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AbSTrACT

Though in most data warehousing applications no relevance is given to the time when events are recorded, 
some domains call for a different behavior. In particular, whenever late measurements of events take place, 
and particularly when the events registered are subject to further updates, the traditional design solutions 
fail in preserving accountability and query consistency. In this article, we discuss the alternative design 
solutions that can be adopted, in presence of late measurements, to support different types of queries that 
enable meaningful historical analysis. These solutions are based on the enforcement of the distinction 
between transaction time and valid time within the schema that represents the fact of interest. Besides, 
we provide a qualitative and quantitative comparison of the solutions proposed, aimed at enabling well-
informed design decisions.
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INTrODUCTION
Time is commonly understood as a key fac-
tor in data warehousing systems since the 
decisional process often relies on computing 
historical trends and on comparing snapshots 
of the enterprise taken at different moments. 
Within the multidimensional model, time is 
usually a dimension of analysis; thus, the rep-
resentation of the history of fact values across 
a given lapse of time, at a given granularity, is 
directly supported. For instance, in a relational 
implementation for the sales domain, for each 
day there will be a set of rows in the fact table 
reporting the values of fact QuantitySold on 

that day for different products and stores. On 
the other hand, although the multidimensional 
model does not inherently represent the history 
of values for dimensions and their properties, 
some ad hoc techniques were devised to sup-
port the so-called slowly-changing dimensions 
(Kimball, 1996). In both cases, time is com-
monly meant as valid time in the terminology 
of temporal databases (Jensen et al., 1994) 
(i.e., it is meant as the time when an event 
or change occurred in the business domain) 
(Devlin, 1997). Transaction time, meant as the 
time when the event or change was registered 
in the data warehouse, is typically given little 
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or no importance since it is not considered to 
be relevant for decision support.

One of the underlying assumptions in data 
warehouses is that, once an event has been 
registered (under the form of a row in the fact 
table), it is never modified so that the only pos-
sible writing operation consists in appending 
new events (rows) as they occur. While this 
is acceptable for a wide variety of domains, 
some applications call for a different behavior. 
In particular, the values measured for a given 
event may change over a period of time, to be 
consolidated only after the event has been for 
the first time registered in the data warehouse. 
This typically happens when the early mea-
surements made for events may be subject to 
errors (e.g., the amount of an order may be 
corrected after the order has been registered) or 
when events inherently evolve over time (e.g., 
notifications of university enrollments may be 
received and registered several days after they 
were issued).

In this context, if the up-to-date situation is 
to be made timely visible to the decision mak-
ers, past events must be continuously updated 
to reflect the incoming data. Unfortunately, if 
updates are carried out by physically overwrit-
ing past registrations of events, some problems 
may arise:

• Accountability and traceability require the 
capability of preserving the exact informa-
tion the analyst based his or her decision 
upon. If the old registration for an event is 
replaced by its latest version, past decisions 
can no longer be justified.

• In some applications, accessing only up-to-
date versions of information is not sufficient 
to ensure the correctness of analysis. A 
typical case is that of queries requiring to 
compare the progress of an ongoing phe-
nomenon with past occurrences of the same 
phenomenon: since the data recorded for the 
ongoing phenomenon are not consolidated 
yet, comparing them with past consolidated 
data may not be meaningful.

Remarkably, the same problems may arise 
when events are registered in the data ware-
house only once, but with a significant delay 
with respect to the time when they occurred 
in the application domain (e.g., there may be 
significant delays in communicating the daily 
price of listed shares on the stock market): no 
update is necessary in this case, yet valid time 
is not sufficient to guarantee accountability. 
Thus, in more general terms, we will use term 
late measurement to denote any measurement of 
an event that is sensibly delayed with respect to 
the time when the event occurs in the application 
domain; a late measurement may either imply 
an update to a previous measurement (as in the 
case of late corrections to orders) or not (as in 
the case of shares).

In this article, we discuss and compare the 
design solutions that can be adopted, in presence 
of late measurements, to enable meaningful 
historical analysis aimed at preserving ac-
countability and consistency. These solutions 
are based on the enforcement of the distinction 
between transaction time and valid time within 
the schema that represents the fact of interest. 

