
International Journal of Data Warehousing & Mining, 3(4), �1-�7, October-December 2007 �1

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

AbSTrACT

Though in most data warehousing applications no relevance is given to the time when events are recorded,
some domains call for a different behavior. In particular, whenever late measurements of events take place,
and particularly when the events registered are subject to further updates, the traditional design solutions
fail in preserving accountability and query consistency. In this article, we discuss the alternative design
solutions that can be adopted, in presence of late measurements, to support different types of queries that
enable meaningful historical analysis. These solutions are based on the enforcement of the distinction
between transaction time and valid time within the schema that represents the fact of interest. Besides,
we provide a qualitative and quantitative comparison of the solutions proposed, aimed at enabling well-
informed design decisions.

Keywords: database design; data warehouse; spatiotemporal database; timeliness of information

INTrODUCTION
Time is commonly understood as a key fac-
tor in data warehousing systems since the
decisional process often relies on computing
historical trends and on comparing snapshots
of the enterprise taken at different moments.
Within the multidimensional model, time is
usually a dimension of analysis; thus, the rep-
resentation of the history of fact values across
a given lapse of time, at a given granularity, is
directly supported. For instance, in a relational
implementation for the sales domain, for each
day there will be a set of rows in the fact table
reporting the values of fact QuantitySold on

that day for different products and stores. On
the other hand, although the multidimensional
model does not inherently represent the history
of values for dimensions and their properties,
some ad hoc techniques were devised to sup-
port the so-called slowly-changing dimensions
(Kimball, 1996). In both cases, time is com-
monly meant as valid time in the terminology
of temporal databases (Jensen et al., 1994)
(i.e., it is meant as the time when an event
or change occurred in the business domain)
(Devlin, 1997). Transaction time, meant as the
time when the event or change was registered
in the data warehouse, is typically given little

Managing Late Measurements
In Data Warehouses

Matteo	Golfarelli,	University	of	Bologna,	Italy

Stefano	Rizzi,	University	of	Bologna,	Italy

IGI PUBLISHING

This paper appears in the publication, International Journal of Data Warehousing and Mining, Volume 3, Issue 4
edited by David Taniar© 2007, IGI Global

701 E. Chocolate Avenue, Suite 200, Hershey PA 17033-1240, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.igi-pub.com

ITJ3904

�2 International Journal of Data Warehousing & Mining, 3(4), �1-�7, October-December 2007

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

or no importance since it is not considered to
be relevant for decision support.

One of the underlying assumptions in data
warehouses is that, once an event has been
registered (under the form of a row in the fact
table), it is never modified so that the only pos-
sible writing operation consists in appending
new events (rows) as they occur. While this
is acceptable for a wide variety of domains,
some applications call for a different behavior.
In particular, the values measured for a given
event may change over a period of time, to be
consolidated only after the event has been for
the first time registered in the data warehouse.
This typically happens when the early mea-
surements made for events may be subject to
errors (e.g., the amount of an order may be
corrected after the order has been registered) or
when events inherently evolve over time (e.g.,
notifications of university enrollments may be
received and registered several days after they
were issued).

In this context, if the up-to-date situation is
to be made timely visible to the decision mak-
ers, past events must be continuously updated
to reflect the incoming data. Unfortunately, if
updates are carried out by physically overwrit-
ing past registrations of events, some problems
may arise:

• Accountability and traceability require the
capability of preserving the exact informa-
tion the analyst based his or her decision
upon. If the old registration for an event is
replaced by its latest version, past decisions
can no longer be justified.

• In some applications, accessing only up-to-
date versions of information is not sufficient
to ensure the correctness of analysis. A
typical case is that of queries requiring to
compare the progress of an ongoing phe-
nomenon with past occurrences of the same
phenomenon: since the data recorded for the
ongoing phenomenon are not consolidated
yet, comparing them with past consolidated
data may not be meaningful.

Remarkably, the same problems may arise
when events are registered in the data ware-
house only once, but with a significant delay
with respect to the time when they occurred
in the application domain (e.g., there may be
significant delays in communicating the daily
price of listed shares on the stock market): no
update is necessary in this case, yet valid time
is not sufficient to guarantee accountability.
Thus, in more general terms, we will use term
late measurement to denote any measurement of
an event that is sensibly delayed with respect to
the time when the event occurs in the application
domain; a late measurement may either imply
an update to a previous measurement (as in the
case of late corrections to orders) or not (as in
the case of shares).

In this article, we discuss and compare the
design solutions that can be adopted, in presence
of late measurements, to enable meaningful
historical analysis aimed at preserving ac-
countability and consistency. These solutions
are based on the enforcement of the distinction
between transaction time and valid time within
the schema that represents the fact of interest.

The rest of the article is organized as fol-
lows. In the second and third sections, respec-
tively, we survey the related literature and pres-
ent the working examples. In the fourth section,
we distinguish two possible semantics for facts
and give definitions of events and registrations.
In the fifth section, we distinguish three basic
categories of queries from the point of view of
their temporal requirements in presence of late
measurements. The sixth and seventh sections
introduce, respectively, two classes of design
solutions: monotemporal and bitemporal,
that are then quantitatively compared in the
eighth section. The ninth section concludes by
discussing the applicability of the solutions
proposed.

rELATED LITErATUrE
Several works concerning temporal data ware-
housing can be found in the literature. Most
of them are related to consistently managing
updates in dimension tables of relational data
warehouses—the so-called slowly-changing

International Journal of Data Warehousing & Mining, 3(4), �1-�7, October-December 2007 �3

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

dimensions (e.g., Letz, Henn, & Vossen, 2002;
Yang, 2001). Some other works tackle the prob-
lem of temporal evolution and versioning of the
data warehouse schema (Bebel, Eder, Koncilia,
Morzy, & Wrembel, 2004; Blaschka, Sapia, &
Höfling, 1999; Eder, Koncilia, & Morzy, 2002;
Golfarelli, Lechtenbörger, Rizzi, & Vossen,
2006; Quix, 1999). All these works are not
related to ours since there is no mention of the
opportunity of representing transaction time in
data warehouses in order to allow accountability
and traceability for late measurements.

