THE DIMENSIONAL FACT MODEL:
A CONCEPTUAL MODEL FOR DATA WAREHOUSES 1

MATTEO GOLFARELLI, DARIO MAIO and STEFANO RIZZI
DEIS - Universita di Bologna, Viale Risorgimento 2, 40136 Bologna, ltaly
{mgolfarelli,dmaio,srizzi@deis.unibo.it

Data warehousing systems enable enterprise managers to acquire and integrate information from
heterogeneous sources and to query very large databases efficiently. Building a data warehouse
requires adopting design and implementation techniques completely different from those underlying
operational information systems. Though most scientific literature on the design of data warehouses
concerns their logical and physical models, an accurate conceptual design is the necessary foundation
for building a DW which is well-documented and fully satisfies requirements. In this paper we
formalize a graphical conceptual model for data warehouses, called Dimensional Fact model, and
propose a semi-automated methodology to build it from the pre-existing (conceptual or logical)
schemes describing the enterprise relational database. The representation of reality built using our
conceptual model consists of a set of fact schemes whose basic elements are facts, measures,
attributes, dimensions and hierarchies; other features which may be represented on fact schemes are
the additivity of fact attributes along dimensions, the optionality of dimension attributes and the
existence of non-dimension attributes. Compatible fact schemes may be overlapped in order to relate
and compare data for drill-across queries. Fact schemes should be integrated with information of the
conjectured workload, to be used as the input of logical and physical design phases; to this end, we
propose a simple language to denote data warehouse queries in terms of sets of fact instances.

Keywords Data warehouse, Conceptual models, Multidimensional data model, Entity-Relationship
model

1. Introduction

The database community is devoting increasing attention to the research themes
concerning data warehouses; in fact, the development of decision-support systems will
probably be one of the leading issues for the coming years. The enterprises, after having
invested a lot of time and resources to build huge and complex information systems, ask
for support in quickly obtaining summary information which may help managers in
planning and decision-making. Data warehousing systems address this issue by enabling
managers to acquire and integrate information from different sources and to query very
large databases efficiently.

The topic of data warehousing encompasses application tools, architectures,
information service and communication infrastructures to synthesize information useful
for decision-making from distributed heterogeneous operational data sources. This

1 This work was partially supported by the INTERDATA project from the Italian Ministry of University
and Scientific Research and by Olivetti Sanita.

information is brought together into a single repository, callddta warehouséDW),
suitable for direct querying and analysis and as a source for building Idgieamarts
oriented to specific areas of the enterptise.

While it is universally recognized that a DW leans on a multidimensional model, little
is said about how to carry out its conceptual design starting from the user requirements.
On the other hand, we argue that an accurate conceptual design is the necessary foundation
for building an information system which is both well-documented and fully satisfies
requirements. The Entity/Relationship (E/R) model is widespread in the enterprises as a
conceptual formalism to provide standard documentation for relational information
systems, and a great deal of effort has been made to use E/R schemes as the input for
designing non-relational databases as&yahfortunately, as argued in Ref. 17:

"Entity relation data models [...] cannot be understood by users and they cannot be
navigated usefully by DBMS software. Entity relation models cannot be used as the basis
for enterprise data warehouses."

In this paper we present a graphical conceptual model for DWs, illeghsional
Fact Model (DFM). The representation of reality built using the DFM is called
dimensional schemand consists of a set of fact schemes whose basic elements are facts,
dimensions and hierarchies. Compatible fact schemes may be overlapped in order to relate
and compare data. Fact schemes may be integrated with information of the conjectured
workload, expressed in terms of fact instance expressions denoting queries, to be used as
the input of a design phase whose output are the logical and physical schemes of the DW.
To this end, we propose a simple language to denote data warehouse queries in terms of
sets of fact instances.

Most information systems implemented in enterprises during the last decade are
relational, and in most cases their analysis documentation consists of E/R schemes. In
this paper we propose a semi-automated methodology to carry out conceptual modelling
starting from the pre-existing E/R schemes describing the operational information system.
In some cases, the E/R documentation held by the enterprise is incomplete or incorrect;
often, the only documentation available consists of logical relational schemes. Thus, we
show how our methodology can be applied starting from the database logical scheme.

After surveying the literature on DWs in Section 2, in Section 3 we describe the DFM
and introduce fact instance expressions as a formalism to denote DW queries. In Section 4,
the overlapping of related fact schemes is discussed. Section 5 describes a methodology for
deriving fact schemes from the schemes describing the operational database.

2. Background and literature on data warehousing

From a functional point of view, the data warehouse process consists of three phases:
extracting data from distributed operational sources; organizing and integrating data
consistently into the DW,; accessing the integrated data in an efficient and flexible fashion.
The first phase encompasses typical issues concerning distributed heterogeneous

information services, such as inconsistent data, incompatible data structures, data
granularity, etc. (for instance, see Ref. 23). The third phase requires capabilities of
aggregate navigatiéf optimization of complex querigsadvanced indexing techniqd@s

and friendly visual interface to be used for On-Line Analytical Processing (O{:A&)d

data mining®

As to the second phase, designing the DW requires techniques completely different
from those adopted for operational information systems. While most scientific literature
on the design of DWs focuses on specific issues such as materialization Gf\Aewd
index selectioh16 no significant effort has been made so far to develop a complete and
consistent design methodology. The apparent lack of interest in the issues related to
conceptual design can be explained as follows: (a) data warehousing was initially devised
within the industrial world, as a result of practical demands of users who typically do not
give predominant importance to conceptual issues; (b) logical and physical design have a
primary role in optimizing the system performances, which is the main goal in data
warehousing applications.

In Ref. 19, the author proposes an approach to the design of DWs based on a business
model of the enterprise which is actually a relational database scheme. Regretfully,
conceptual and logical design are mixed up; since logical design is necessarily targeted
towards a logical model (relational in this case), no unifying conceptual model of data is
devised. Ref. 1 and Ref. 14 propose two data models for multidimensional databases and
the related algebras. Both models are at the logical level, thus, they do not address
conceptual modelling issues such as the structure of attribute hierarchies and non-
additivity constraints. The approach to conceptual DW modeling presented in Ref. 4
shares several ideas with our early work on the #8pttiough it is mainly addressed
towards representing attribute hierarchies and neglects other conceptual issues such as
additivity and scheme overlapping.

The multidimensional model may be mapped on the logical level differently depending
on the underlying DBMS. If a DBMS directly supporting the multidimensional model is
used, fact attributes are typically represented as the cells of multidimensional arrays whose
indices are determined by key attriout€<On the other hand, in relational DBMSs the
multidimensional model of the DW is mapped in most cases through star sélemes
consisting of a set adimension tablesind a centralact table Dimension tables are
strongly denormalized and are used to select the facts of interest based on the user queries.
The fact table stores fact attributes; its key is defined by importing the keys of the
dimension tables.

Different versions of these base schemes have been proposed in order to improve the
overall performancéshandle the sparsity of ddPsand optimize the access to aggregated
datal® In particular, the efficiency issues raised by data warehousing have been dealt with
by means of new indexing techniques (see Ref. 22 for a survey), among which we
mention bitmap indice$?

3. The Dimensional Fact Model

Definition 1. Let g=(V,E) be a directed, acyclic and weakly connected graph. We
say g is guasi-treewith root in WV if each other vertex;i/V can be reached from

Vo through at least one directed path. We will denote withyfg)ig a directed path
starting in \¢ and ending in v given yUpathy(g), we will denote with patf{g)lg a
directed path starting inj\and ending in v We will denote with sub(g;}¥g the
quasi-tree rooted in#v.

Within a quasi-tree, two or more directed path may converge on the same vertex. A quasi-
tree in which the root is connected to each other vertex through exactly one path
degenerates into a directed tree.

A dimensional schemeonsists of a set dact schemesThe components of fact
schemes are facts, measures, dimensions and hierarchies. In the following an intuitive
description of these concepts is given; a formal definition of fact schemes can be found in
Definition 2.

