. We restrict
our attention to simple FDs, i.e., FDs of the form A — B, and in this setting we
use F* to denote the usual graph-theoretic transitive closure of F' (where sets
of simple FDs are interpreted as directed graphs). We also recall that a set F of
FDs is canonical if: (a) (X =Y € F) = ([Y[=1); (b) (X = Ac F)A(Y &
X)= (Y # A); and (c) (F' G F) = (F' # F). For every set F of FDs there
is at least one canonical cover, i.e., a canonical set of FDs equivalent to F' [4].
In order to talk about versioning, we first have to fix a representation for DW
schemata. In this section, we introduce a graph-based representation for sche-
mata called schema graph, which captures the core of multidimensional models
such as the DFM and allows to define schema modifications by means of four
elementary graph manipulations, namely adding and deleting nodes and arcs,
and to analyze the schema versioning problem in a simple and intuitive setting.

Definition 1 (Sc}{ema Graph). A schema graph is a directed graph S =
(U, F) with nodes U = {E}UU and arcs F, where

1. FE is called fact node and represents a placeholder for the fact itself;

2. U is a set of attributes (including properties and measures);

3. F is a canonical set of simple FDs defined over {E}UU;

4. E has only outgoing arcs, and there is a path from E to each attribute in U.

The schema graph for the shipment fact in Fig. 1(a) is shown in Fig. 2.
Adopting a canonical form for representing the FDs in schema graphs has the
important advantage of providing a non-redundant, i.e., compact representation.
On the other hand, in order to obtain unique results for schema modification
operations, we also need to make sure that we are dealing with a uniquely de-
termined representation. In the following we will discuss how a set F' of simple



Schema Versioning in Data Warehouses 419

FDs can be put in a uniquely determined canonical form, denoted with F~ and
called reduced form.

We begin by observing that, for acyclic sets of simple FDs, canonical covers
are uniquely determined [5] and can be computed via transitive reduction [6].
Thus, if F is acyclic, F'~ can be defined as the transitive reduction of F. On
the other hand, in real-world DW schemata, cycles in F' may occur since either
(a) a property is associated with one or more univocal descriptions — e.g., the
technical staff may refer to products by their codes while sale agents may use
product names; or (b) two measures may be derivable from each other — e.g.,
Euros can be transformed to Italian Liras by applying a constant conversion
factor. The approach we follow to uniquely select a canonical form for cyclic sets
of FDs is formalized in [5]; for space reasons, here we report only an intuitive
description.

Consider a schema graph S = ((7, F), where F is neither necessarily canonical
nor acyclic. First, we define an equivalence relation =r on Uas: A=p Biff
(A—- BeF*) A (B— AeF*) for A,B e U. Then, we consider the acyclic
directed graph where each node is one equivalence class X induced by =r and
an arc goes from X to Y if there are attributes A € X and B € Y such that
A — B € F. The transitive reduction of this graph, denoted S’, is acyclic and
uniquely determined (as transitive reduction is unique for acyclic graphs). Now,
let a total order on U be given (e.g., user-specified or system-generated based
on some sorting criterion such as attribute name). The reduced form for F, F |
is composed as follows: (1) for each arc (X,Y) in S’, one FD from the minimum
attribute in X to the minimum attribute in Y; (2) for each equivalence class
X ={A;...A,} where A; < ... < A,, aset of FDs {41 — As,..., A1 —
An, A, — Aq}. Tt is possible to prove that F'~ is a transitive reduction of F'
and a canonical cover of F' [5]. In the remainder of the paper, we will always
consider schema graphs where the set of FDs is in reduced form, and we will use
the terms schema and schema graph interchangeably.

Ezample 1. Consider the shipment fact in Fig. 1(b), where Part has an equivalent
property PartDescr and shipping costs are expressed in EU, LIT, and DM. The
schema graph based on the total order induced by attribute names is shown in
Figure 3.

Given a schema graph S = (U, F) and a set X C U, the projection of F to
X is defined as nx (F) :={A —- B € F* | AB C X}. Based on [7] and [5] it is
possible to show that, if £ € X, projection is closed on schema graphs.