Devlin (1997) distinguishes between
transient data, that do not survive updates and
deletions, and periodic data, that are never
physically deleted from the data warehouse.
Kimball (1996) introduces two basic paradigms
for representing inventory-like information in a
data warehouse: the transactional model, where
each increase and decrease in the inventory level
is recorded as an event, and the snapshot model,
where the current inventory level is periodically
recorded. This is then generalized to define a
classification of facts based on the conceptual
role given to events:

• For a transactional fact, each event may
either record a single transaction or sum-
marize a set of transactions that occur dur-
ing the same time interval. Most measures
are flow measures (Lenz & Shoshani,
1997): they refer to a time interval and are
cumulatively evaluated at the end of that
period.

• For a snapshot fact, events correspond to
periodical snapshots of the fact. Measures
are mostly stock measures (Lenz et al.,
1997): they refer to an instant in time and
are evaluated at that instant.

A similar characterization is proposed
by Bliujute, Saltenis, Slivinskas, and Jensen
(1998), who distinguish between state-oriented
data like sales, inventory transfers, and financial
transactions, and event-oriented data, like unit
prices, account balances, and inventory levels.
Both distinctions are relevant to our approach
and are recalled in the fourth section. Bliujute et

al. (1998) also propose a temporal star schema
that incorporates timestamps into the fact table
to model valid time; though such schema is
somehow related to the design solutions we
propose, it does not take transaction time into
consideration and is not analyzed in the light
of the late measurements problem.

Pedersen and Jensen (1998) recognize
the importance of advanced temporal support
in data warehouses, with particular reference
to medical applications. Abelló and Martín
(2003a) claim that there are important simi-
larities between temporal databases and data
warehouses, suggest that both valid time and
transaction time should be modeled within data
warehouses, and mention the importance of
temporal queries. Finally, Abelló and Martín
(2003b) propose a storage structure for a bitem-
poral data warehouse (i.e., one supporting both
valid and transaction time). All these approaches
suggest the importance of transaction time in
data warehouses, but not with explicit reference
to the problem of late measurements.

Kimball (2000) raises the problem of late-
arriving fact records, generically stating that a
bitemporal solution may be useful to cope with
them. In the same direction, Bruckner and Tjoa
(2002) discuss the problem of data warehouse
temporal consistency in consequence of delayed
discovery of real-world changes and propose
a solution based on transaction time (which
they call revelation time) and overlapped valid
time. Although the article discusses some issues
related to late measurements, no emphasis is
given to the influence that the semantics of
the captured events and the querying scenarios
pose on the feasibility of the different design
solutions.

WOrKING EXAMPLES
In this section, we propose three examples that
justify the need for managing late measure-
ments and will be used in the rest of the article
to discuss and compare the different design
solutions.

In the first example, late measurements
(with updates) are motivated by the fact that
the represented events inherently evolve over

�4 International Journal of Data Warehousing & Mining, 3(4), �1-�7, October-December 2007

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

time. Consider a fact modeling the number of
enrollments to university degrees; in a relational
implementation, a simplified fact table for en-
rollments could have the following schema (we
intentionally do not introduce surrogate keys in
the fact table in order to avoid to unnecessarily
complicate the examples):

FT_ENROLL(EnrollDate, Degree, AcademicYear,
Number)

where EnrollDate is the formal enrollment date
(the one reported on the enrollment form). An
enrollment is acknowledged by the University
secretariat only when the entrance fee is paid;
considering the variable delays due to the bank
processing and transmitting the payment, the
enrollment may be communicated and stored
in the university database—and, from there,
loaded into the data warehouse—even one
month after the enrollment has been done.
This is a case of late measurements. Besides:
(i) notices of payments for the same enrollment
date are spaced out over long periods, and (ii)
after paying the fee, students may decide to
switch their enrollment from one degree to
another. Thus, updates are necessary in order
to correctly track enrollments.

The main reason why, in this example, the
enrollment date may not be sufficient is related to
the soundness of analysis. In fact, most queries
on this fact will ask for evaluating the current
trend of the number of enrollments as compared
to last year. But if the current, partial data on
enrollments were compared to the consolidated
ones at exactly one year ago, the user would
wrongly infer that this year we are experiencing
a negative trend for enrollments!

The second example is related to a fact
representing the quantities in the lines of orders
received by a company selling PC consumables,
according to the following schema:

FT_ORDER(OrderNumber, OrderDate, Product,
Quantity).

Though the first registration of an order
may not involve notable delays, the orders

received may be subject to later corrections,
which implies late measurements.

The third example, motivated by the delay
in communicating information, is that of a fact
monitoring the price of listed shares on the
stock market:

FT_SHARE(Date, Share, Price).

We assume that this fact is daily fed by im-
porting a file that reports the current quotations;
occasional delays in communicating the daily
prices will produce late measurements, which
in turn will raise problems with justifying the
decisions made on previous reports.

EVENTS AND rEGISTrATIONS
The aim of this section is to introduce the clas-
sification of events and registrations on which
we will rely in the next sections to discuss the ap-
plicability of the design solutions proposed.

In general terms, the facts to be monitored
for decision support fall into two broad catego-
ries according to the way they are measured in
the application domain. Flow facts (called flow
measures in Lenz et al., 1997) are monitored
by collecting their occurrences during a time
interval and are cumulatively measured at the
end of that period; examples of flow facts are
order quantity and number of enrollments.
Stock facts (called stock measures in Lenz
et al., 1997) are monitored by periodically
sampling and measuring their state; examples
of stock facts are the price of a share and the
level of a river.