A factis a focus of interest for the decision-making process; typically, it models an
event occurring in the enterprise world (e.g., sales and shipmémhégsuresare
continuously valued (typically numerical) attributes which describe the fact from different
points of view; for instance, each sale is measured by its rev@imensionsare discrete
attributes which determine the minimum granularity adopted to represent facts; typical
dimensions for the sale fact are product, store andldieterchiesare made up of discrete
dimension attributesinked by -to-one relationships, and determine how facts may be
aggregated and selected significantly for the decision-making process. The dimension in
which a hierarchy is rooted defines its finest aggregation granularity; the other dimension
attributes define progressively coarser granularities. A hierarchy on the product dimension
will probably include the dimension attributes product type, category, department,
department manager. Hierarchies may also inchwie-dimension attributesA non-
dimension attribute contains additional information about a dimension attribute of the
hierarchy, and is connected by a -to-one relationship (e.g., the department address); unlike
dimension attributes, it cannot be used for aggregation.

Some multidimensional models in the literature focus on treating dimensions and
measures symmetrically!4 This promises to be an important achievement from both the
point of view of the uniformity of the logical model and that of the flexibility of OLAP
operators. Nevertheless we claim that, at a conceptual level, distinguishing between
measures and dimensions is important since it allows the logical design to be more
specifically aimed at the efficiency required by data warehousing applications.

Definition 2. A fact scheme is a sextuple
f=(M,A,N,R, O, 9)

where:

* M s a set oimeasuresEach measure;mM is defined by a numeric or Boolean
expression which involves values acquired from the operational information
systems.

¢ Als a set oflimension attributesEach dimension attributg[# is characterized
by a discrete domain of values, Dogh(a

* N is a set ohon-dimension attributes

* Ris a set of ordered couples, each having the foyk) (where gA0{ag} and
gUADN (g#g), such that the graph qt{f)A0NDO{ag},R) is a quasi-tree with root
ap. & is a dummy attribute playing the role of tfeect on which the scheme is
centred. The couplej(g) models a -to-one relationship between attributesid

g.
We calldimension patterihe set Dim(f)$a;JA | ({agp,8)IR}; each element in
Dim(f) is adimension When we need to emphasize that an attribytes a

dimension, we will denote it ag.drhehierarchy on dimension @Dim(f) is the
guasi-tree rooted in,dsub(qt(f),q).

* ODR is a set obptionalrelationships. The domain of each dimension attribute a
such that1g,3)0O includes a null’ value.

+ Sis a set ohggregation statementeach consisting of a triple (nd, Q) where
m;OM, di0Dim(f) and QO{'SUM','AVG','COUNT','MIN',MAX','”AND','OR",...}
(aggregation operatqr Statement (jnd;, Q)US declares that measurg can be
aggregated along dimension loy means of the grouping operat@r If no
aggregation statement exists for a given pajr ¢y then m cannot be aggregated
at all along d

In the following we will discuss the graphic representation of the concepts introduced
above with reference to the fact sche®%LE shown in Figure 1, which describes the
sales in a chain store. This scheme, as well asNRENTORYand theSHIPMENT
schemes proposed in Section 4, are based on the star schemes reported in Ref. 17.

In the DFM, a fact scheme is structured as a quasi-tree whose root is a fact. A fact is
represented by a box which reports the fact name and, typically, one or more measures. In
the sale schemeguantity soldrevenueandno. of customerare measures.

Dimension attributes are represented by circles. Each dimension attribute directly
attached to the fact is a dimension. The dimension pattern of the sale schelaggis {
product storg promotior}. Non-dimension attributes are always terminal within the
guasi-tree, and are represented by lines (for instaddegss.

Subtrees rooted in dimensions drierarchies The arc connecting two attributes
represents a -to-one relationship between them (for instance, there is a many-to-one
relationship betweegity andcounty); thus, every directed path within one hierarchy
necessarily represents a -to-one relationship between the starting and the ending attributes.
We denote withoi.g the value of adetermined by valua;[JDom(g) assumed by;&for
instanceVenice .statedenotedtaly); by conventiong;.g=q;.

manager

dimension i
attribute productO—+—odiet

day of week. -~ fact sales manager

Seaso& holiday 7 ¥ sale district
r\o\ : SALE St‘”/oo\—#

O O O O O
year quarter month date '\ |qty sold city county sfate
/‘\ revenu
_ no. of customers haddress
aggregation i phone
non-dimension
dimension\> measure attribute

promotion
beqin da
end dat price reduction

ad type

cost

Fig. 1. TheSALEfact scheme. Arrows are placed by convention only on the attributes where two or more
paths converge.

The fact scheme may not be a tree: in fact, two or more distinct paths may connect
two given dimension attributes within a hierarchy, provided that every directed path still
represents a -to-one relationship. Consider for instance the hierarchy on dinstmston
states are partitioned into counties and sale districts, and no relationship exists between
them; nevertheless, a store belongs to the same state whichever of the two paths is
followed (i.e.,store determinesstatg. Thus, notatiornj.g explained above is still not
ambiguous even if two or more paths conngdiba. On the other hand, consider
attribute city on theproduct dimension, which represents the city where a brand is
manufactured. In this case the tweity attributes have different semantics and must be
represented separately; in fact, a product manufactured in a city can be sold in stores of
other cities.

Optional relationships between pairs of attributes are represented by marking with a
dash the corresponding arc. For instance, attriblige¢ takes a value only for food
products; for the other products, it will take a conventional null value.

A measure is additive on a dimension if its values can be aggregated along the
corresponding hierarchy by the sum operator. Since this is the most frequent case, in order
to simplify the graphic notation in the DFM, only the exceptions are represented
explicitly. In particular, given measurg and dimension;d

1. 1f (m;, d, 'SUM')JS (m is not additive along;Jl mj and d are connected by a dashed
line labelled with all aggregation operatd@s(if any) such that (md, Q)OS (for
instance, see Figures 1 and 5).
2. If (mj, d, 'SUM')IS (m is additive along it
2.1 fO0Q#SUM' | (m, d, Q)OS (only sum can be used for aggregation)and d
are not graphically connected.

2.2 Otherwise (other operators can be used besides the suany ghare connected
by a dashed line labelled with the symbol '+' followed by all the other operators
Q#'SUM' such that (m d, Q)0S.

Additivity will be discussed in more detail in Subsection 3.3.

3.1. Fact instances

Given a fact scheme f, each n-tuple of values taken from the domains of the n dimensions
of f defines an elemental cell where one unit of information for the DW can be
represented. We cgbrimary fact instanceshe units of information present within the

DW, each characterized by exactly one value for each measure. We will denote with
pf(aq,...0,) the primary fact instance corresponding to the combination of values
(aq,..apdDom(dy)x...xDom(d,). In the sale scheme, each primary instance describes the
sales of one product during one day in one store adopting one promotion (‘'no promotion'
should be considered as a particular case of promation).

Not every possible combination of values necessarily originates a primary fact
instance. For instance, in the sale scheme, a missing primary fact instance denotes that a
product was not on sale on a given day in a given stolegssumptio)y this is different
from having a primary fact instance wigty=0, which denotes that the product remained
unsold. Alternatively, it might be reasonable to assume that all products are always on
sale, hence, that a missing primary fact instance denotes that the product remained unsold
(zero assumptign Some issues related to these two different interpretations will be
discussed in Subsection 3.3.

Since analysing data at the maximum level of detail is often overwhelming, it may be
useful to aggregate primary fact instances at different levels of abstraction, each
corresponding to an aggregation pattern; if a given dimension is not interesting for the
current analysis, aggregation is carried out over all the possible values that dimension can
assume. In the OLAP terminology, this operation is calbdeup.