The rest of the article is organized as fol-
lows. In the second and third sections, respec-
tively, we survey the related literature and pres-
ent the working examples. In the fourth section, 
we distinguish two possible semantics for facts 
and give definitions of events and registrations. 
In the fifth section, we distinguish three basic 
categories of queries from the point of view of 
their temporal requirements in presence of late 
measurements. The sixth and seventh sections 
introduce, respectively, two classes of design 
solutions: monotemporal and bitemporal, 
that are then quantitatively compared in the 
eighth section. The ninth section concludes by 
discussing the applicability of the solutions 
proposed.

rELATED LITErATUrE
Several works concerning temporal data ware-
housing can be found in the literature. Most 
of them are related to consistently managing 
updates in dimension tables of relational data 
warehouses—the so-called slowly-changing 
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dimensions (e.g., Letz, Henn, & Vossen, 2002; 
Yang, 2001). Some other works tackle the prob-
lem of temporal evolution and versioning of the 
data warehouse schema (Bebel, Eder, Koncilia, 
Morzy, & Wrembel, 2004; Blaschka, Sapia, & 
Höfling, 1999; Eder, Koncilia, & Morzy, 2002; 
Golfarelli, Lechtenbörger, Rizzi, & Vossen, 
2006; Quix, 1999). All these works are not 
related to ours since there is no mention of the 
opportunity of representing transaction time in 
data warehouses in order to allow accountability 
and traceability for late measurements.

Devlin (1997) distinguishes between 
transient data, that do not survive updates and 
deletions, and periodic data, that are never 
physically deleted from the data warehouse. 
Kimball (1996) introduces two basic paradigms 
for representing inventory-like information in a 
data warehouse: the transactional model, where 
each increase and decrease in the inventory level 
is recorded as an event, and the snapshot model, 
where the current inventory level is periodically 
recorded. This is then generalized to define a 
classification of facts based on the conceptual 
role given to events:

• For a transactional fact, each event may 
either record a single transaction or sum-
marize a set of transactions that occur dur-
ing the same time interval. Most measures 
are flow measures (Lenz & Shoshani, 
1997): they refer to a time interval and are 
cumulatively evaluated at the end of that 
period.

• For a snapshot fact, events correspond to 
periodical snapshots of the fact. Measures 
are mostly stock measures (Lenz et al., 
1997): they refer to an instant in time and 
are evaluated at that instant.

A similar characterization is proposed 
by Bliujute, Saltenis, Slivinskas, and Jensen 
(1998), who distinguish between state-oriented 
data like sales, inventory transfers, and financial 
transactions, and event-oriented data, like unit 
prices, account balances, and inventory levels. 
Both distinctions are relevant to our approach 
and are recalled in the fourth section. Bliujute et 

al. (1998) also propose a temporal star schema 
that incorporates timestamps into the fact table 
to model valid time; though such schema is 
somehow related to the design solutions we 
propose, it does not take transaction time into 
consideration and is not analyzed in the light 
of the late measurements problem.

Pedersen and Jensen (1998) recognize 
the importance of advanced temporal support 
in data warehouses, with particular reference 
to medical applications. Abelló and Martín 
(2003a) claim that there are important simi-
larities between temporal databases and data 
warehouses, suggest that both valid time and 
transaction time should be modeled within data 
warehouses, and mention the importance of 
temporal queries. Finally, Abelló and Martín 
(2003b) propose a storage structure for a bitem-
poral data warehouse (i.e., one supporting both 
valid and transaction time). All these approaches 
suggest the importance of transaction time in 
data warehouses, but not with explicit reference 
to the problem of late measurements.

Kimball (2000) raises the problem of late-
arriving fact records, generically stating that a 
bitemporal solution may be useful to cope with 
them. In the same direction, Bruckner and Tjoa 
(2002) discuss the problem of data warehouse 
temporal consistency in consequence of delayed 
discovery of real-world changes and propose 
a solution based on transaction time (which 
they call revelation time) and overlapped valid 
time. Although the article discusses some issues 
related to late measurements, no emphasis is 
given to the influence that the semantics of 
the captured events and the querying scenarios 
pose on the feasibility of the different design 
solutions. 

WOrKING EXAMPLES
In this section, we propose three examples that 
justify the need for managing late measure-
ments and will be used in the rest of the article 
to discuss and compare the different design 
solutions.