Definition 1 (Event): Given fact F, we call events
the results of the monitoring of F. Each event
is identified by a set of coordinates, i.e., values
for the dimensions of analysis of F. We call the
valid time of event ei the instant vti when ei takes
place in the application domain. Event ei yields
a non empty sequence of measurements mij, j
= 1,…,ni (ni ≥ 1).

Each new measurement for an event pro-
vides a revised value, typically more accurate
than the previous one. Obviously, in order to

International Journal of Data Warehousing & Mining, 3(4), �1-�7, October-December 2007 ��

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

avoid information loss, each measurement
received for an event must be recorded into
the data warehouse, which is done when next
refresh takes place.

Definition 2 (Registration): Given fact F and a
measurement mij for event ei, we call registra-
tion rij for mij the recording1 of mij on the data
warehouse, done on transaction time ttij (ttij ≥
vti). For each i, ri1 is called the first registra-
tion for ei and the rij’s with j > 1 (if any) are
called the update registrations for ei. Given t
≥ vti, the current registration for ei at time t is
the one done on transaction time ttij* where j*
= max{j | ttij ≤ t}.

With reference to our working examples:

• An event for the (flow) order fact measures
the quantity ordered for a given product
within a given order issued on a given date
(its coordinates). In this case, each event
corresponds to a single order line (no ag-
gregation is done) and its valid time is the
order date. The first registration of each
event is done when the related order is
received; an update registration may arise
if the ordering customer asks for modifying
a quantity in her order.

• An event for the (flow) enrollment fact
measures the net number of enrollments

made on a given date for a given degree
and academic year (its coordinates). In this
case, each event aggregates a set of enroll-
ments and its valid time is the enrollment
date; after the first registration, a sequence
of update registrations is typically made
for each event as new data on enrollments
made on previous dates are received.

• An event for the (stock) share fact is the
observation, made on a given date (valid
time), of the price for a given share (date
and share are the event coordinates). One
single (first) registration is commonly made
in this case for each event.

The delay between the time when a mea-
surement is received by the operational database
and the transaction time of the corresponding
registration in the data warehouse depends on
the duration of the refresh interval of the data
warehouse (i.e., on the time between two con-
secutive periodical refreshes (typically ranging
between 1 and 7 days)). Since, from the point of
view of a data warehouse user, a measurement
is known only when it is registered, in the fol-
lowing we will assume that each measurement
is synchronous with its registration.

To clarify this point, Figure 1 shows an
example where two events are characterized,
respectively, by three and one measurements.
The central axis represents the flow of time,

vtvt

tttttttt

m m m m

r

rrr

21

11 12 21 13

11 12

21

13

11 12 13 21

valid time

time

transaction time

e1 e2

Figure 1. Late and non-late registrations; stars, triangles, diamonds, and squares stand for
events, measurements, registrations, and data warehouse refreshes, respectively

�� International Journal of Data Warehousing & Mining, 3(4), �1-�7, October-December 2007

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

and reports the instants when events take place
and their measurements are received by the
operational database. Such instants are then
projected on the other two axes that represent,
respectively, valid and transaction time. The
instant when an event takes place is its valid
time (e.g., vt1 is the valid time for e1). Each
measurement is registered in the data ware-
house not immediately when it is received by
the operational database, but when next refresh
takes place: for instance, measurement m12 is
registered only at time tt12, which becomes its
transaction time.

Definition 3 (Late measurement): Given fact F
and event ei, measurement mij is said to be late
when its transaction time ttij is later than the time
of the first refresh made after vti. Fact F is subject
to late measurements when it yields at least one
late measurement. In particular, it is subject to
late measurements without updates when ni =
1 for every i (i.e., no update registrations are
made), and subject to late measurements with
updates when it is ni > 1 for at least one i (i.e.,
at least one update registration is made for at
least one event).

With reference to Figure 1, the first mea-
surement m11 is not late since it is registered at
the end of the refresh interval where e1 took
place. The other three measurements are late:
for instance, m21 is late since its transaction
time tt21 is later than tt12, which is the time of
the first refresh after e2.

qUErYING SCENArIOS
From a conceptual point of view, as understood
in the previous section, for every fact two differ-
ent temporal dimensions may be distinguished.
The first one refers to the time when events
actually take place in the application domain,
while the second one refers to the time when their
measurements are perceived and recorded in the
data warehouse. Consistently with the literature
on temporal databases (Jensen et al., 1994), we
called these two dimensions, respectively, valid
time and transaction time.

While we take for granted that valid time
must always be represented in registrations,
since it is a mandatory coordinate for charac-
terizing events, the need for representing also
transaction time depends on the nature of the
expected workload. From this point of view,
three types of queries can be distinguished
(the terminology is inspired by Kim and Kim,
1997):

Definition 4 (Types of queries: Given the fact F
and query q that involves the set of events Eq, we
will say q is an up-to-date query when for each
event ei ∈ Eq only the now-current measurement
is required; q is a rollback query when, given
time t, for each event ei ∈ Eq only the current
measurement at time t is required; q is a histori-
cal query when, given time interval T = [t1, t2],
for each event ei ∈ Eq all the measurements that
were current at any t ∈ T are required.

Intuitively, up-to-date queries require
the most recent measurements for events. An
example of up-to-date query on the enrollment
fact is the one asking for the daily number of
enrollments to a given degree made during last
week. In fact, this query is solved correctly by
considering the most up-to-date data available
for the number of enrollments by enrollment
dates. Registering transaction time is not nec-
essary to solve this kind of queries, since they
rely on valid time only. For a fact not subject to
late measurements, all possible queries belong
to this category, since the first registration for
each event is not significantly delayed with
respect to the event valid time, and no update
registrations take place.

On the other hand, a rollback query requires
a past measurement for each event. Consider
for instance the query asking for the current
trend of the total number of enrollments for
each degree as compared to last year. In order
to get consistent results, the comparison must be
founded on registration dates rather than enroll-
ment dates. Thus, this kind of query requires
that transaction time is explicitly represented
in registrations.