3 Versioning

In Section 3.1 we define four modification operations that manipulate schema
S = (U, F), namely Add,() to add a new attribute, Del,() to delete an exist-
ing attribute, Addg() to add an FD involving existing attributes, and Delg() to
remove an existing FD. Then, in Section 3.2 we show how a new version is cre-
ated by applying a sequence of schema modification operations, and we explain



420 Matteo Golfarelli et al.

ShippingCostsLIT
(Qt . . A .
yShipped ShippingCostsDM { ShippingCostsEU

Fig. 3. Schema graph S5

how augmented schemata are derived based on actions undertaken by the de-
signer. Finally, in Section 3.3 we consider schema versioning based on sequences
of versions, which influence the history of schemata and augmented schemata.

3.1 Schema Modification Operations

For each operation M(Z) (where M is Add, or Del, and Z is an attribute, or
M is Addr or Delr and Z is an FD), we define the new schema New(S, M (7))
obtained when applying M on current schema S.

Definition 2. Let S = (AA,F) be a schema graph and A be a fresh attributel.
Then New(S,Addy(A)) := (UU {4}, FU{E — A}).

Definition 3. Let S = (U

, F) be a schema graph and A € U be an attribute.
Then New(S,Dely(A)) := (U \

{A}a WU\{A} (F)i)-

Definition 4. Let S = (U,F) be a schema graph and f = A1 — Az be an FD
involving attributes in U. Then New(S,Addg(f)) := (U, (FU{f})7)

Definition 5. Let S = (U,F) be a schema graph and f = Ay — Ay be an
existing FD in F, where Ay # E. Then New(S,Delg(f)) := (U,(F\{f}U{E —
AQ}U{AI*}Ag | (E'AgGU) A2—>A3€F})7),

It is possible to prove that the four operators above are closed, i.e., they yield
schema graphs.

Ezxample 2. The sequence of operations applied to add Subcategory to parts is
Add,(Subcategory), Addg(Type — Subcategory), Addr(Subcategory — Category).

L A fresh attribute is an attribute that does not occur in S and never occurred in the
past.



Schema Versioning in Data Warehouses 421

3.2 Augmented Schemata

We call a version a schema that reflects the business requirements during a
given time interval. Thus, a version is populated with the events occurring dur-
ing that interval and can be queried by the user. A new version is the result of a
sequence of modification operations, which we call schema modification transac-
tion, or simply transaction. In analogy to the usual transaction concept, inter-
mediate results obtained after applying single schema modifications are invisible
for querying purposes. Moreover, intermediate schemata are neither populated
with events, nor are they associated with augmented schemata.

In temporal databases, versioning is generally associated with the definition
of some data migration strategies used to consistently move data from the old
version to the new one. Data migration is not described in this paper for space
reasons; we only briefly note that:

— Events occur at a particular moment in time, so an event occurring at time ¢
conforms to the version that is valid at ¢ and no data migration is necessary.
— Instances of hierarchies are generally active during time intervals (e.g., a
part is active from the time it is first shipped to the time it is declared
obsolete), so their lifetime may span several versions. Thus, if a new version
S is created at time ¢, for each hierarchy instance that is active both before
and after ¢ it may be necessary to migrate it to S. For instance, if S adds a
new FD f between already existing attributes, migration requires to check
if f holds for all active instances and possibly to enforce it by modifying,
under the user guidance, the values of one or both attributes involved in f.

A transaction produces (1) a new version and (2) an augmented schema for
each previous version, all of which are (either physically or virtually) populated
with data and are visible to the querying process. We emphasize that usage of
augmented schemata in the course of the querying process is handled transpar-
ently to the DW users, i.e., users are only aware of regular versions but not
of augmented schemata. Concerning (1), given a version S, let the sequence of
operations M1(Z1), ..., Mn(Zy) be the executed transaction. Then, the new ver-
sion S’ is defined by executing the modification operations one after another,
ie., S = New(Sk, Mn(Zy)), where S; = S and S; = New(S;—1, M;_1(Z;_1)) for
i =2,...,h. In the remainder of this section we address (2) by illustrating how
augmented schemata are created at the end of transactions to increase flexibility
in cross-version querying.