Definition 3. Given a fact scheme f with n dimensions, a v-dimensional
aggregation patterrfO<v) is a set P={g...g,} where:

1. di=1,...v (a0A);

2. P£Dim(f);

3. Og0P [Mg0P, a#g | gtsub(qt(f),d) (i.e., no directed path exists between each
pair of attributes in P).

A dimension ¢IDim(f) is said to behiddenwithin P if no attribute of its hierarchy
sub(qt(f),d) appears within P. An aggregation pattern Regal with reference to
measure M if

0 de | 0 (my, d, Q)OS dOP

Examples of aggregation patterns in the sale scheme paoddctcountymonth
promotior}, { statedatd (productandpromotionare hidden), Year,seasoh (two attributes

are taken from dimensiatate), {} (all dimensions are hidden). Patterbrfndmontlj is
illegal with reference tmo. of customersince the latter cannot be aggregated along the
product hierarchy.

Let P={&,...8,} be an aggregation pattern, ang-dlenote the dimension whose
hierarchy includeslP. Thesecondary fact instance(34,...8,) corresponding to the
combination of valued3,...3y,)0Dom(a)x...xDom(a,) aggregates the set of primary fact
instances

{pf(ay,..ay) | OkO{1,...n} axODom(d) 0 OhO{1,...v} an+.an=Ppt

and is characterized by exactly one value for each measure for which P is legal, calculated
by applying an aggregation operator to the values that measure assumes within the
primary fact instances aggregated (see Subsection 3.3).

Figure 2.a shows a primary fact instance on the sale scheme. Figure 2.b shows the
primary fact instances corresponding to the secondary fact instance describing the sales of
products of a given category during one day in a city; measuref customers not
reported since it cannot be aggregated along the product dimension.

gty sold = ...
revenue = ...

no. of customers = ...

qty sold =X...
revenue =...
categor
a, cL y
Aate p‘od\)

(b)

Fig. 2. A primary (a) and a secondary (b) fact istance foSthieE scheme (dimensiopromotionis omitted
for clarity).

In the following, we will use sometimes the tepattern to denote either the
dimension pattern or an aggregation pattern.

3.2. Representing queries on the dimensional scheme

In general, querying an information system means linking different concepts through user-
defined paths in order to retrieve some data of interest; in particular, for relational
databases this is done by formulating a set of joins to connect relation schemes. On the
other hand, a substantial amount of queries on DWs are aimed at extracting summary data
to fill structured reports to be analysed for decisional or statistical purposes. Thus, within
our framework, a typical DW query can be represented by the set of fact instances, at any
aggregation level, whose measure values are to be retrieved.

In this subsection we discuss how sets of fact instances can be denoted byfaetiting
instance expression$he simple language we propose is aimed at defining, with reference
to a dimensional scheme, the queries forming the expected workload for the DW, to be
used for logical design; thus, it focuses on which data must be retrieved and at which level
they must be consolidated.

A fact instance expression has the general form:

<fact instance expression:= fact name (<pattern clause ; <selection clause)
<pattern clause ::= comma-list of pattern elements

<pattern elements::= <dimension nanme| <dimension nanmre<attribute name
<selection clause ::= comma-list of gredicate

The pattern clause describes a pattern. The selection clause contains a set of Boolean
predicates which may either select a subset of the aggregated fact instances or affect the
way fact instances are aggregated. If an attribute involved either in a pattern clause or in a
selection clause is not a dimension, it should be referenced by prefixing its dimension
name.

The value(s) assumed by a measure within the fact instance(s) described by a fact
instance expression is(are) denoted as follows:

<measure values::= <fact instance expressiprxmeasure

Given a fact scheme f having n dimensions..dd,, consider the fact instance
expression

f(dp, .. Ch e ; €1(by), - an(by) &)

where we have assumed, without loss of generality, that:

* The first p pattern elements involve a dimension and the othprimvolve a
dimension attribute &p=<v).

» Each Boolean predicatg §=1,...h, z0) involves one attributeijtbelonging to the
hierarchy rooted ini]d, which may also be hidden.

If p=v=n (i.e., the pattern clause describes the dimension pattern), expression (1)
denotes the set of primary fact instances

{ pf(aq,...an) | OkO{1,...n} axODom(d) O 0Oj0{1,...h} ej(aij*.bij)}

For instance, the expression
SALHdate product storg promotion; dateyear-="1995'product'P5"gtySold

denotes the quantities of product P5 sold in each store, with each promotion, during each
day since 1995.

Otherwise (p<v and/or at least one dimension is hidden), let P be the aggregation
pattern described by the pattern clause. I;]ehebthe attribute involved by;ave say gis
externalif Daij*DP | alj*[]pat}‘bij(qt(f)), internal otherwise (see Figure 3). External
predicates restrict the set of secondary fact instances to be returned, while internal
predicates determine which primary fact instances will form each secondary fact instance.
Let g,... and ¢1,...6, be, respectively, the external and the internal predicateshy)
in this case, expression (1) denotes the set of secondary fact instances

{ sf(B4,..Byv) | OkO{1,...v} BODom(a) O OjO{1,...r} ej(Bij*-bi,-)}

where each $,..3y) aggregates the set of primary fact instances

{pf(aq,..apn) | OkO{1,...n} axODom(d,) O OhO{1,...v} Op*.an=Pn
O0jH{r+1,...h} ej(orij*.bij)}

b,

D

2

Fig. 3. Representation of a fact instance expression on qt(f): black circles represent the attributes in the
aggregation pattern, crosses mark the attributes on which selection predicates are defined. The predicates on
b, and b are internal; that ongds external.

S
C

Consider, for instance, the two expressions

SALHEdatemonth producttype; datemonth="JAN98', productcategory="food") gtySold
SALHEdatemonth producttype; datemonth='JAN98',productbrand='General' gtySold

which denote, respectively, the total sales of each type of products of category 'food' for
January 1998 (Figure 4.a) and the total sales of each type of products of brand 'General’ for
January 1998 (Figure 4.b). The predicatesnamthand oncategoryare external, whereas

that onbrand is internal. With reference to the sample set of data in Table I, and
considering thatgtySoldis additive on all the dimensions, the results of the two
expressions are shown in Table II.

qty snld =5
revi gty sold =Z...
e\ gty sold =X...
] re\ gty sold =%...
revenue =...

qty sold =>....

re\ gty sold =2...

rey gty sold =%...
revenue =...

RN |
AT

TSP+

<
A
8
»

| Cr p
P
§ g OdUC[3
@ =1 o
€ T =
= [=
S > &
— zZ >
o © Z
S ® ©
a ®©

(a) (b)

Fig. 4. Sales of the three types of products of category 'food' (a) and sales of all four types of products but
including only the products of brand ‘General’ (b).

product brand type category month gtySold
GD General soft drink | food JAN9S 100
BB Best biscuits food JAN9S 200
GB General biscuits food JAN9S 50
BS Best shirt clothing JAN9S 100
GS General shirt clothing JAN9S 50
BT Best tie clothing JAN9S 20
Table I. A sample set of data for products.
type month qtySold type month gtySold
soft drink JAN98 100 soft drink JAN98 100
biscuits JAN98 250 biscuits JAN98 50
shirt JAN98 50

Table Il. Results of two expressions.

A significant amount of DW queries require consolidating data on multiple levels of
abstraction; this queries can be expressed in our language as the union of two or more sets
of fact instances. For instance, the query requiring the sales of products of brand 'General’
for each month, showing also the subtotals for each year and the total, can be expressed as
follows:

SALKdatemonth product; productbrand='General’qtySold
0 SALEdateyear, product; productbrand="GeneraljtySold
0 SALHEproduct; productbrand="GeneralgtySold

3.3. Additivity

Aggregation requires defining a proper operator to compose the measure values
characterizing primary fact instances into measure values characterizing each secondary fact
instance.

Definition 4. Given a fact scheme f, measurgi is said to beaggregableon
dimension gUDim(f) if C(m;, d, Q)0S, non-aggregabletherwise. Measure js
said to beadditiveon d if [{m;, dy, 'SUM')TS, non-additiveotherwise.

As a guideline, most measures in a fact scheme should be additive. An example of
additive measure in the sale schemgtyssold the quantity sold for a given sales manager
is the sum of the quantities sold for all the stores managed by that sales manager.