International Journal of Data Warehousing & Mining, 3(4), �1-�7, October-December 2007 �7

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Finally, historical queries require mul-
tiple measurements for events. An example
of historical query is the one asking for the
daily distribution of the number of enrollments
received for a given enrollment date. Also
these queries require transaction time to be
represented explicitly.

Depending on the presence of late measure-
ments and on the composition of the expected
workload, two main types of design solution can
be envisaged for a fact: monotemporal, where
only valid time is modeled as a dimension of
analysis; bitemporal, where both valid and
transaction time are modeled as dimensions of
analysis. The details of these two types of solu-
tions are discussed in following sections.

MONOTEMPOrAL SOLUTIONS
Monotemporal solutions are those commonly
implemented for facts that either are not subject
to late measurements or are only required to
support up-to-date queries. They are the sim-
plest solutions: update registrations are done by
physically overwriting the registrations made at
previous times for the same event, so that one
single registration (the most recent one) is kept
in the database for each event. The transaction
times of registrations are not represented and no
trace is left of past measurements so only up-to-
date queries are supported and, in case of late
measurements, accountability is not guaranteed.
For instance, the schema of the monotemporal
solutions for the order, the enrollment, and the
share facts are exactly the ones already shown
in the third section, where the only temporal
dimensions are, respectively, OrderDate, En-
rollDate, and Date (valid times).

Discussing in detail how registrations are
made in a monotemporal solution requires to
clarify that, from the semantic point of view,
all registrations conform to one of two models:
flow registrations, that are additive along all
dimensions of analysis (i.e., the fact values
can always be summed when aggregating),
and stock registrations, that are non-additive
along temporal dimensions (i.e., the fact values
cannot be summed when aggregating along
time, while for instance they can be averaged).
While in a bitemporal solution, as we will see in
the seventh section, two different models may
be adopted for first registrations and update
registrations, in a monotemporal solution all
registrations share the same model. Thus, we
will call flow solution the one relying on flow
registrations, and stock solution the one relying
on stock registrations. The choice of a flow or
stock solution is influenced by the core workload
the fact is subject to, but mainly depends on the
category (flow or stock) of the fact, as clarified
in the next subsections.

Flow Facts
For a flow fact, the flow solution is typically
the most natural choice. Each event ei is repre-
sented by a single flow registration, associated
to valid time vti, reporting the value of the last
measurement for ei. An update registration for
an event is made by physically replacing the
previous registration for the same event. For
instance, for the order quantity fact, the flow
registrations might be those reported in Table
1, each representing an event, i.e. a single line
of an order. When an update measurement is
received, due to a correction to a given order

OrderNumber OrderDate Product Quantity

11001 Mar. 15, 2007 CD-R 100

11001 Mar. 15, 2007 DVD+R 20

11203 Apr. 15, 2007 CD-RW 80

11203 Apr. 15, 2007 DVD+R 25

Table 1. Flow solution for the order line fact

�� International Journal of Data Warehousing & Mining, 3(4), �1-�7, October-December 2007

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

line, the registration corresponding to that order
line is overwritten and the new value for the
fact is reported.

On the other hand, for some flow facts both
flow and stock solutions can be reasonably used.
This is true, for instance, for the enrollment fact
introduced in the third section. A sample set of
flow registrations for enrollments is shown in
Table 2. Each registration records the number
of students who enrolled, on a given date, to
a given degree course for a given academic
year (i.e., the exact value of the measurement).
Table 3 shows how the same events could be
represented by stock registrations: here each
registration records, at a given date, the total
number of students who enrolled to a given
degree course for a given academic year so far.
In this case, for instance, the first registration for
the event with valid time October 22 is made
by summing the (flow) measurement 2 for that
event to the stock registration 5 for the event
with valid time October 21.

The choice of one or another solution for
a flow fact depends first of all on the expected
workload, and in particular on the relative
weight of queries asking for flow and stock
information respectively. For instance, the total

number of enrollments for an academic year can
be obtained in the flow solution by summing up
all pertinent registrations, which may be costly,
while in the stock model it is sufficient to read
a single registration (the most recent one). On
the other hand, consider a query asking for the
number of enrollments to Electrical Engineering
made on October 22. While in the flow solution
such query is answered by reading one registra-
tion (the one reporting Number = 2 in Table 2), in
the stock solution the result must be computed
as the difference between the values of Number
registered in two consecutive days.

The main factor to be considered before
choosing to use a stock solution for a flow fact
is whether events are subject to updates. In fact,
in this case, after each update all the related
stock registrations would have to be updated
accordingly, which may become quite costly.
For instance, suppose that on October 23 it is
known that the number of enrollments made
on October 21 is not 5 but 8. While in the flow
solution it is sufficient to modify the registration
dated October 21, in the stock solution also all
the registrations for the following dates should
be updated by adding 3.

EnrollDate Degree AcademicYear Number

Oct. 21, 2005 Elec. Eng. 05/06 5

Oct. 22, 2005 Elec. Eng. 05/06 2

Oct. 23, 2005 Elec. Eng. 05/06 3

EnrollDate Degree AcademicYear Number

Oct. 21, 2005 Elec. Eng. 05/06 5

Oct. 22, 2005 Elec. Eng. 05/06 7

Oct. 23, 2005 Elec. Eng. 05/06 10

Table 3. Stock solution for the enrollment fact

Table 2. Flow solution for the enrollment fact

International Journal of Data Warehousing & Mining, 3(4), �1-�7, October-December 2007 ��

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Stock Facts
Differently from flow facts, stock facts naturally
conform to the stock solution; for instance, a
sample set of stock registrations for the share
fact is reported in Table 4: like in the flow so-
lution applied to a flow fact, each registration
records the exact value of the measurement. In
principle, adopting a flow solution for a stock
fact is still possible, although not recommended.
In fact, it would require disaggregating the
(stock) measurements made in the application
domain into a net flow to be registered, which
implies that, before each new flow registra-
tion can be made, the current stock level must
be computed by aggregating all registrations
for the previous events. For instance, Table 5
shows the flow registrations corresponding to
the stock registrations in Table 4. Registering
as –2 the measurement 10 made on January
9, requires to first compute the stock level 12,
valid on January 8, which can only be done by
accessing all previous registrations.

bITEMPOrAL SOLUTIONS
These are the most general solutions to be
adopted in presence of late measurements and
they allow all three types of queries to be cor-
rectly answered. On each refresh cycle, new
update registrations for previous events may be

added, and their transaction time is traced; no
overwriting of previous registrations is carried
out, thus no measurement is lost.