We anticipate that we only consider augmentations for previous versions and
in response to operations that add attributes or FDs: in fact, the utility of
augmenting the current version with deleted attributes/FDs seems highly ques-
tionable?. As motivated in Section 1.1, such schema extensions can be reflected

2 Designers can, of course, delete attributes and FDs from schema versions: the point
is that such deletions do not lead to augmentations. Besides, while in a “pure”
versioning approach attributes would be deleted only logically, for practical purposes
designers might want to delete data physically to free disk space.



422

Matteo Golfarelli et al.

Table 1. Actions associated to each new attribute/FD

Element Condition Action
(B AeF A is measure estimate values for A
N
A € Dit£y(S s A is dimension disaggregate measure values
a(S,
(E A) ¢ F A is derived measure compute values for A
N
A is property consistently add values for A
f € Diffr(S,S") - check if f holds

on previous versions by undertaking appropriate actions, which enable flexible
cross-version querying.

Let S' = (U' ' F") be the new version obtained by applying a transaction

to version S = (U, F), and let Diff,(S,S’) := U’ \ U (set of new attributes)
and Diffp(S,S") := F’ \ F* (set of new FDs). The set of potential actions that
may be undertaken by the designer on past data in order to increase querying
flexibility only depends on Diff,(S,S’) and Diffg(S,S"). The possible actions

are

reported in Table 1 and defined as follows:

Estimate values for A: A new measure A has been added. The designer may
provide values for A for past events, typically by deriving an estimate based
on the values of the other measures. For instance, if a new measure Discount
is added to the shipment fact, and the discount applied depends on the
shipped quantity bracket, its values for past events may be easily estimated
from measure QtyShipped.

Disaggregate measure values: A new dimension A has been added. The de-
signer may disaggregate past events by A according to some business rule or
by adopting a statistical interpolation approach that exploits multiple sum-
mary tables to deduce the correlation between measures [8]. For instance,
a likely reason for adding dimension ShipFrom is that, while in the past all
shipments were made from the same warehouse w, now they are occasion-
ally made from other warehouses: in this case, all past events can be easily
related to w.

Compute values for A: A derived measure A has been added (e.g. Shipping-
CostsEU); by definition, the values of A for past events can be computed by
applying some known computation to another measure.

. Consistently add values for A: A new property A has been added. The de-

signer may provide values for A in such a way that all specified FDs are
satisfied. For instance, when Subcategory is added to the part hierarchy,
then each part type must be associated with exactly one subcategory and
all types included in each subcategory must belong to the same category.

Check if f holds: A new FD f has been added. In order to augment f
on old version S the designer needs to check whether f also holds for S.
To support the designer, the system might perform the necessary (but not
sufficient) check that f really holds by inspecting the augmented instance.
For instance, when SaleDistrict — Nation is added, the system may check



Schema Versioning in Data Warehouses 423

that no sale district including customers from different nations exists. If the
check performed by the system fails, f cannot be augmented.

Among the potential actions according to Table 1, the designer may choose
to perform some of them but to ignore others: in particular, she will decide
to undertake a given action only if, considering the business requirements, she
believes that the space/time overhead implied by the action is counterbalanced
by the increased querying flexibility. Since only chosen actions contribute to
augmentation, the overall data volume increase is under the designer’s control.

Now, to formalize the notion of schema augmentation, consider a schema
modification transaction that starts from version S = (U' ,F) and creates the
new version § = (U’,F'). As explained in the next section, in the presence
of histories of versions, augmentations may be back-propagated even to older
versions. Thus, we assume that for every schema S; there is already an aug-
mented schema SZAUG, which is initially identical to .S; but may be augmented
in response to every transaction. To this end, we next define the augmenta-
tion operation Aug(SAUC, S, S") that (further) augments the augmented schema
SZAUG = (UZ, F;) based on the actions chosen by the designer in response to the
schema change from S to .

Let Diffy(S,5") and Diffs(S,S') be the subsets of Diffy(S,S’) and
Diffp(S,S’), respectively, including only the attributes and FDs whose related
actions have been performed by the designer. We note that all attributes occur-
ring in FDs of ]ff?F(S, S’} must be contained in U, U]ff?A(S, S’), as only those
FDs can be augmented whose attributes occur in the augmented schema. Then
the new augmented version for S; is defined as follows:

Aug(SV, S, §) = (U; UDIEE(S, S), (F Uy, sizmcs.s) (D1EER(S, 9)))7)

Informally, the new augmentation for S; is obtained by adding (1) all the new
attributes for which the related actions have been undertaken and (2) all the
new valid FDs.