A measure may beon-additiveon one or more dimensions. Examples of this are all
the measures expressing a level, such as an inventory level, a temperature, etc. An
inventory level is non-additive on time, but it is additive on the other dimensions. A
temperature measure is non-additive on all the dimensions, since adding up two
temperatures hardly makes sense. However, this kind of non-additive measures can still be
aggregated by using operators such as average, maximum, minimum; Figure 5 shows an
example where both operators AVG and MIN can be used for aggregation; mgigsure
expresses, for each product, the number of copies present within each warehouse during
each week.

category

brand
units per pallet

product
address
seaso
Vf\‘ INVENTORY /
O O O< O O- O
year month week~- - { aty warehouse city state
AVG,
MIN

Fig. 5. The INVENTORY fact scheme.

For other measures, aggregation is inherently impossible for conceptual reasons.
Consider the measureumber of customeris the sale example, estimated for a given
product, day and store by counting the number of purchase tickets for that product printed
on that day in that store. Since the same ticket may include other products, adding or
averaging the number of customers for two or more products would lead to an inconsistent
result. Thusnumber of custometis non-aggregable on the product dimension (while it
is additive on the time and the stores dimensions). In this case, the reason for non-
aggregability is that the relationship between purchase tickets and products is many-to-
many instead of many-to-one: measumember of customersannot be consistently

aggregated on the product dimension, whatever operator is used, unless the grain of fact
instances is made finer. Ifjnis non-aggregable ongdany aggregation pattern not
including d is illegal with reference to jm

Given a measure jnaggregable onidby operatorQ and the aggregation pattern
P={d,...,d-1,a,dk+1,..-ch}, which includes all the dimensions except which is
represented by any other dimension attribyteedonging to its hierarchy, the value of m
may be computed for each secondary fact instance at pattern P as:

f(dy,...&---th ; 01=03,...8=0,...ch=ap).m; =
= Q f(dy,...d,...ch ; d1=qy,...0k=B,...Ch=0).M;
BODom(dy)|B.ac=0k

for eachaODom(g,), a;d0Dom(d) (i=1,...n; #k). Similarly, if d. is hidden within P, it
is:

f(dl,...q<_1,dk+1,...d1 ; dlzal,...%:an).mj =
= Q f(dyOe...th; dy=ay,...d=P,...ch=ap).m
BODom(dk)

In the following these formulae are explained with an example. Let the primary fact
instances for thtNVENTOR Yfact scheme be those represented in Table Ill. The matrix
reports the values of measwyty, dimensiorwarehousds not considered for simplicity.

A missing primary fact instance denotes that a product was not in the catalogue on a
given week. The secondary fact instances at pattevasitype and {week are shown

in Table IV. Sincegty is additive alongroduct the quantity for each product type for
each week is the sum of the quantities for the products of that type for that week; the total
quantity for each week is the sum of all quantities for that week. The secondary fact
instances at patternsnpnth product and {product are shown in Table V; they are
calculated using the average function to aggregfgtalongweek

type T1 T2
product| P1 P2 P3| P4 P5
month week
jan9s | 1-98 10 50 35 15 -
2-98 10 60 30 15 20
3-98 8 60 30 15 20
4-98 8 40 25 15 30
5-98 12 40 20 15 20
feb98 | 6-98 12 40 20 15 20
7-98 9 3 20 15 10
8-98 9 5 20 5 10
9-98 7 5 3 5 5

Table IIl. Primary fact instances for a given warehouse (symbol '-* denotes a missing fact instance).

typel TL T2 |

month week

jan98 | 1-98 95 15 110
2-98 100 35 135
3-98 98 35 133
4-98 73 45 118
5-98 72 35 107

feb98 | 6-98 72 35 107
7-98 64 25 89
8-98 84 15 99
9-98 97 10 107

Table IV. Secondary fact instances at pattemedktype} (left) and {week (right).

type Tl T2

product| P1 P2 P3| P4 PS5
month
jan98 9.60 50.00 28.00 15.00 18.$0
feb98 9.25 46.25 23.75 10.00 11.25

[9.44 48.33 26.11 12.78 15.00

Table V. Secondary fact instances at pattemer{thproduc} (top) and {product (bottom).

As a matter of fact, when using for instance pattevadl}, secondary fact instances
could be more conveniently computed by aggregating the secondary fact instances at
pattern {veek type instead of aggregating the primary fact instances. As pointed out in
Ref. 11, this can be done efficiently only for distributive and algebraic functions: SUM,
MIN, MAX, COUNT, AND, OR fall within the first category, AVG within the second.
These optimization issues, which in Ref. 21 are discussed also for complex aggregation
queries, fall outside the scope of this paper.

When aggregating instances along two or more dimensions at the same time, it is
necessary to declare in which order dimensions are to be considered aheQ" be the
operators used to aggregatg afong d and @ respectively, and P=faa} be the
aggregation pattern to be computed, wheraral a belong to the hierarchies defined on
d; and ¢, respectively. In order to compute the values gfanP, two different
aggregation sequences can be adopted:

ad} < fardy far.a)
103 2 {dya @ faya0

In general, the outcome depends on which sequence is adopted unless one of the following
situations occurs:

« Q'=Q" O{'SUM','MIN''MAX','”AND','OR};
o QU{'SUM,AVG'} and Q" = 'AVG' (or vice versa) and the zero assumption is made
(missing fact instances denote products out of stock).

The restrictions applied when the average operator is involved arise since, when the null
assumption is made, the subsets on which average operates may not have the same
cardinality.

Table VI shows, with reference to the inventory example, the secondary fact instances
at patterns gnonth typd, { montf}, { typg and {} when the zero assumption is made. It is
easy to verify that, if the null assumption were made instead, or if function MIN were
used to aggregatgy alongweek applying the two aggregation sequences

{week produc} Sl_{M {week type& MlN {month typg or

MIN SUM

{weekproduct " " {month product =~ {month typg

would lead to different results.

type TL T2 |

month
87.60 33.00 120.40
febo8 79.25 21.25 100.50
[83.89 27.74 [111.97

Table VI. Secondary fact instances at pattem®fthtype (top left), {month} (top right), {type (bottom
left), {} (bottom right).

In order to give non ambiguous semantics to aggregation we suggest that, for each
fact scheme, a preferred aggregation sequence is declared by specifying an ordering for
dimensions. In the inventory scheme, we believe that the most suitable ordering is
(product warehouseweel (or, indifferently, (varehouseproduct weeR).

It should be noted that the COUNT operator behaves differently from the others.
Firstly, it counts the number of primary fact instances within each secondary fact
instance, hence, it does not operate on any measure. Furthermore, it is not obvious how
counting on a given dimension can be combined with other operators working on the
other dimensions. For this reason, we recommend using COUNT on all the dimensions
contemporarily.

3.4. Empty facts

A fact scheme is said to leenptyif it has no measures (M. In this case, primary fact
instances only record the occurrence of events. Consider for instance, within the university
domain, the fact scheme shown in Figure 6. In this case, each fact instance states that a
given student attended a given course during a given year; no measure is used to further
describe this fact.

sex

nationality
student
area
1
year \ ATTENDANCE| ourse
O— 1
SN --c faculty
COUNT COUNT

Fig. 6. The ATTENDANCE fact scheme.

In an empty fact scheme, two approaches to the problem of aggregation can be
pursued. In the first approach, which requires using either the AND or the OR operators,
the information carried by each secondary fact instance is related to the existence of the
corresponding primary fact instances. In order to explain this concept, we may suppose
that the fact is described by an implicit Boolean measure, which is true if the event
occurred and false otherwise: in this case, both operators AND and OR can be used for
aggregation, with universal and existential semantics, respectively. For instance:

ATTENDANCHcourse.areastudent,
year="1998' coursearea='Databasestoursefaculty="Computer Science’)

may denote either the students who during 98 attended all the database courses in the
Computer Science Faculty (AND operator), or the students who during 98 attended at least
one database course in the Computer Science Faculty (OR operator).