In the first example, late measurements 
(with updates) are motivated by the fact that 
the represented events inherently evolve over 
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time. Consider a fact modeling the number of 
enrollments to university degrees; in a relational 
implementation, a simplified fact table for en-
rollments could have the following schema (we 
intentionally do not introduce surrogate keys in 
the fact table in order to avoid to unnecessarily 
complicate the examples):

FT_ENROLL(EnrollDate, Degree, AcademicYear, 
Number)

where EnrollDate is the formal enrollment date 
(the one reported on the enrollment form). An 
enrollment is acknowledged by the University 
secretariat only when the entrance fee is paid; 
considering the variable delays due to the bank 
processing and transmitting the payment, the 
enrollment may be communicated and stored 
in the university database—and, from there, 
loaded into the data warehouse—even one 
month after the enrollment has been done. 
This is a case of late measurements. Besides: 
(i) notices of payments for the same enrollment 
date are spaced out over long periods, and (ii) 
after paying the fee, students may decide to 
switch their enrollment from one degree to 
another. Thus, updates are necessary in order 
to correctly track enrollments.

The main reason why, in this example, the 
enrollment date may not be sufficient is related to 
the soundness of analysis. In fact, most queries 
on this fact will ask for evaluating the current 
trend of the number of enrollments as compared 
to last year. But if the current, partial data on 
enrollments were compared to the consolidated 
ones at exactly one year ago, the user would 
wrongly infer that this year we are experiencing 
a negative trend for enrollments!

The second example is related to a fact 
representing the quantities in the lines of orders 
received by a company selling PC consumables, 
according to the following schema:

FT_ORDER(OrderNumber, OrderDate, Product, 
Quantity).

Though the first registration of an order 
may not involve notable delays, the orders 

received may be subject to later corrections, 
which implies late measurements.

The third example, motivated by the delay 
in communicating information, is that of a fact 
monitoring the price of listed shares on the 
stock market:

FT_SHARE(Date, Share, Price).

We assume that this fact is daily fed by im-
porting a file that reports the current quotations; 
occasional delays in communicating the daily 
prices will produce late measurements, which 
in turn will raise problems with justifying the 
decisions made on previous reports.

EVENTS AND rEGISTrATIONS
The aim of this section is to introduce the clas-
sification of events and registrations on which 
we will rely in the next sections to discuss the ap-
plicability of the design solutions proposed.

In general terms, the facts to be monitored 
for decision support fall into two broad catego-
ries according to the way they are measured in 
the application domain. Flow facts (called flow 
measures in Lenz et al., 1997) are monitored 
by collecting their occurrences during a time 
interval and are cumulatively measured at the 
end of that period; examples of flow facts are 
order quantity and number of enrollments. 
Stock facts (called stock measures in Lenz 
et al., 1997) are monitored by periodically 
sampling and measuring their state; examples 
of stock facts are the price of a share and the 
level of a river.

Definition 1 (Event): Given fact F, we call events 
the results of the monitoring of F. Each event 
is identified by a set of coordinates, i.e., values 
for the dimensions of analysis of F. We call the 
valid time of event ei the instant vti when ei takes 
place in the application domain. Event ei yields 
a non empty sequence of measurements mij, j 
= 1,…,ni (ni ≥ 1).

Each new measurement for an event pro-
vides a revised value, typically more accurate 
than the previous one. Obviously, in order to 
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avoid information loss, each measurement 
received for an event must be recorded into 
the data warehouse, which is done when next 
refresh takes place.

Definition 2 (Registration): Given fact F and a 
measurement mij for event ei, we call registra-
tion rij for mij the recording1 of mij on the data 
warehouse, done on transaction time ttij (ttij ≥ 
vti). For each i, ri1 is called the first registra-
tion for ei and the rij’s with j > 1 (if any) are 
called the update registrations for ei. Given t 
≥ vti, the current registration for ei at time t is 
the one done on transaction time ttij* where j* 
= max{j | ttij ≤ t}.

With reference to our working examples:

• An event for the (flow) order fact measures 
the quantity ordered for a given product 
within a given order issued on a given date 
(its coordinates). In this case, each event 
corresponds to a single order line (no ag-
gregation is done) and its valid time is the 
order date. The first registration of each 
event is done when the related order is 
received; an update registration may arise 
if the ordering customer asks for modifying 
a quantity in her order.

• An event for the (flow) enrollment fact 
measures the net number of enrollments 

made on a given date for a given degree 
and academic year (its coordinates). In this 
case, each event aggregates a set of enroll-
ments and its valid time is the enrollment 
date; after the first registration, a sequence 
of update registrations is typically made 
for each event as new data on enrollments 
made on previous dates are received.

