
1

A Genetic Approach to Hierarchical Clustering of Euclidean Graphs

Stefano Rizzi
DEIS - University of Bologna

Viale Risorgimento 2, 40136 Bologna, Italy
srizzi@deis.unibo.it

Abstract

In this paper we propose an encoding scheme and ad
hoc operators for a genetic approach to graph clustering.
Given a connected graph whose vertices correspond to
points within a Euclidean space and a fitness function, a
hierarchy of graphs in which each vertex corresponds to a
connected subgraph of the graph below is generated. Both
the number of clustering levels and the number of clusters
on each level are subject to optimization.

1. Introduction

Clustering has a key role, in different application
fields, in revealing hidden structures and extracting typical
prototypes from a data set. On the other hand, 'flat'
clustering gives no information about the structure
existing between clusters; hierarchical clustering addresses
this issue by grouping data into a tree structure, thus
building a multi-level representation capable of revealing
inter-cluster relationships [5].

In the field of autonomous mobile robots, hierarchical
clustering may be profitably used to emphasize the
structural and topological characteristics of the
environments. In particular, we consider an autonomous
robot moving in an environment where landmarks
corresponding to distinctive places and objects can be
detected by sensors. The environment is initially
unknown; the robot's mission is to acquire its description
during an exploration process. The map built by the robot
is structured as a graph of landmarks and routes; each
landmark is represented by a point within the plane.

Unlike classical pattern clustering, in map clustering
the pattern of connectivity between landmarks must be
taken into account; in fact, the robot should be enabled to
plan partial paths within clusters. Besides, the number of
levels in hierarchical clustering and the number of clusters
on each level are not defined a priori, hence, they must be
subject to optimization. These peculiar aspects make most
hierarchical approaches in the literature unsuitable for map
clustering [2] [3] [4] [9].

In [7] we have shown how map 'flat' clustering can be
carried out by optimizing directly, through a genetic
algorithm, a fitness function. In this paper we extend the

'flat' approach to the case of hierarchical clustering by
proposing an encoding scheme for chromosomes and ad
hoc genetic operators. The approach is general since,
given a graph in a Euclidean space and a fitness measure
defined on a hierarchy of graphs, both the encoding
scheme and the operators can be applied for clustering.

2. The graph clustering problem

Definition 1. Let G=(V,E) be a non-directed graph and
let a partitioning ξ={V 1,...Vm} of V be given; we call
clusters the m subgraphs C1,...Cm where Ci=(Vi,Ei) and Ei
is the set of the edges connecting vertices of Vi. We call
the bridge between C i  and C j  the set of the edges
connecting one vertex in C i  with one vertex in C j . A
clustering on G is defined as a partitioning ξ  in which
every cluster produced is a connected graph.

Definition 2. Given a graph G and a clustering ξ , we
call the image of G through ξ  the graph G* = (V*,E*)
whose vertices and edges are, respectively, the clusters and
the non-empty bridges induced by ξ.

Definition 3. A hierarchical clustering of height n is a
sequence of n clusterings, each applied to the image graph
generated by the preceding clustering, which produces a
hierarchy of n+1 graphs (including the original graph).

Let a non-directed connected graph G (0) and a
hierarchical clustering ξ(1),...ξ(n) be given. We call G(0)

the 0-graph, and the connected graph G(k) (k=1,...n),
image of G(k-1) through ξ (k), the k-graph. We call k-
vertices the vertices of the k-graph and k-edges its edges.
We will assume that the n-graph always contains exactly
one n-vertex, which corresponds to the whole (n−1)-graph.

Definition 4. Let each 0-vertex V(0) be associated to a
point in a d-dimensional Euclidean space, pos(V(0)),
which we call its position. We define the position of k-
vertex V(k), pos(V(k)), as the average of the positions of
the (k−1)-vertices it contains.