In the second approach, which requires using the COUNT operator, the information
carried by each secondary fact instance is the number of corresponding primary fact
instances. Equivalently, one may suppose that the fact is described by an implicit integer
measure, which has value 1 if the event occurred and 0 otherwise, and aggregate fact
instances by the SUM operator. For instance:

ATTENDANCIHKcourse studenssex; year='1998',coursefaculty="Computer Science")

denotes, for each course in the Computer Science Faculty, the number of students of each
sex who attended the course.

Empty fact schemes correspond, on the logical levé§aitess fact tabledypically
used for event tracking or as coverage tables.

4. Overlapping fact schemes

In the DFM, different facts are represented in different fact schemes. However, part of the
queries the user formulates on the DW may require comparing measures taken from
distinct, though related, schemes; in the OLAP terminology, these are awalllextross
queries. In this section we define the rules for combining two related fact schemes into a
new scheme; since the same attributenay appear within different fact schemes,

possibly with different domains, we will denote with Dda) the domain of jawithin
scheme f.

Definition 5. Two fact schemes f'=(M' A'N',R'0"'S') and
f'=(M",A",N",R",0",S") are said to becompatibleif they share at least one
dimension attribute: AA"#0. Attribute a is considered to be common to f' and f
if, within ' and ", it has the same semantics and if P@Hn Doy (g)=0.

Definition 6. Given a quasi-tree t=(V{ag},E) with root &, and a subset of
vertices OV, we define theontractionof t on | as the quasi-tree cnt(t,)8fag},E*)
where

E* ={(ai,a) | allT{ag} U gl Opath;(t) U Ual—{aj,a} akpathy (1)}

The arcs of cnt(t,l) are the directed paths which, inside t, connect pairs of vertices of |
without including other vertices of I.

A quasi-tree can be contracted on a given set of vertices by applying an appropriate
sequence of arc contractions, i.e., a sequence in which each step replaces two consecutive
vertices gand @by a single vertex;adjacent to those vertices that were previously
adjacent to jor g. Figure 7 shows a quasi-tree and its contraction on a subset of the
vertices.

9 10 11 9 10
(a) (b)

Fig. 7. A quasi-tree (a) and its contraction on the black vertices (b). The grey vertex is the root.

Definition 7. Let two compatible fact schemes f'=(M'A'N,R',0",S") and
f'=(M",A",N",R",0",S") be given, and let I=AYA". Schemes f' and f" are said to be
strictly compatiblaf cnt(qt(f),1) and cnt(qt(f"),) are equal

Two compatible schemes f' and f* may be overlapped to create a resulting scheme f; if
the compatibility is strict, the inter-attribute dependencies in the two schemes are not
conflicting and f may be intuitively described as follows:

2 Actually, the semantics of the root and of the arcs exiting the root may be different in the two quasi-
trees, since the corresponding facts may express different concepts. Nevertheless, since in this definition and
in the following ones we are interested in facts only from a topological point of view (their connections with
the attributes), for notational simplicity we will denote with the same dummy symiathe roots of both

guasi-trees.

manager

epartment
category
weight JO'type
package siz brand

invoice number Product ~+—odiet

order dat address corporate
seaso customer
SHIPMENT

O O O
shipto city state

:

ygar quarter month date qty shipped .
_____ ship from

T - address
‘ contact person
ship mod deal
type o/r\)

carrier terms

allowance . .
e~ incentive
address

seaso
month | SHIPMENT
0
year Y INVENTORY
\
Y aty srllppedt
- - -| inventory qty
AVG, . |
MIN

(b)
Fig. 8. TheSHIPMENTscheme (a) and its overlap witiVENTORY(b).

The measures in f are the union of those in f' and f*. Thus, the fact on which f is

centred may be considered as a sort of "macro-fact" embracing both ' and f".

Each hierarchy in f includes all and only the attributes included in the corresponding
hierarchies of both f' and f'. The functional dependencies expressed by the inter-

attribute links in ' and " are preserved.

The domain of each dimension attribute in f is the intersection of the domains of the

corresponding attributes in f* and f".

« An inter-attribute link in f is optional if at least one of the links in the corresponding
paths in f' or f* is optional.
» Aggregation statements of f' and f* are preserved in f.

Formally:

Definition 8. Given two strictly compatible schemes f' and ', we define the
overlapof f' and f* as the schemé&if'=(M,A,N,R,O,S) where:

M = M'OM"
A=ANA"
OgUA (Domepe(g) = Doy (g)n Do (&)
N =NnN"

R={(&.3) | (a.g)Uent(qt(f).A)} = {(a,3) | (a.)Uent(qt("),A)}

O = {(@g)UR | Haw,a) 0" | (av,a) Lpath;(qt(f)) U Haw,a)LO" |
(@wa) Cpathy (i)}

S = {(m;,d,,Q) | dODImM(f Of") O (XM, tk, Q)0S' O diOsub(at(f'),4) O
(C(m;, 0k, Q)0S" O i Osub(at(f"),)}

Figure 8 shows the overlapping between the two strictly compatible schemes
INVENTORYandSHIPMENT which share the time and the product dimensions. The
scheme resulting from overlapping can be used, for instance, to compare the quantities
shipped and stored for each product.

As a matter of fact, overlapping may be extended by considering more accurately the
information expressed by the hierarchies in the two source schemes. Consider for instance
theINVENTORYandSHIPMENTschemes, which include two compatible hierarchies on
dimensionsweekanddate respectively. Based on Definition 8, their overlap should
include only attributesnonth year andseason Attribute date cannot definitely be
included, since in thtNVENTORYscheme it is impossible to disaggregate the primary
fact instances at the date level. On the other hgumakter could be included: in fact, the
months represented in the overlap are those represented in both the source schemes, and
for each month the quarter is known fr&HIPMENT

Even two non-strictly compatible schemes can be overlapped; since in this case the
two contracted quasi-trees are different, there must be one or more conflicts in the inter-
attribute dependencies in the two schemes. The resulting scheme is defined as in the case
of strict compatibility, except that each conflict is solved by representing an inter-attribute
dependency which subsumes both conflicting dependencies. Consider the example in
Figure 9, where two non-strictly compatible fact schemes (a) and (b) are shown. The
dependencies expressed by the two quasi-trees are as follows:

@ (b)
root - 1,2,3 root- 1,2
2.4 2.5
4.5 5.4
1-3

The common elemental dependencies (namely, ko@{2) are directly represented within

the resulting scheme (c). The conflicts are solved by considering the transitive closure of
the two sets of dependencies; thus, for instance, vertex 5 is positioned in (c) as a child of

2 since, in both (a) and (b), the dependency 2 holds.

5 4
(a) () (©)

Fig. 9. Overlapping (c) of two non-strictly compatible fact schemes (a) (b).

Definition 9. Given two non-strictly compatible schemes f' and ", we define the
overlapof f' and f* as the schemé&if'=(M,A,N,R,0,S) where

M =M'TOM"

A=ANA"

UaUA (Domyps (&) = Doy (g)nDony-(&))

N =NnN"

R ={(a,g) | tojj(cnt(qt(f),A)) O Ly (ent(qt(f’),A)) U Dawza | Cowj(ent(at(f),A))
O Dpwj(ent(at(f),A))) (pj(ent(gt(f),A)Cpwi(ent(qt(f),A))
U pjj (ent(at(™),A) Dpwj(ent(at(™),A)))}

0 ={(5,3)[R | (aw,a) U0’ | (av.a)Upathj(qt(f))) U
(Haw,a) 0" | (av.apUpathy (at(f)))}

S ={(m;,d;,<op>) | gLDIM(f'0f") O (C(m;,dk,<op>)JS' 0 diUsub(qt(f),q)) U
(X, d, <op>)Y1S" 0 d;Osub(qt(f"),d))}

Queries formulated on the overlap of two schemes are actually formulated on one or
both the source schemes, depending on which measures are involved in the query. In
general, let g=f(P,<sel>) be a query formulated on the overlapped fact scheme

f=f,0...0f,. From the conceptual point of view, q is equivalent to m quekiesg,
where ¢=f;(P;<sel>,d0Donx(dy),... d,CDom(dy)) and d,...d, are the dimensions of f. An
example of query formulated on an overlap is:

SHIPMENTJINVENTORYmonthproduct;
monthyear="1997"inventoryQty-qtyShipped

5. Conceptual design from relational schemes

The methodology we outline in this section to build a DF model starting from the
documentation describing the operational relational database consists of the following
steps:

1. Defining facts.
2. For each fact:
a. Building the attribute tree.
Pruning and grafting the attribute tree.
Defining dimensions.
Defining measures.
Defining hierarchies.