• An event for the (stock) share fact is the 
observation, made on a given date (valid 
time), of the price for a given share (date 
and share are the event coordinates). One 
single (first) registration is commonly made 
in this case for each event.

The delay between the time when a mea-
surement is received by the operational database 
and the transaction time of the corresponding 
registration in the data warehouse depends on 
the duration of the refresh interval of the data 
warehouse (i.e., on the time between two con-
secutive periodical refreshes (typically ranging 
between 1 and 7 days)). Since, from the point of 
view of a data warehouse user, a measurement 
is known only when it is registered, in the fol-
lowing we will assume that each measurement 
is synchronous with its registration.

To clarify this point, Figure 1 shows an 
example where two events are characterized, 
respectively, by three and one measurements. 
The central axis represents the flow of time, 
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Figure 1. Late and non-late registrations; stars, triangles, diamonds, and squares stand for 
events, measurements, registrations, and data warehouse refreshes, respectively
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and reports the instants when events take place 
and their measurements are received by the 
operational database. Such instants are then 
projected on the other two axes that represent, 
respectively, valid and transaction time. The 
instant when an event takes place is its valid 
time (e.g., vt1 is the valid time for e1). Each 
measurement is registered in the data ware-
house not immediately when it is received by 
the operational database, but when next refresh 
takes place: for instance, measurement m12 is 
registered only at time tt12, which becomes its 
transaction time.

Definition 3 (Late measurement): Given fact F 
and event ei, measurement mij is said to be late 
when its transaction time ttij is later than the time 
of the first refresh made after vti. Fact F is subject 
to late measurements when it yields at least one 
late measurement. In particular, it is subject to 
late measurements without updates when ni = 
1 for every i (i.e., no update registrations are 
made), and subject to late measurements with 
updates when it is ni > 1 for at least one i (i.e., 
at least one update registration is made for at 
least one event).

With reference to Figure 1, the first mea-
surement m11 is not late since it is registered at 
the end of the refresh interval where e1 took 
place. The other three measurements are late: 
for instance, m21 is late since its transaction 
time tt21 is later than tt12, which is the time of 
the first refresh after e2.

qUErYING SCENArIOS
From a conceptual point of view, as understood 
in the previous section, for every fact two differ-
ent temporal dimensions may be distinguished. 
The first one refers to the time when events 
actually take place in the application domain, 
while the second one refers to the time when their 
measurements are perceived and recorded in the 
data warehouse. Consistently with the literature 
on temporal databases (Jensen et al., 1994), we 
called these two dimensions, respectively, valid 
time and transaction time.

While we take for granted that valid time 
must always be represented in registrations, 
since it is a mandatory coordinate for charac-
terizing events, the need for representing also 
transaction time depends on the nature of the 
expected workload. From this point of view, 
three types of queries can be distinguished 
(the terminology is inspired by Kim and Kim, 
1997):

Definition 4 (Types of queries: Given the fact F 
and query q that involves the set of events Eq, we 
will say q is an up-to-date query when for each 
event ei ∈ Eq only the now-current measurement 
is required; q is a rollback query when, given 
time t, for each event ei ∈ Eq only the current 
measurement at time t is required; q is a histori-
cal query when, given time interval T = [t1, t2], 
for each event ei ∈ Eq all the measurements that 
were current at any t ∈ T are required.

Intuitively, up-to-date queries require 
the most recent measurements for events. An 
example of up-to-date query on the enrollment 
fact is the one asking for the daily number of 
enrollments to a given degree made during last 
week. In fact, this query is solved correctly by 
considering the most up-to-date data available 
for the number of enrollments by enrollment 
dates. Registering transaction time is not nec-
essary to solve this kind of queries, since they 
rely on valid time only. For a fact not subject to 
late measurements, all possible queries belong 
to this category, since the first registration for 
each event is not significantly delayed with 
respect to the event valid time, and no update 
registrations take place.

On the other hand, a rollback query requires 
a past measurement for each event. Consider 
for instance the query asking for the current 
trend of the total number of enrollments for 
each degree as compared to last year. In order 
to get consistent results, the comparison must be 
founded on registration dates rather than enroll-
ment dates. Thus, this kind of query requires 
that transaction time is explicitly represented 
in registrations.
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Finally, historical queries require mul-
tiple measurements for events. An example 
of historical query is the one asking for the 
daily distribution of the number of enrollments 
received for a given enrollment date. Also 
these queries require transaction time to be 
represented explicitly.