In a bitemporal solution, we distinguish
between the model (flow or stock) adopted for
the first registrations of events and that adopted
for update registrations. We will call delta solu-
tions those where update registrations conform
to the flow model, consolidated solutions those
where update registrations conform to the stock
model. In particular, in delta solutions:

1. An update measurement mij for event ei
is represented by a flow registration that
records value mij – mij–1 (i.e., a “delta” for
the fact with respect to the previous reg-
istration for ei);

2. Transaction time is modeled by adding
to the schema a new temporal dimen-
sion, typically with the same grain of the
temporal dimension that models the valid
time, to represent when each registration
was made;

3. Up-to-date queries are answered by aggre-
gating, for each event, all registrations;

4. Rollback queries at time t are answered by
aggregating, for each event, all registrations
whose transaction time is before t;

5. Historical queries on time interval T are
answered by selectively aggregating, for
each event, the registrations whose transac-
tion time is included in T.

In consolidated solutions:

1. An update measurement mij for event ei
is represented by a stock registration that
records the consolidated value for the first
registration mi1 of event ei, under a form
depending on the model (flow or stock)
adopted for mi1;

2. Transaction time is modeled by adding to
the fact two new temporal dimensions, used
as timestamps to mark the time interval
during which each registration is current
(currency interval);

3. Up-to-date queries are answered by select-
ing, for each event, the registration that

Date Share Price

Jan. 7, 2006 BigTel 9

Jan. 8, 2006 BigTel 12

Jan. 9, 2006 BigTel 10

Date Share Price

Jan. 7, 2006 BigTel 9

Jan. 8, 2006 BigTel 3

Jan. 9, 2006 BigTel –2

Table 4. Stock solution for the share fact

Table 5. Flow solution for the share fact

�0 International Journal of Data Warehousing & Mining, 3(4), �1-�7, October-December 2007

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

is current now (the one whose currency
interval is still open);

4. Rollback queries at time t are answered by
selecting, for each event, the registration
that was current at t (the one whose cur-
rency interval includes t);

5. Historical queries on time interval T are
answered by selecting, for each event, the
registrations that were current for at least
one t ∈ T (those whose currency interval
overlaps with T).

The reason for using two timestamps in a
consolidated solution is that each registration
records a state of the event, which is valid
during a time interval, rather than an instant
measurement like in a flow solution.

Since in principle these two types of solu-
tions can be combined with either the flow or the
stock model for first registrations, four different
specific solutions can be distinguished, which
we will call delta-flow, delta-stock, consolidat-
ed-flow, and consolidated-stock, respectively. In
the following subsections, we will discuss how
these solutions are implemented for flow and
stock facts subject to late measurements with
updates, and for facts subject to late measure-
ments without updates.

Flow Facts with Updates
As seen in the sixth section, a flow fact can be
represented within the data warehouse either
by flow or stock registrations.

In case of a flow fact represented by flow
(first) registrations, the delta solution leads to

events, first registrations and update registra-
tions that share the same flow semantics, which
means that additivity is preserved for all regis-
trations. Consider for instance the enrollment
schema; if a delta-flow solution is adopted, the
schema is enriched as follows:

FT_ENROLL(EnrollDate, RegistrDate, Degree,
AcademicYear, Number)

where RegistrDate is the dimension added to
model transaction time. Table 6 shows a pos-
sible set of registrations for a given degree and
year, including some positive and negative
updates. While each first registration records
the exact value of its measurement, each update
registration records the difference between its
measurement and the previous one.

With reference to these sample data, in the
following we report some simple examples of
queries of the three types together with their
results, and show how they can be computed
by aggregating registrations.

1. q1: Daily number of enrollments to electric
engineering for academic year 05/06. This
up-to-date query is answered by summing
up Number for all registration dates related
to the same enrollment dates, and returns
the following result:

EnrollDate Number

Oct. 21, 2005 11

Oct. 22, 2005 6

Oct. 23, 2005 3

EnrollDate RegistrDate Degree AcademicYear Number

Oct. 21, 2005 Oct. 27, 2005 Elec. Eng. 05/06 5

Oct. 21, 2005 Nov. 1, 2005 Elec. Eng. 05/06 8

Oct. 21, 2005 Nov. 5, 2005 Elec. Eng. 05/06 –2

Oct. 22, 2005 Oct. 27, 2005 Elec. Eng. 05/06 2

Oct. 22, 2005 Nov. 5, 2005 Elec. Eng. 05/06 4

Oct. 23, 2005 Oct. 23, 2005 Elec. Eng. 05/06 3

Table 6. Delta-flow solution for the enrollment fact (update registrations in italics)

International Journal of Data Warehousing & Mining, 3(4), �1-�7, October-December 2007 �1

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

2. q2: Daily number of enrollments to electric
engineering for academic year 05/06 as
known on Nov. 2. This rollback query is
answered by summing up Number for all
registration dates before Nov. 2:

EnrollDate Number

Oct. 21, 2005 13

Oct. 22, 2005 2

Oct. 23, 2005 3

3. q3: Number of registrations of enrollments
to electric engineering received daily for
academic year 05/06. This historical query
is answered by summing up Number, for
each registration date, along all enrollment
dates:

RegistrDate Number

Oct. 23, 2005 3

Oct. 27, 2005 7

Nov. 1, 2005 8

Nov. 5, 2005 2

For a flow fact represented by flow registra-
tions, also the consolidated solution is possible.
In a consolidated-flow solution, the enrollment
schema is enriched as follows:

FT_ENROLL(EnrollDate, CurrencyStart, Curren-
cyEnd, Degree, AcademicYear, Number)

where CurrencyStart and CurrencyEnd delimit
the currency interval. Table 7 shows the set of

registrations corresponding to those in Table
6: while the first registrations still report the
same value for the fact, update registrations
now report the exact value of measurements
rather than a delta.