® oo T

This methodology can be applied, with minor differences, starting from both E/R and
logical schemes. In the following subsections we will describe the steps referring to the
sale example, considering as two alternative sources its conceptual and its logical
documentation. A simplified E/R scheme for sales (the part involving promotions is
omitted) is shown in Figure 10. Each instance of relationSWpE represents an item
referring to a single product within a purchase ticket. AttriluigPrice is placed on
SALE instead oPRODUCTGince the price of the products may vary over time. The
corresponding logical scheme is shown below (primary keys are underlined; for each
foreign key, the referenced scheme is reported). For simplicity, no artificial codes are
introduced to identify relation schemes.

marketing manager departmentnanager district no. state
oroupy ? 9 ’
MARKETING SALE f
GROUP DEPARTM. DISTRICT [T\ (@.N)_STATE
(1.N) (1.N) (1.N)
type @ categor @ county
® ey ® |ay @N) ? [ap
TYPE CATEGORY of COUNTY
L)V (AN) @
O.N) unit sales (L.N)
diet price date manager
©1f Ja o ? 0 1)
size 1,1 1,1 1N
0—| PrRODUCT (O'N(l'N) P#F&ESE(JNON srore SN oy
weight] 0 |
ONI)DF duct ticket number t dd (r? +
warehous storeaddresphone (wLN) city
(1,N) (1,1) A (LN (1,2)
address \Of/ BRAND <
WAREHOUSB—O
brand

Fig. 10. The (simplified) E/R scheme for the sale fact scheme.

STORESEtore,address,phone,salesManager,city:CITIES,
saleDistr:DISTRICTS)

CITIES(city,county:COUNTIES)

COUNTIES(county,state:STATES)

STATES(state)

DISTRICTS(distrNo, state:STATES)

PRODUCTSfroduct,weight,size,diet,brand:BRANDS, type: TYPES)

BRANDSprand.city:CITIES)

TYPES(type,markGroup:GROUPS,category:CATEGORIES)

GROUPStharkGroup,manager)

CATEGORIES¢ategory,dept:DEPTS)

DEPTS(dept.manager)

TICKETS(tickNo,date,store:STORES)

SALES(product:PRODUCTS, tickNo:TICKETS,qty,unitPrice)

WAREHOUSE®@arehouse,address)

PROD_IN_WH(poduct:PRODUCTS, warehouse:WAREHOUSES)

5.1. Defining facts

Facts are concepts of primary interest for the decision-making process. Typically, they
correspond to events occurring dynamically in the enterprise world.

On the E/R scheme: A fact may be represented either by an Entityby an n-ary
relationshipR between entitieg,,...E,. In the latter case, for the sake of simplicity,
it is worth transformingR into an entityF by replacing each brand with a binary
relationshipR; betweenF andE; ; if we denote with mirf,R) and maxg,R) 3,
respectively, the minimum and maximum cardinalities with which enfty
participates in relationshiR, it is:

min(F,R;) =1, maxF,R) =1,
min(E; ,R;) = min§; ,R), maxE; R) = maxg; ,R), i=1,...n

The attributes of the relationship become attribute§;athe identifier ofF is the
combination of the identifiers & , i=1,...n.
On the logical scheme: A fact corresponds to a relation scheme

Entities or relationships (relation schemes) representing frequently updated archives -
such asSALE - are good candidates for defining facts; those representing structural
properties of the domain, corresponding to nearly-static archives - si8hQREand
CITY - are not.

3 Typically, minE,R)0{0,1} and maxE,R)C{1,N}.

Each fact identified on the source scheme becomes the root of a different fact scheme.
In the following subsections, we will focus the discussion on a single fact, the one
corresponding to entity (relation schente)In the sale example, the fact of primary
interest for business analysis is the sale of a product, represented in the E/R and in the
logical schemes, respectively, by relationskgle and by relation schenf®ALES
Figure 11 shows how relationshsple is transformed into an entity.

unit
qty price
P9
(0,N) A (1,2) (1,1) N (LN)[PURCHASE
PRODUCT in SALE in TICKET
. 3
product ticket number

Fig. 11. Transformation of relationsig@ale into an entity.

5.2. Building the attribute tree

Given a portion of interest of a source scheme and an entity (relation s¢hbgalehging
to it, we callattribute treethe quasi-tree such that:

« each vertex corresponds to an attribute - simple or compound - of the scheme;

« the root corresponds to the identifier (primary keyof

« for each vertex v, the corresponding attribute functionally determines all the attributes
corresponding to the descendants of v.

The attribute tree will be used in the following subsections to build the fact scheme for
the fact corresponding fa

On the E/R scheme:

Let identifier(E) denote the set of attributes which make up the identifier of
entity E. The attribute tree foF may be constructed automatically by applying the
following recursive procedure:

root=newVertex(identifier(F));

I/l newVertex(<attributeSet>) returns a new vertex labelled
I/l with the concatenation of the names of the attributes in
/I the set translate(F,root);

where
translate(E,v):

/I E is the current entity, v is the current vertex
{ for each attribute a OE | a #identifier(E) do

addChild(v,newVertex({a})); // adds child a to vertex v
for each entity G connected to E
by a relationship R | max(E,R)=1 do
{ for each attribute b 0OR do
addChild(v,newVertex({b}));
next=newVertex(identifier(G));
addChild(v,next);
translate(G,next);

In the following we illustrate how procedutenslate works by showing in a
step-by-step fashion how a branch of the attribute tree for the sale example is generated;
the resulting attribute tree is shown in Figure 12.

root=newVertex(ticketNumber+product) /I renamed sale
translate(E=SALE,v= sale):
addchild(v, gty); addchild(v, unitPrice);

for G=EPURCHASE TICKET:
addchild(v, ticketNumber);
translate(PURCHASE TICKET, ticketNumber);
for G=PRODUCT:
addchild(v, product); translate(PRODUCT, product);

translate(E=PURCHASE TICKET,v= ticketNumber):
addchild(v, date);
for G=STORE:
addchild(v, store); translate(STORE, store);

translate(E=STORE,v= store):
addchild(v, address); addchild(v, phone);
addchild(v, salesManager);
for G=SALE DISTRICT:
addchild(v, districtNo+state);
translate(SALE DISTRICT, districtNo+state);
for G=CITY:
addchild(v, city); translate(CITY, city);

translate(E=SALE DISTRICT,v= districtNo+state):
addchild(v, districtNo);

for G=STATE:
addchild(v, state); translate(STATE, state);

translate(E=STATE,v= state):

O———O——0 city
state county sales
qty date manager
brandl sjze o g

diet O address
dept. Weight ‘ T ‘ phone
. sale city county state
manager category — O O
t L
manage; Ype product '[IC\EE'[SMUN no
mark. grp. number district ho+state

O
unit price

Fig. 12. Attribute tree for the sale example (the root is in grey).

It is worth adding some further notes:

« As the attribute tree undergoes the next step in the methodology, the granularity of fact
instances may change and become coarser than that expressed by the idehtifier of
Thus, in order to avoid confusion, we prefer to label the root of the attribute tree with
the name of entity rather than with its identifier.

» The source scheme may contain a cycle of -to-one relationships; the simplest example
of this is given by a scheme representing the fact that a part is a component of another
part. In this case, proceduteanslate would loop on this cycle generating an
infinite branch. Since representing a recursive association at the logical level is
impossible, the loop should be detected and the branch should be cut after a number of
cycles depending on the relevance of the association within the application domain.