Depending on the presence of late measure-
ments and on the composition of the expected 
workload, two main types of design solution can 
be envisaged for a fact: monotemporal, where 
only valid time is modeled as a dimension of 
analysis; bitemporal, where both valid and 
transaction time are modeled as dimensions of 
analysis. The details of these two types of solu-
tions are discussed in following sections.

MONOTEMPOrAL SOLUTIONS
Monotemporal solutions are those commonly 
implemented for facts that either are not subject 
to late measurements or are only required to 
support up-to-date queries. They are the sim-
plest solutions: update registrations are done by 
physically overwriting the registrations made at 
previous times for the same event, so that one 
single registration (the most recent one) is kept 
in the database for each event. The transaction 
times of registrations are not represented and no 
trace is left of past measurements so only up-to-
date queries are supported and, in case of late 
measurements, accountability is not guaranteed. 
For instance, the schema of the monotemporal 
solutions for the order, the enrollment, and the 
share facts are exactly the ones already shown 
in the third section, where the only temporal 
dimensions are, respectively, OrderDate, En-
rollDate, and Date (valid times).

Discussing in detail how registrations are 
made in a monotemporal solution requires to 
clarify that, from the semantic point of view, 
all registrations conform to one of two models: 
flow registrations, that are additive along all 
dimensions of analysis (i.e., the fact values 
can always be summed when aggregating), 
and stock registrations, that are non-additive 
along temporal dimensions (i.e., the fact values 
cannot be summed when aggregating along 
time, while for instance they can be averaged). 
While in a bitemporal solution, as we will see in 
the seventh section, two different models may 
be adopted for first registrations and update 
registrations, in a monotemporal solution all 
registrations share the same model. Thus, we 
will call flow solution the one relying on flow 
registrations, and stock solution the one relying 
on stock registrations. The choice of a flow or 
stock solution is influenced by the core workload 
the fact is subject to, but mainly depends on the 
category (flow or stock) of the fact, as clarified 
in the next subsections.

Flow Facts
For a flow fact, the flow solution is typically 
the most natural choice. Each event ei is repre-
sented by a single flow registration, associated 
to valid time vti, reporting the value of the last 
measurement for ei. An update registration for 
an event is made by physically replacing the 
previous registration for the same event. For 
instance, for the order quantity fact, the flow 
registrations might be those reported in Table 
1, each representing an event, i.e. a single line 
of an order. When an update measurement is 
received, due to a correction to a given order 

OrderNumber OrderDate Product Quantity

11001 Mar. 15, 2007 CD-R 100

11001 Mar. 15, 2007 DVD+R 20

11203 Apr. 15, 2007 CD-RW 80

11203 Apr. 15, 2007 DVD+R 25

Table 1. Flow solution for the order line fact
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line, the registration corresponding to that order 
line is overwritten and the new value for the 
fact is reported.

On the other hand, for some flow facts both 
flow and stock solutions can be reasonably used. 
This is true, for instance, for the enrollment fact 
introduced in the third section. A sample set of 
flow registrations for enrollments is shown in 
Table 2. Each registration records the number 
of students who enrolled, on a given date, to 
a given degree course for a given academic 
year (i.e., the exact value of the measurement). 
Table 3 shows how the same events could be 
represented by stock registrations: here each 
registration records, at a given date, the total 
number of students who enrolled to a given 
degree course for a given academic year so far. 
In this case, for instance, the first registration for 
the event with valid time October 22 is made 
by summing the (flow) measurement 2 for that 
event to the stock registration 5 for the event 
with valid time October 21.

The choice of one or another solution for 
a flow fact depends first of all on the expected 
workload, and in particular on the relative 
weight of queries asking for flow and stock 
information respectively. For instance, the total 

number of enrollments for an academic year can 
be obtained in the flow solution by summing up 
all pertinent registrations, which may be costly, 
while in the stock model it is sufficient to read 
a single registration (the most recent one). On 
the other hand, consider a query asking for the 
number of enrollments to Electrical Engineering 
made on October 22. While in the flow solution 
such query is answered by reading one registra-
tion (the one reporting Number = 2 in Table 2), in 
the stock solution the result must be computed 
as the difference between the values of Number 
registered in two consecutive days. 