In the application of clustering to environment maps,
graph vertices are placed within the 2-dimensional space.
In [8] we outlined six requirements for 'flat' clustering of
maps to be used by autonomous agents. These
requirements were formalized by defining, for clustering
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ξ(k), a fitness measure f(ξ(k)) expressing the degree to
which ξ(k) meets the six requirements, ranging from 0 (no
adherence) to 1 (maximum adherence). The global fitness
g for a hierarchical clustering ξ of height n is defined as
the average of the fitnesses of the single levels.

3. Encoding scheme

Different alternatives for encoding the problem of
object partitioning have been proposed in the GA
literature [1] [6]. Map clustering is more difficult than
classic partitioning problems, since the connectivity
constraint makes most solutions unacceptable.

In [7] we proposed an encoding scheme for map 'flat'
clustering; each chromosome consisted of a permutation
of the vertices and a separator splitting the string in two.
Here we generalize this scheme to hierarchical clustering.

Let G(0) be a non-directed connected graph including λ
vertices. Each chromosome c is represented by a string of
length 2λ−1 in which the λ  characters in the odd
positions consist of a permutation of the first λ integers
while the λ−1 characters in the even positions are
separators. Each integer references a vertex in the map;
each separator can take value 0 or 1. Let n be the sum of
the values of the separators. The n separators set to 1
divide c into n+1 substrings; we denote with ck the string
of integers obtained by dropping all separators from the k-
th substring of c.

An example of chromosome (λ=10) is shown below
(separators are in boldface):

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0 1 4 0 8 1 5 0 7 0 1 0 2 0 6 0 9 0 3

In this case it is n=2 and c1=(0), c2=(4,8), c3=(5,7,1,2,6,
9,3).

Chromosome c maps into exactly one hierarchical
clustering, with height n, by means of a decoding
procedure which orderly builds each image graph starting
from the 1-graph and up to the n-graph. At the k-th step,
the k-graph is built by considering two strings: a k-seed,
obtained by orderly concatenating c1,...cn-k+1, and a k-
growth, cn-k+2; each character in the k-seed and the k-
growth represents a (k−1)-vertex built at the previous
step. First each (k−1)-vertex in the k-seed is used to
initialize a different k-vertex, and then the (k−1)-vertices
in the k-growth are progressively added to the k-vertices
created.

It is remarkable that, by adopting this decoding
technique, all the chromosomes represent a consistent
solution to the clustering problem. The number of k-
vertices is equal to the length of the k-seed, hence it is
determined by the position of the (n−k+1)-th separator.

Example. Consider the simple graph in Figure 1.a and
the chromosome shown above, encoding a hierarchical
clustering of height 2. The 1-seed and the 1-growth are
(0,4,8) and (5,7,1,2,6,9,3), respectively; the resulting
clustering is shown in Figure 1.a by drawing in grey the

0-edges belonging to 1-edges, while the corresponding
image graph is in Figure 1.b. The 2-seed and the 2-growth
are (0) and (4,8), respectively (each 1-vertex is denoted by
the 0-vertex which initialized it); the resulting clustering
features one 2-vertex.
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Figure 1. Hierarchical clustering on a
2-dimensional graph.

4. Selection

The selection operator builds a new population, Pnext,
using the chromosomes belonging to the previous one, P.
The size of the population, z, remains unchanged; the
chromosomes of Pnext are chosen randomly from P with
probability proportional to their fitness. Cloning the best
chromosome in P ensures that the best solution obtained
at the previous step is not lost.

5. Crossover

Reproduction is based on the crossover operator, which
is applied to pairs of chromosomes chosen randomly
(parents) and combines them to create new pairs with
similar features (offspring). The ad hoc crossover operator
we designed consists of three different elemental operators
which can be applied singularly or consequently.

5.1 Height-oriented crossover

This operator acts on the separators, aimed at producing
offspring chromosomes, a' and b', with heights equal to
the average of the heights of the parent chromosomes, a
and b.

Let na and nb be the heights of a and b, respectively. If
na=nb, the offspring chromosomes are identical to the
parents.