* As procedurdranslate "explores" a cyclic source scheme, the same etihay
be reached twice through different paths, thus generating two homologous vertices V'
and v" in the quasi-tree. If each instancd~ofletermines exactly one instancebof
whichever of the two paths is followed (i.e., if the cycle is redundant), v' and v" may
be merged into a vertex v entered by two arcs; the same applies to each couple of
homologous vertices descending from v' and v". Otherwise, v' and v" must be left
distinct.

« The existence of optional relationships between attributes in a hierarchy should be
emphasized on the fact scheme by marking the arcs corresponding to optional
relationships (mir,R)=0) or optional attributes of the E/R scheme with a dash.

« A one-to-one relationship belonging to a cycle within the E/R scheme can be crossed
in both directions. Thus, it may happen that two paths including opposite arcs are
inserted into the attribute tree. In this case, the less significant path should be dropped.

» Generalization hierarchies in the E/R scheme are equivalent to one-to-one relationships
between the super-entity and each sub-entity, and should be treated as such by the
algorithm.

e -to-many relationships (mak(R)>1) and multiple attributes of the source scheme
cannot be inserted into the attribute tree since representing them at the logical level,
for instance by a star scheme, would be impossible without violating the first normal
form.

« As already stated in Section 5.1, an n-ary relationship is equivalent to n binary
relationships. Most n-ary relationships have maximum multiplicity greater than 1 on
all their branches; in this case, they determine n one-to-many binary relationships
which cannot be inserted into the attribute tree. On the other hand, a branch with
maximum multiplicity equal to 1 determines a one-to-one binary relationship which
can be inserted.

e A compound attribute ¢ of the E/R scheme, consisting of the simple attributes
ai,..am is inserted in the attribute tree as a vertex c with childfenag,. It is then
possible either to graft ¢ or to prune its children (see Section 5.3).

On the logical scheme:
Let pk(R) andfk(R,S) denote the sets of the attributed®Rdbrming, respectively,

the primary key oR and a foreign key referencir® The attribute tree foF may be
constructed automatically by applying the following recursive procedure:

root=newVertex(pk(F));

Il newVertex(<attributeSet>) returns a new vertex labelled
/I with the concatenation of the names of the attributes in
/I the set translate(F,root);

where

translate(R,v):
/I R is the current relational scheme,
I/l v is the current vertex
{ for each attribute a OR|(a #pk(R) O(I3|a OKk(R,S)))
addChild(v,newVertex({a})); // adds child a to vertex v
for each attribute set A OR|(S| A=tk(R,S))
{ next=newVertex(A);
addChild(v,next);
translate(S,next);
}
for each relational scheme T | pk(T)=fk(T,R)
{ for each attribute b aT
| (b Opk(R) O([$|b Ok(T,S)))
addChild(v,newVertex({b}));

for each attribute set B OT | (OS£R | B=fk(T,S))
{ next=newVertex(B);

addChild(v,next);

translate(S,next);

}
}

Proceduretranslate builds the tree by following the functional dependencies
represented within the database scheme. The first cycle considers the dependencies between
the primary key oR and each other attribute Bf(including, if the key is compound, the

single attributes which make it up but excluding those belonging to foreign keys, which
are considered at the next step). The second cycle deals with the dependencies between the
primary key and each foreign key referencing a relational scl&rbg triggering the
recursion ors. The third cycle considers the situation:

R(KR-.)
T(kTR,..k g9S)
S(ks....)

in which the relationship one-to-many betwdeandS has been represented through a
third relation scheme.

The same considerations made for the E/R case hold when the attribute tree is built
from the logical scheme. The attribute tree obtained for the sale example is the same
shown in Figure 12.

5.3. Pruning and grafting the attribute tree

Probably, not all of the attributes represented in the attribute tree are interesting for the
DW. Thus, the attribute tree may be pruned and grafted in order to eliminate the
unnecessary levels of detail.

Pruning is carried out by dropping any subtree from the quasi-tree. The attributes
dropped will not be included in the fact scheme, hence it will be impossible to use them
to aggregate data. For instance, on the sale example, the subtree rootattymay be
dropped from thérandbranch.

Grafting is used when, though a vertex of the quasi-tree expresses an uninteresting
piece of information, its descendants must be preserved; for instance, one may want to
classify products directly by category, without considering the information on their type.
Let v be the vertex to be eliminated:

graft(v):
{ for each V'|V'is father of v do
for each v" | v"is child of v do

addChild(v',v";

drop v;
}

Thus, grafting is carried out by moving the entire subtree with root in v to its father(s) v';
if we denote with t the attribute tree and with | the set of its vertices, procedure
graft(v) returns cnt(t;{v}). As a result, attribute v will not be included in the fact
scheme and the corresponding aggregation level will be lost; on the other hand, all the
descendant levels will be maintained. In the sale example, the detail of purchase tickets is
uninteresting and verteticket numbeican be grafted. In general, grafting a child of the
root corresponds to making the granularity of fact instances coarser and, if the node grafted
has two or more children, leads to increasing the number of dimensions in the fact
scheme.

Two considerations:

* A one-to-one relationship can be thought of as a particular kind of many-to-one
relationship, hence, it can be inserted into the attribute tree. Nevertheless, in a DW
query, drilling down along a one-to-one relationship means adding a row header to the
result without introducing further detail; thus, it is often worth grafting from the
attribute tree the attributes following one-to-one relationships, or representing them as
non-dimension attributes.

« Let entityE have a compound identifier including the internal attribatgs..amand
the external attributelsq,..by (m,t= 0). The algorithm outlined in Subsection 5.2
translatesE into a vertex c=gt...a,+bs+...x with children a,...a, (children h,...h
will be added when translating the entities which they identify). Essentially, two
situations may occur. If the granularity Bfmust be preserved in the fact scheme,
vertex ¢ is maintained while one or more of its children may be pruned; for instance,
vertexdistrict no.+stateis maintained since aggregation must be carried out at the level
of single districts, whilalistrict no. may be pruned since it does not express any
interesting aggregation. Otherwise, if the granularity expresséddioo fine, ¢ may
be grafted and some or all of its children maintained. Similar considerations can be
made, when the source scheme is logical, for the relation schemes with compound
primary key.

After graftingticket numberand pruningounty district no.andsize the attribute tree
is transformed as shown in Figure 13.

It should be noted that, when an optional vertex is grafted, all its children inherit the
optionality dash.

5.4. Defining dimensions

Dimensions determine how fact instances may be aggregated significantly for the decision-
making process. The dimensions must be chosen in the attribute tree among the children
vertices of the root (including the attributes which have become children of the root after

the quasi-tree has been grafted); they may correspond either to discrete attributes, or to

ranges of discrete or continuous attributes. Their choice is crucial for the DW design since
it determines the granularity of fact instances.

city

sales
t
bran aty manager

diet @) @) address
dept. Weight phone
oO—O0—0 sale city county state
manager category O O
manage ;ype product Sﬁb’N@/”O
mark. grp. ate district ho+state

.O ..
unit price

Fig. 13. Attribute tree for the sale example after pruning and grafting.

Each primary fact instance "summarizes" all the instances of entity (relation scheme)
F corresponding to a combination of dimension values. If the dimension pattern includes
all the attributes which constitute an identifier (the primary keyy,oévery primary
instance corresponds to one instance (tupldy;adften, one or more of the attributes
which identifyF are either pruned or grafted, hence, each primary instance may correspond
to several instances (tuples)rof

It is widely recognized that time is a key dimension for DWs. Source schemes can be
classified, according to the way they deal with time, ism@pshotandtemporal A
shapshot scheme describes the current state of the application domain; old versions of data
varying over time are continuously replaced by new versions. On the other hand, a
temporal scheme describes the evolution of the application domain over a range of time;
old versions of data are explicitly represented and stored. When designing a DW from a
temporal scheme, time is explicitly represented as an attribute and thus it is an obvious
candidate for defining a dimension. Should time appear in the attribute tree as a child of
some vertex different from the root, it is worth considering the possibility of grafting the
quasi-tree in order to have time become a dimension (i.e., become a child of the root). In
shapshot schemes, time is not explicitly represented (it is implicitly assumed that the
scheme represents data at the current time); however, also for snapshot schemes time
should be added as a dimension to the fact scheme.