Adopting one or the other solution (delta-
flow or consolidated-flow) for a flow fact has
a deep impact on the response to the workload.
For instance it is easy to see that, while in the
delta-flow solution queries q1 and q2 are an-
swered by accessing several registrations for
each event involved, in the consolidated-flow
solution they are answered by reading exactly
one registration (respectively, the one that is
current now and the one that was current on
November 2) for each event involved.

In case of a flow fact represented by stock
registrations, as seen in the sixth section, a
monotemporal solution leads to an update
propagation problem. This problem also occurs
with a bitemporal solution: in fact, since stock
registrations are computed by accumulating past
flow measurements, each update measurement
received for a past event ei would lead to record-
ing a whole set of update registrations, one for
each event with valid time after ei. Consequently,
for a flow fact subject to late registrations with
updates, we will not consider stock solutions
recommendable.

Stock Facts with Updates
As seen in the sixth section, using flow regis-
trations for a stock fact is not recommendable;
thus, we will assume that a stock solution is
adopted.

EnrollDate CurrencyStart CurrencyEnd Degree AcademicYear Number

Oct. 21, 2005 Oct. 27, 2005 Oct. 31, 2005 Elec. Eng. 05/06 5

Oct. 21, 2005 Nov. 1, 2005 Nov. 4, 2005 Elec. Eng. 05/06 13

Oct. 21, 2005 Nov. 5, 2005 — Elec. Eng. 05/06 11

Oct. 22, 2005 Oct. 27, 2005 Nov. 4, 2005 Elec. Eng. 05/06 2

Oct. 22, 2005 Nov. 5, 2005 — Elec. Eng. 05/06 6

Oct. 23, 2005 Oct. 23, 2005 — Elec. Eng. 05/06 3

Table 7. Consolidated-flow solution for the enrollment fact

�2 International Journal of Data Warehousing & Mining, 3(4), �1-�7, October-December 2007

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Since both measurements and first registra-
tions have stock semantics, the most immediate
choice is the consolidated-stock solution, that
gives stock semantics also to update registra-
tions. In the share example, the schema is then
enriched as follows:

FT_SHARE(Date, CurrencyStart, CurrencyEnd,
Share, Price)

and may be populated for instance by the sample
set of registrations reported in Table 8.

An example of up-to-date query on these
data is “find the minimum price of BigTel from
Jan. 7 to 9,” which returns 8.5. A rollback query
is “find the minimum price of BigTel from Jan.
7 to 9, as known on Jan. 10,” which returns 9.
Finally, a historical query is “find the fluctuation
on the price of Jan. 7 for BigTel,” which returns
–0.5 and requires to progressively compute the
differences between subsequent registrations.
Thus, while up-to-date and rollback queries are
very simply answered, historical queries may
ask for some computation.

In case of a stock fact, also the delta-stock
solution can be applied. See for instance Table 9

that shows the delta solution for the same set of
measurements reported in Table 8. In this case,
up-to-date and rollback queries that aggregate
the fact along valid time would have to be for-
mulated as nested queries relying on different
aggregation operators. For instance, the average
monthly price for a share is computed by first
summing Price along RegistrDate for each Date,
then averaging the partial results. On the other
hand, a historical query like the one above is
very simply answered.

Facts without Updates
In the case of facts where measurements may
be delayed but done exactly once for each
event, accountability can be achieved, for both
flow and stock solutions, by adding a single
temporal dimension RegistrDate that models
the transaction time. Up-to-date queries are
solved without considering transaction times,
while rollback queries require to select only the
registrations made before a given transaction
time. Historical queries make no sense in this
context, since only one measurement is made
for each event. As a matter of fact, the solution
adopted can be considered as a special case of

Date CurrencyStart CurrencyEnd Share Price

Jan. 7, 2006 Jan. 7, 2006 Jan. 11, 2006 BigTel 9

Jan. 7, 2006 Jan. 12, 2006 — BigTel 8.5

Jan. 8, 2006 Jan. 10, 2006 — BigTel 12

Jan. 9, 2006 Jan. 10, 2006 Jan. 12, 2006 BigTel 10

Jan. 9, 2006 Jan. 13, 2006 — BigTel 10.5

Table 8. Consolidated-stock solution for the share fact

Date RegistrDate Share Price

Jan. 7, 2006 Jan. 7, 2006 BigTel 9

Jan. 7, 2006 Jan. 12, 2006 BigTel –0.5

Jan. 8, 2006 Jan. 10, 2006 BigTel 12

Jan. 9, 2006 Jan. 10, 2006 BigTel 10

Jan. 9, 2006 Jan. 13, 2006 BigTel 0.5

Table 9. Delta-stock solution for the share fact

International Journal of Data Warehousing & Mining, 3(4), �1-�7, October-December 2007 �3

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

delta solution where no update registrations
are recorded.

COMPArISON AND
DISCUSSION
This section aims at providing a simple quanti-
tative comparison of the different solutions, in
terms of storage space and query performance.
Let E, µ, and |Eq| ≤ E denote, respectively, the
total number of events recorded, the average
number of measurements per event, and the
number of events involved in query q.

The results are collected in Table 10. The
first column of data reports the total number of
registrations stored in the fact table (we neglect
that, in consolidated solutions, each registration
is longer due to the additional timestamp that
represents the end of the currency interval).
The other three columns report the execution
cost for different types of queries, estimated
as the number of registrations to be accessed
(independently of the execution plans adopted,
and assuming that each registration is read
only once):

• For up-to-date queries we assume that, at
query formulation time, all measurements
for the involved events are already avail-
able.