Ezample 3. In the shipment example, initially we start from version Sy where
554UG = Sp. When new version Sy = (Uy, F1) is created from Sy, we have:

Diff,(So, S1) = {Subcategory}
Diffg(Sp, S1) = {SaleDistrict — Nation, Type — Subcategory,
Subcategory — Category}

Thus, the actions the designer can undertake to augment Sg‘UG are: (1) provide
values for Subcategory and (2) check if SaleDistrict — Nation holds on Sy. Assum-
ing the designer decides to undertake both actions, that the FD SaleDistrict —
Nation actually holds on Sy and that subcategory values are added consistently
with Fy, we have Dif£,(5,5") = Dif£,(S, ') and Diffp(S,S") = Diffe(S,S).
Thus, the new augmented schema for Sy is S§tV¢ = Aug(Sy, So, S1) = Si1.



424 Matteo Golfarelli et al.

3.3 Version Histories

A history is a sequence H of one or more triples representing versions of the
form (S, SAVC 1), where S is a version, SAUC is the related augmented schema,
and t is the start of the validity interval of S 3:

H= ( (5075(34UG7t0)7 SERE) (SnaS;?UGatn) )a

where n > 0 and t;_1 < t; for 1 < i < n. Note that, in every history, for the
last triple (S, S;?UG,tn) we have S;?UG = S, as augmentation only enriches
previous versions using knowledge of the current modifications.

Given version Sy created at time o, the initial history is H = ((So, S{\UV%, t0)),
where S§V¢ = Sy. Schema modifications then change histories as follows. Let
H = ((S0,S8YC t0),..., (Sn—1,S2Y% t,_1), (Sn,SAVY t,)) be a history, and
let S,,+1 be the new version at time t,11 > t,; then the resulting history H' is

H' = ((So,2ug(S5'Y, Sny Snt1),t0), - -
(Sna Aug(S;?UG7 S’m S7L+1)7 ﬁn)a (Sn-l-h S;?J[rJle tn-{-l) )

AUG ._
where S/ = Spqa.

We point out that a schema modification might potentially change any or all
augmented schemata contained in the history; e.g., adding a new FD at time n+
1, which has been valid but unknown throughout the history, may lead to a “back
propagation” of this FD into every augmented schema in the history. Moreover,
note that new augmentations of previous schemata are based on the augmented
schemata as recorded in the history, not on the schemata themselves. Thus,
augmentations resulting from different modifications are accumulated over time,
resulting in augmented schemata whose information content — hence, potential
for answering queries — is growing monotonically with every modification.

Ezxample 4. Consider again the two schema restructurings described in Sec-
tion 1.1, assuming that all actions are undertaken. The initial history
is ((So,S0,t0)). At time t;, when S; is created, the history becomes
((So, S1,t0), (S1,51,t1)). Then, at time t2, when Sy is created, the history be-
comes ((So,SQ,to), (Sl,Sg,tl), (SQ,SQ,ﬁl)).

4 Querying

In this section we discuss how our approach to versioning supports cross-version
queries, i.e., queries whose temporal horizon spans multiple versions.

3 In accordance with [9] we argue that there is no need to distinguish valid time from
transaction time in the context of schema versioning. Thus, if a new version S’ is
created from S at (transaction) time t’, the valid time of S’ is [t', +00], while the
valid time of S ends at t'. In other words, we assume that the valid time is defined as
an interval that starts upon schema creation time and extends until the next version
is created.



Schema Versioning in Data Warehouses 425

Preliminarily, we remark that OLAP sessions in DWs are aimed at effectively
supporting decisional processes, thus they are characterized by high dynamics
and interactivity. A session consists of a sequence of queries, where each query ¢
is transformed into the next one ¢’ by applying an OLAP operator. For instance,
starting from a query asking for the total quantity of parts of each type shipped
on each month, the user could be interested in analyzing in more detail a specific
type: thus, she could apply a drill-down operator to retrieve the total quantity of
each part of that type shipped on each month. Then, she could apply the roll-up
operator to measure how many items of each part were shipped on the different
years in order to catch a glimpse of the trend. Hence, since OLAP operators
mainly navigate the FDs expressed by the hierarchies in the multidimensional
schema, specifying the version for query formulation in the OLAP context does
not only mean declaring which attributes are available for formulating the next
query ¢’, but also representing the FDs among attributes in order to determine
how ¢’ can be obtained from the previous query gq.