Conversely, let na>nb. The height for the offspring, n',
is (na+nb)/2 if it is even, otherwise, it is chosen randomly
between  (na+nb)/2  and  (na+nb)/2 . Offspring a' is
obtained by setting na−n' separators in a, chosen
randomly, to 0. Offspring b' is obtained by setting to 1
n'−nb separators in b, chosen randomly among those to
the left of the rightmost separator set to 1.
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Example. Consider the two chromosomes below,
encoding clustering of heights 3 and 2, respectively.

a 1 1 6 0 7 1 2 0 10 0 4 1 0 0 8 0 5 0 1 0 9 0 3
b 5 0 3 1 11 0 0 1 1 0 8 0 9 0 4 0 6 0 7 0 10 0 2

The offspring height n' is chosen randomly between 2 and
3. If n'=3, a' is identical to a and one separator is set to 1
in b; for instance:

a' 1 1 6 0 7 1 2 0 10 0 4 1 0 0 8 0 5 0 1 0 9 0 3
b' 5 1 3 1 11 0 0 1 1 0 8 0 9 0 4 0 6 0 7 0 10 0 2

5.2 Level-oriented crossover

This operator generates offspring chromosomes in
which, at each level, the number of clusters is the average
of those of the parents; the heights are left unchanged.
This is obtained by changing the positions of the
separators set to 1 without altering the sum of the
separators. After moving the separators, vertices are
redistributed within the n leftmost substrings.

Example. Consider the two chromosomes below,
encoding clustering of heights 3 and 2, respectively.

a 1 1 6 0 7 1 2 0 10 0 4 1 0 0 8 0 5 0 1 0 9 0 3
b 10 0 3 1 11 0 0 1 1 0 8 0 9 0 4 0 6 0 7 0 5 0 2

Chromosome a encodes 6, 3 and 1 clusters on the first,
second and third level, respectively; b encodes 4 clusters
on the first level and 2 clusters the second. The number of
clusters in the offspring chromosomes must be 5 on the
first level and 2.5 on the second (we choose 2 for a and 3
for b):

a' 1 1 6 1 7 0 2 0 10 1 4 0 0 0 8 0 5 0 1 0 9 0 3
b' 5 0 3 0 11 1 0 0 1 1 8 0 9 0 4 0 6 0 7 0 10 0 2

The vertices appearing within the leftmost n substrings of
a and/or b are then redistributed randomly:

a' 7 1 1 1 4 0 6 0 10 1 2 0 0 0 8 0 5 0 1 0 9 0 3
b' 1 0 2 0 7 1 3 0 10 1 8 0 9 0 4 0 6 0 11 0 5 0 0

5.3 Cluster-oriented crossover

This operator consists of a Partially Matched Crossover
[10] applied to cn+1; it changes the positions of vertices
without altering the values of the separators.

6. Mutation

Each chromosome generated by reproduction has a
given probability of mutation. The ad hoc mutation
operator we designed consists of three elemental operators
which can be applied singularly or consequently.

Height-oriented mutation increases or decreases by 1
the height of the chromosome by changing the value of a
separator chosen randomly.

Level-oriented mutation modifies the number of
clusters on a level by moving one of the separators set to
1, chosen randomly, one position backwards or forwards;
as a result, one vertex moves from the seed to the growth
or vice versa.

Cluster-oriented mutation works on cn+1 by
exchanging the vertices appearing in two random
positions. Since our decoding technique considers the order
in which vertices appear in the 0-growth, this operator
alters the structure of clusters.

7. Conclusion

In this work we have described a technique for
hierarchical clustering of a connected Euclidean graph.
With reference to the robotics application domain, Figure
2 shows the hierarchical clustering obtained on a sample
2-dimensional map. The clustering succeeds in
emphasizing the topological characteristics of the map and
produces clusters with regular shapes and homogeneous
cardinality.
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Figure 2. Hierarchical clustering on a sample 2-dimensional map: the 0-graph (top) and
the 1-graph (bottom); the 2-graph includes one vertex.