In the sale example, the attributes chosen as dimensiopsodrest storeanddate

At this stage, the fact scheme may be sketched by adding the chosen dimensions to the
root fact.

5.5. Defining measures

Measures are defined by applying, to numerical attributes of the attribute tree, aggregation
functions which operate on all the instances (tuple$) adrresponding to each primary

fact instance. The aggregation function typically consists either in the
sum/average/maximum/ minimum of expressions or in the count of the number of entity

instances (tuples). A fact may have no attributes, if the only information to be recorded is
the occurrence of the fact.

The measures determined, if any, are reported on the fact scheme. At this step, it is
useful for the phase of logical design to builgl@ssarywhich associates each measure to
an expression describing how it can be calculated from the attributes of the source scheme.
Referring to the sale example and to its logical scheme, the glossary may be compiled in
SQL as follows:

gty sold= SELECT SUMS.qty)
FROM SALES S,TICKETS T
WHERE S.tickNo = T.tickNo
GROUP BY S.product,T.date,T.store
revenue= SELECT SUMS.qty * S.unitPrice)
FROM SALES S,TICKETS T
WHERE S.tickNo = T.tickNo
GROUP BY S.product,T.date,T.store
no. of customers SELECT COUNT(*)
FROM SALES S,TICKETS T
WHERE S.tickNo = T.tickNo
GROUP BY S.product,T.date,T.store

At this point, the aggregation functions more used for each combination
measure/dimension should be represented; if necessary, the preferred ordering of
dimensions for aggregation should be specified.

5.6. Defining hierarchies

The last step in building the fact scheme is the definition of hierarchies on dimensions.
Along each hierarchy, attributes must be arranged into a quasi-tree such that a -to-one
relationship holds between each node and its descendants.

The attribute tree already shows a plausible organization for hierarchies; at this stage,
it is still possible to prune and graft the quasi-tree in order to eliminate irrelevant details.
It is also possible to add new levels of aggregation by defining ranges for numerical
attributes; typically, this is done on the time dimension. In the sale example, the time
dimension is enriched by introducing attributesnth quarter, etc.

During this phase, the attributes which should not be used for aggregation but only
for informative purposes may be identified as non-dimension attributes (for instance,
addressweight etc.). It should be noted that non-numerical attributes which are children
of the root but have not been chosen as dimensions must necessarily either be grafted (if
the granularity of the primary fact instances is coarser than that of the fact) or be
represented as non-dimension (if the two granularities are equal).

6. Conclusion

In this paper we have proposed a conceptual model for data warehouse design and a semi-
automated methodology for deriving it from the documentation describing the information
system of the enterprise. The DFM is independent of the target logical model
(multidimensional or relational); in order to bridge the gap between the fact schemes and
the DW logical scheme, a methodology for logical design is needed. As in operational
information systems, DW logical design should be based on an estimate of the expected
workload and data volumes. The workload will be expressed in terms of query patterns and
their frequencies; data volumes will be computed by considering the sparsity of facts and
the cardinality of the dimension attributes.

Our current work is devoted to developing the methodology for logical design and
implementing it within an automated tool. Among the specific issues we are
investigating, we mention the following:

« Partitioning of the DW into integrated data marts

« View materialization This problem involves the whole dimensional scheme; in fact,
due to the presence of drill-across queries, cross-optimization must be carried out.

« Selection of the logical modetach materialized view can be mapped on the logical
level by adopting different models (star scheme, constellation scheme, snowflake
scheme).

» Translation into fact and dimension tahl8he fact and dimension tables are created
according to the logical models adopted.

« Vertical partitioning of fact tablesThe query response time can be reduced by
considering the set of measures required by each query.

« Horizontal partitioning of fact tablesThe query response time can be reduced by
considering the selectivity of each query.

References

1. R. Agrawal, A. Gupta and S. Sarawagi, Modeling multidimensional databEBbk,
Research RepartBM Almaden Research Center, 1995.

2. E. Baralis, S. Paraboschi and E. Teniente, Materialized view selection in multidimensional
databaseProc. 23rd Int. Conf. on Very Large Data Baséshens, Greece, 1997, 156-165.

3. R. Barquin and S. EdelsteiRlanning and Designing the Data Warehou@erentice Hall,
1996).

4. L. Cabibbo and R. Torlone, A logical approach to multidimensional databases, eds. H.J.
Schek, F. Saltor, I. Ramos, G. Alonsddvances in DB technology - EDBT,9@.NCS
1377, Springer, 1998) 183-197.

5. S. Chaudhuri and U. Dayal, An overview of data warehousing and OLAP technology,
SIGMOD Record®6, 1 (1997) 65-74.

6. S. Chaudhuri and K. Shim, Including group-by in query optimizafoac. 20th Int. Conf.
on Very Large Data Basg4994) 354-366.

7. G. Colliat, OLAP, relational and multidimensional database syst8i@IOD Recor@®5,
3 (1996) 64-69.

8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

C. Fahrner and G. Vossen, A survey of database transformations based on the Entity-
Relationship modelData & Knowledge Engineering5, 3 (1995) 213-250.

U.M. Fayyad, G. Piatetsky-Shapiro and P. Smyth, Data mining and knowledge discovery
in databases: an overvie@omm. of the ACN9, 11 (1996).

M. Golfarelli, D. Maio and S. Rizzi, Conceptual design of data warehouses from E/R
schemesProc. Hawaii International Conference on System Scien€ena, Hawaii (1998)
334-343.

J. Gray, A. Bosworth, A. Lyman and H. Pirahesh, Data-Cube: a relational aggregation
operator generalizing group-by, cross-tab and sub-tofalshnical ReportMSR-TR-95-

22, Microsoft Research, 1995.

A. Gupta, V. Harinarayan and D. Quass, Aggregate-query processing in data-warehousing
environments,Proc. 21th Int. Conf. on Very Large Data Baseaurich, Switzerland
(1995).

H. Gupta, V. Harinarayan and A. Rajaraman, Index selection for ORAG, Int. Conf.

Data Engineering Binghamton, UK (1997).

M. Gyssens and L.V.S. Lakshmanan, A foundation for multi-dimensional dataBases,

23rd Int. Conf. on Very Large Data Baseshens, Greece (1997) 106-115.

V. Harinarayan, A. Rajaraman and J. Ullman, Implementing Data Cubes Efficienly,

of ACM Sigmod ConfMontreal, Canada (1996).

T. Johnson and D. Shasha, Hierarchically split cube forests for decision support:
description and tuned desigBullettin of Technical Committee on Data Engineer2fy 1
(1997).

R. Kimball, The data warehouse toolkidohn Wiley & Sons, 1996).

D. Lomet and B. Salzberg, The Hb-Tree: a multidimensional indexing method with good
guaranteed performancACM Trans. On Database Systeht 44 (1990) 625-658.

F. McGuff, Data modeling for data warehoussty://members.aol.com/fmcguff
/dwmodel/dwmodel.htm (1996).

P. O'Neil and G. Graefe, Multi-table joins through bitmapped join ind8é§MOD
Record24, 3 (1995) 8-11.

K. Ross, D. Srivastava and D. Chatziantoniou, Complex aggregation at multiple
granularities,Proc. Int. Conf. on Extending Database Technol¢t998) 263-277.

S. Sarawagi, Indexing OLAP daulllettin of Technical Committee on Data Engineering
20, 1 (1997).

Y. Zhuge, H. Garcia-Molina and J. L. Wiener, The Strobe Algorithms for Multi-Source
Warehouse ConsistencyRroc. Conference on Parallel and Distributed Information
SystemsMiami Beach, FL (1996).