In this sense, the formulation context for an OLAP query is well represented
by a schema graph. If the OLAP session spans a single version, the schema graph
is the associated one. Conversely, when multiple versions are involved, a schema
under which all data involved can be queried uniformly must be determined. In
our approach, such a schema is univocally determined by the temporal interval
T covered by the data to be analyzed, as the largest schema that retains its va-
lidity throughout 7. In particular, since T may span different versions, we define
an intersection operator, denoted by ®, for determining the common schema
between two different versions.

Definition 6. Let S = ({E}UU,F) and S = ({E} UU',F’). Then the in-
tersection of S and S’, denoted by S ® S’, is the schema defined as S ® S’ =
(EYU(UNU),(F*NF™)7).

Intuitively, the intersection between two versions S and S’ is the schema under
which data recorded under S or S’ can be queried uniformly: in fact, it includes
only the attributes belonging to both S and S’, as well as their common FDs.

Given a history H and a (not necessarily connected) temporal interval T,
we call the span of T on H the set Span(H,T) = {SAVY | (S;,SAVC ;) €
H A [ti,tiz1[NT # 0} (conventionally assuming ¢,+1 = +00).

Definition 7. Given a history H and a temporal interval T', the common schema
on H along T is defined as Com(H,T) = Qgpan(s, 1) SAUG

Let ¢ be the last query formulated, and T be the interval determined by
the predicates in ¢ on the temporal dimension (if no predicate is present then
T =]—00, +00[). The formulation context for the next query ¢’ is expressed by the
schema graph Com(H,T). Note that the OLAP operator applied to transform ¢
into ¢’ may entail changing T into a new interval T”; in this case, the formulation
context for getting a new query ¢” from ¢’ will be defined by Com(H,T").

Ezample 5. Let H = ((So, S8tV t0), (S1,S{*VE  t1), (S2, 95V, t3)) be the his-
tory for the shipment fact, recall that we have ¢; = 1/1/2003 and to = 1/1/2004,



426 Matteo Golfarelli et al.

A
i
(Subcatsgory)
.

s \
(shipFrom)

a~ R
(QtyShipped) [ShippingCostsDM}””’(\ShippingCostsEU )

Fig. 4. Formulation contexts for the query in Example 5 without augmentation (in
plain lines) and with augmentation (in plain and dashed lines)

and let ¢ = "Compute the total quantity of each part category shipped from each
warehouse to each customer nation since July 2002”. The temporal interval of ¢
is T = [7/1/2002, +o0], hence Span(H,T) = {So, S1,S2}. Fig. 4 shows the for-
mulation context, defined by S()“UG ® SAVE @ SAUC in two situations: when no
augmentation has been made, and when all possible augmentations have been
made. First of all, we observe that ¢ is well-formulated only if ShipFrom has been
augmented, since otherwise one of the required attributes does not belong to the
formulation context. Then we observe that, for instance, (1) drilling down from
Category to Subcategory will be possible only if subcategories and their relation-
ship with categories have been established also for 2002 data; (2) drilling down
from Nation to SaleDistrict will be possible only if the FD from sale districts to
nations has been verified to hold also before 2003.

As to the querying interface, we argue that two approaches for identifying
the version for querying, namely implicit and explicit, should be supported [10].
In this section we considered the implicit approach: given the time interval T" of
a query, the system computes the widest common schema associated to it. Con-
versely, in the explicit approach the user chooses a specific version for querying,
and the system calculates the widest time interval T that preserves that schema.
Obviously, the second approach is best suited for OLAP sessions that analyze
data under a specific configuration of attributes and FDs (e.g., “Compute the
total quantity shipped for each month and each subcategory since subcategories
have been introduced”).