• For rollback queries, we consider a border
effect related to the distribution along
time of the measurements for each event,
which reduces by a factor ρ (0 ≤ ρ ≤ 1)
the number of registrations to be read (see
Figure 2). Such factor heavily depends on
the relationship between the width of the
time interval defined by the valid times of
the involved events, Tq, the relative posi-
tioning of the reference time for the query,
t, and the average delay of measurements,
δ. Figure 3 shows how ρ varies, assuming
that measurements delays are normally dis-
tributed in time, in function of δ (expressed
in numbers of refreshes), when Tq spans 12
refreshes and t falls exactly at the end of
Tq.

• For historical queries, there still is a reduc-
tion factor ρ' that additionally depends on

e2e1 e3 e4

t
timenu

m
be

r o
f

m
ea

su
re

m
en

ts

Figure 2. Distribution of measurements for events; in gray the measurements that are not read
by a rollback query with reference time t

number of tuples UQ RQ HQ

monotemp.
flow E |Eq| — —

stock E |Eq| — —

bitemp.

delta-flow µ E µ |Eq| ρ µ |Eq| ρ' µ |Eq|

delta-stock µ E µ |Eq| ρ µ |Eq| ρ' µ |Eq|

cons.-flow µ E |Eq| ρ |Eq| ρ' µ |Eq|

cons.-stock µ E |Eq| ρ |Eq| ρ' µ |Eq|

Table 10. Quantitative comparison of the design solutions (UQ, RQ, and HQ stand for up-to-
date, rollback, and historical queries, respectively)

�4 International Journal of Data Warehousing & Mining, 3(4), �1-�7, October-December 2007

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

the width of the query reference interval
T.

Overall, the overhead induced by the design
solutions proposed on the query performance
and on the storage space heavily depends on the
characteristics of the application domain and
on the actual workload. In a bitemporal solu-
tion, frequent updates determine a significant
increase in the fact table size, but this may be due
to a wrong choice of the designer, who promoted
early registrations of events that are not stable
enough to be significant for decision support.
The increase in the query response time may be
reduced by a proper use of materialized views
and indexes: a materialized view aggregating
registrations on all transaction times cuts down
the time for answering up-to-date queries in
delta solutions, while an index on transaction
time enables efficient slicing of registrations in
consolidated solutions.

CONCLUSION
In this article we have raised the problem of late
measurements, meant as retrospective updates
to events registered in a data warehouse, and we
have shown how conventional design solutions,
that only take valid time into account, may fail
to provide query accountability and consistency.
Then, we have introduced some alternative
design solutions that overcome this problem
by modeling transaction time as an additional

dimension of the fact, and we have discussed
their applicability. Table 11 summarizes the
results obtained. Most noticeably, the most
recommended solutions for a flow and a stock
fact with updates are, respectively, consolidated-
flow and consolidated-stock. Delta-flow and
delta-stock, in fact, create some overhead with
up-to-date and rollback queries.

In commercial platforms, late registrations
are only partially supported. To the best of our
knowledge, the most sophisticated solution
is the one adopted by SAP-BW, that supports
bitemporal solutions. In particular, BW distin-
guishes between cumulative and non-cumula-
tive key figures (corresponding to flow and stock
facts). The former are directly modeled in the
fact table through a delta-flow solution. The
latter can be handled by adopting two different
time granularities: at the coarsest one, consoli-
dated values for events are historicized within
a support table; at the finest one, delta values
are stored within the fact table limitedly to a
user-defined time interval. This solution, while
guaranteeing good querying performances,
limits the expressivity achievable with rollback
and historical queries.

We close this section by observing that,
in real applications, multiple related facts are
normally stored in the same fact table (e.g., in
the order example, quantity and unit price for
each order line). How do they coexist in pres-
ence of late measurements? For simplicity we

0

0.2

0.4

0.�

0.�

1

0 1 2 3 4 � � 7 � � 10 11 12

δ

ρ

Figure 3. Reduction factor in function of the average measurement delay

International Journal of Data Warehousing & Mining, 3(4), �1-�7, October-December 2007 ��

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

will reason on the order example, focusing on
the event reported below and assuming that (i)
on March 17 a correction is received stating
that the quantity is not 100 but 110, and (ii) on
March 19 another correction is received taking
to 1.1 the unit price.

OrderNumber OrderDate Quantity UnitPrice

11001 Mar. 15,
2007 100 1

We consider three sample cases:

1. Accountability is required for no one of
the facts. A monotemporal solution can be
adopted; every time a new measurement
is made for one of the facts, the related
registration is overwritten leaving the other
fact unchanged. Thus, on March 20 only
one registration is present:

OrderNumber OrderDate Quantity UnitPrice

11001 Mar. 15,
2007 110 1.1

2. Accountability is required for Quantity only.
A consolidated-flow solution is adopted;
when a new measurement is made for
Quantity, an update registration is added
that reports the new value for Quantity and

the previous value for UnitPrice. If a new
measurement is made for UnitPrice, the
value of UnitPrice is updated within all the
related registrations. Thus, on March 20
we have two registrations present:

Order-

Number

Order-

Date

Curren-

cyStart

Curren-

cyEnd

Quan-

tity

Unit-

Price

11001 Mar. 15,
2007

Mar. 15,
2007

Mar. 16,
2007

100 1.1

11001 Mar. 15,
2007

Mar. 17,
2007

— 110 1.1

3. Accountability is required for both facts.
A consolidated-flow/stock solution is ad-
opted; any new measurement for each fact
creates a new registration:

Order-

Number

Order-

Date

Curren-

cyStart

Curren-

cyEnd

Quan-

tity

Unit-

Price

11001
Mar.
15,
2007

Mar. 15,
2007

Mar.
16,
2007

100 1

11001
Mar.
15,
2007

Mar. 17,
2007

Mar.
18,
2007

110 1

11001
Mar.
15,
2007

Mar. 19,
2007 — 110 1.1

Remarkably, having two different solu-
tions coexist (like in cases 2 and 3) leads to

without updates with updates

flow fact stock fact flow fact stock fact

monotemp.
flow fair, only UQ

supported not recomm. fair, only UQ
supported not recomm.

stock fair, only UQ
supported

fair, only UQ
supported not recomm. fair, only UQ

supported

bitemp.

delta-flow good not recomm. fair, overhead
on UQ and RQ not recomm.

delta-stock good good not recomm. fair, overhead
on UQ and RQ

cons.-flow — — good not recomm.

cons.-stock — — not recomm. good

Table 11. Applicability of the design solutions

�� International Journal of Data Warehousing & Mining, 3(4), �1-�7, October-December 2007

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

no additional overhead in query performance,
except for some specific historical queries which
require to distinguish the updates made to one
fact from those made to the other.

rEFErENCES
Abelló, A., & Martín, C. (2003a). The data warehouse:

An object-oriented temporal database. Proceed-
ings Jornadas de Ingeniería del Software y Bases
de Datos (pp. 675-684), Alicante, Spain.

Abelló, A., & Martín, C. (2003b). A bitemporal stor-
age structure for a corporate data warehouse.
Proceedings International Conference on
Enterprise Information Systems (pp. 177-183),
Angers, France.

Bebel, B., Eder, J., Koncilia, C., Morzy, T., &
Wrembel, R. (2004). Creation and management
of versions in multiversion data warehouse.
Proceedings ACM Symposium on Applied Com-
puting (pp. 717-723), Nicosia, Cyprus.

Blaschka, M., Sapia, C., & Höfling, G. (1999). On
schema evolution in multidimensional data-
bases. Proceedings International Conference on
Data Warehousing and Knowledge Discovery
(pp. 153-164), Florence, Italy.

Bliujute, R., Saltenis, S., Slivinskas, G., & Jensen,
C. S. (1998). Systematic change management
in dimensional data warehousing. Proceedings
International Baltic Workshop on Databases
and Information Systems (pp. 27-41), Riga,
Latvia.

Bruckner, R., & Tjoa, A. (2002). Capturing delays
and valid times in data warehouses--towards
timely consistent analyses. Journal of Intelligent
Information Systems, 19(2), 169-190.

Devlin, B. (1997). Managing time in the data ware-
house. InfoDB, 11(1), 7-12.

Eder, J., Koncilia, C., & Morzy, T. (2002). The
COMET metamodel for temporal data ware-
houses. Proceedings International Conference
on Advanced Information Systems Engineering
(pp. 83-99), Toronto, Canada.

Golfarelli, M., Lechtenbörger, J., Rizzi, S., & Vos-
sen, G. (2006). Schema versioning in data

warehouses: enabling cross-version querying
via schema augmentation. Data and Knowledge
Engineering, 59(2), 435-459.

Jensen, C., Clifford, J., Elmasri, R., Gadia, S. K.,
Hayes, P. J., & Jajodia, S. (1994). A consensus
glossary of temporal database concepts. ACM
SIGMOD Record, 23(1), 52-64.

Kim, J. S., & Kim, M. H. (1997). On effective data
clustering in bitemporal databases. Proceed-
ings International Symposium on Temporal
Representation and Reasoning (pp. 54-61),
Daytona Beach, US.

Kimball, R. (2000). Backward in time. Intelligent
Enterprise Magazine, 3(15).

Kimball, R. (1996). The data warehouse toolkit.
Wiley Computer Publishing.

Lenz, H. J., & Shoshani, A. (1997). Summarizability
in OLAP and statistical databases. Proceedings
Statistical and Scientific Database Management
Conference (pp. 132-143), Olympia, US.

Letz, C., Henn, E., & Vossen, G. (2002). Consistency
in data warehouse dimensions. Proceedings
International Database Engineering and Ap-
plication Symposium (pp. 224-232), Edmonton,
Canada.

Pedersen, T. B., & Jensen, C. (1998). Research is-
sues in clinical data warehousing. Proceedings
Statistical and Scientific Database Management
Conference (pp. 43-52), Capri, Italy.

Quix, C. (1999). Repository support for data ware-
house evolution. Proceedings International
Workshop on Design and Management of Data
Warehouses, Heidelberg, Germany.

Yang, J. (2001). Temporal data warehousing. PhD
thesis, Stanford University, UK.

ENDNOTE
1 Importantly, as made clear in the sixth and sev-

enth sections, the value actually stored within
a registration is not necessarily the value of
mij. depending on the specific design solution
adopted.

International Journal of Data Warehousing & Mining, 3(4), �1-�7, October-December 2007 �7

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Matteo Golfarelli received his PhD for his work on autonomous agents in 1998. In 2000 he joined the
University of Bologna as a researcher. Since 2005 he is associate professor, teaching information systems
and database systems. He has published over 50 papers in refereed journals and international conferences
in the fields of data warehousing, pattern recognition, mobile robotics, multi-agent systems. He served in
the PC of several international conferences and as a reviewer in journals. His current research interests
include all the aspects related to business intelligence and data warehousing, in particular multidimensional
modeling, what-if analysis and BPM.

Stefano Rizzi received his PhD in 1996 from the University of Bologna, Italy. Since 2005 he is a full professor
at the University of Bologna, where he is the head of the Data Warehousing Laboratory. He has published
about 70 papers in refereed journals and international conferences mainly in the fields of data warehousing,
pattern recognition, and mobile robotics. He joined several research projects on the above areas and has
been involved in the PANDA thematic network of the European Union concerning pattern-base manage-
ment systems. His current research interests include data warehouse design and business intelligence, in
particular multidimensional modeling, data warehouse evolution, and what-if analysis.