5 Conclusions and Related Work

In this paper we have presented an approach towards DW schema versioning.
Based on the standard graph operations of transitive closure and reduction, we
have defined four intuitively appealing schema modification operations in the
context of graphical DW schemata. We have shown how single schema modifica-
tions lead to a history of versions that contain augmented schemata in addition



Schema Versioning in Data Warehouses 427

to “ordinary” schemata, and we have defined an intersection operator that al-
lows to determine whether a given query, possibly spanning several versions,
can be answered based on the information contained in augmented schemata.
With reference to the terminology introduced in [11] our approach is framed as
schema versioning since past schema definitions are retained so that all data
may be accessed both retrospectively and prospectively through user-definable
version interfaces; additionally, with reference to [12] we are dealing with partial
schema versioning as no retrospective update is allowed to final users.

In the DW field, mainly four approaches to evolution/versioning can be found
in the literature. In [13], the impact of evolution on the quality of the warehousing
process is discussed in general terms. In [14] a prototype supporting dimension
updates at both the extensional and intensional levels is presented. In [15], an
algebra of basic operators to support evolution of the conceptual schema of a
DW is proposed. In all these approaches, versioning is not supported and the
problem of querying multiple schema versions is not mentioned. Finally, [16]
proposes the COMET model to support schema evolution: though the problem
of queries spanning multiple schema versions is mentioned, the discussion of how
to map instances from one version to another is only outlined.

On the commercial side, the versioning problem has only marginally been
addressed, for instance in the Oracle Change Management Pack [17] and in
KALIDO [18]. In both cases, the possibility of formulating a single query on
multiple databases with different schemata is not even mentioned.

References

1. Eder, J., Koncilia, C.: Changes of dimension data in temporal data warehouses.
In: Proc. DaWaK. (2001) 284-293

2. Yang, J.: Temporal data warehousing. PhD thesis, Stanford University (2001)

3. Golfarelli, M., Maio, D., Rizzi, S.: The dimensional fact model: a conceptual model
for data warehouses. IJCIS 7 (1998) 215-247

4. Maier, D.: The theory of relational databases. Computer Science Press (1983)

5. Lechtenborger, J.: Computing Unique Canonical Covers for Simple FDs via Tran-
sitive Reduction. Technical report, Angewandte Mathematik und Informatik, Uni-
versity of Muenster, Germany. To appear on Information Processing Letters (2004)

6. Aho, A.V., Garey, M.R., Ullman, J.D.: The transitive reduction of a directed graph.
SIAM Journal on Computing 1 (1972) 131-137

7. Lechtenborger, J., Vossen, G.: Multidimensional normal forms for data warehouse
design. Information Systems 28 (2003) 415-434

8. Pourabbas, E., Shoshani, A.: Answering Joint Queries from Multiple Aggregate
OLAP Databases. In: Proc. 5th DaWaK, Prague (2003)

9. McKenzie, E., Snodgrass, R.: Schema evolution and the relational algebra. Infor-
mation Systems 15 (1990) 207-232

10. Roddick, J., Snodgrass, R.: Schema versioning. In: The TSQL2 Temporal Query
Language. Kluwer Academic Publishers (1995) 425-446

11. Jensen, C.S., Clifford, J., Elmasri, R., Gadia, S.K., Hayes, P.J., Jajodia, S.: A con-
sensus glossary of temporal database concepts. ACM SIGMOD Record 23 (1994)
52-64



428

12.

13.

14.

15.

16.

17.
18.

Matteo Golfarelli et al.

Roddick, J.: A survey of schema versioning issues for database systems. Information
and Software Technology 37 (1995) 383-393

Quix, C.: Repository Support for Data Warehouse Evolution. In: Proc. DMDW.
(1999)

Vaisman, A., Mendelzon, A., Ruaro, W., Cymerman, S.: Supporting dimension
updates in an OLAP server. In: Proc. CAiSE. (2002) 67-82

Blaschka, M.: FIESTA - A framework for schema evolution in multidimensional
databases. PhD thesis, Technische Universitat Munchen, Germany (2000)

Eder, J., Koncilia, C., Morzy, T.: The COMET Metamodel for temporal data
warehouses. In: Proc. CAIiSE. (2002) 83-99

Oracle: Oracle change management pack. Oracle Technical White Paper (2000)
Kalido: Kalido dynamic information warehouse - a technical overview. KALIDO
White Paper (2004)