The main factor to be considered before 
choosing to use a stock solution for a flow fact 
is whether events are subject to updates. In fact, 
in this case, after each update all the related 
stock registrations would have to be updated 
accordingly, which may become quite costly. 
For instance, suppose that on October 23 it is 
known that the number of enrollments made 
on October 21 is not 5 but 8. While in the flow 
solution it is sufficient to modify the registration 
dated October 21, in the stock solution also all 
the registrations for the following dates should 
be updated by adding 3.

EnrollDate Degree AcademicYear Number

Oct. 21, 2005 Elec. Eng. 05/06 5

Oct. 22, 2005 Elec. Eng. 05/06 2

Oct. 23, 2005 Elec. Eng. 05/06 3

EnrollDate Degree AcademicYear Number

Oct. 21, 2005 Elec. Eng. 05/06 5

Oct. 22, 2005 Elec. Eng. 05/06 7

Oct. 23, 2005 Elec. Eng. 05/06 10

Table 3. Stock solution for the enrollment fact

Table 2. Flow solution for the enrollment fact
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Stock Facts
Differently from flow facts, stock facts naturally 
conform to the stock solution; for instance, a 
sample set of stock registrations for the share 
fact is reported in Table 4: like in the flow so-
lution applied to a flow fact, each registration 
records the exact value of the measurement. In 
principle, adopting a flow solution for a stock 
fact is still possible, although not recommended. 
In fact, it would require disaggregating the 
(stock) measurements made in the application 
domain into a net flow to be registered, which 
implies that, before each new flow registra-
tion can be made, the current stock level must 
be computed by aggregating all registrations 
for the previous events. For instance, Table 5 
shows the flow registrations corresponding to 
the stock registrations in Table 4. Registering 
as –2 the measurement 10 made on January 
9, requires to first compute the stock level 12, 
valid on January 8, which can only be done by 
accessing all previous registrations.

bITEMPOrAL SOLUTIONS
These are the most general solutions to be 
adopted in presence of late measurements and 
they allow all three types of queries to be cor-
rectly answered. On each refresh cycle, new 
update registrations for previous events may be 

added, and their transaction time is traced; no 
overwriting of previous registrations is carried 
out, thus no measurement is lost.

In a bitemporal solution, we distinguish 
between the model (flow or stock) adopted for 
the first registrations of events and that adopted 
for update registrations. We will call delta solu-
tions those where update registrations conform 
to the flow model, consolidated solutions those 
where update registrations conform to the stock 
model. In particular, in delta solutions:

1. An update measurement mij for event ei 
is represented by a flow registration that 
records value mij – mij–1 (i.e., a “delta” for 
the fact with respect to the previous reg-
istration for ei);

2. Transaction time is modeled by adding 
to the schema a new temporal dimen-
sion, typically with the same grain of the 
temporal dimension that models the valid 
time, to represent when each registration 
was made;

3. Up-to-date queries are answered by aggre-
gating, for each event, all registrations;

4. Rollback queries at time t are answered by 
aggregating, for each event, all registrations 
whose transaction time is before t;

5. Historical queries on time interval T are 
answered by selectively aggregating, for 
each event, the registrations whose transac-
tion time is included in T.

In consolidated solutions:

1. An update measurement mij for event ei 
is represented by a stock registration that 
records the consolidated value for the first 
registration mi1 of event ei, under a form 
depending on the model (flow or stock) 
adopted for mi1;

2. Transaction time is modeled by adding to 
the fact two new temporal dimensions, used 
as timestamps to mark the time interval 
during which each registration is current 
(currency interval);

3. Up-to-date queries are answered by select-
ing, for each event, the registration that 

Date Share Price

Jan. 7, 2006 BigTel 9

Jan. 8, 2006 BigTel 12

Jan. 9, 2006 BigTel 10

Date Share Price

Jan. 7, 2006 BigTel 9

Jan. 8, 2006 BigTel 3

Jan. 9, 2006 BigTel –2

Table 4. Stock solution for the share fact

Table 5. Flow solution for the share fact
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is current now (the one whose currency 
interval is still open);

4. Rollback queries at time t are answered by 
selecting, for each event, the registration 
that was current at t (the one whose cur-
rency interval includes t);

5. Historical queries on time interval T are 
answered by selecting, for each event, the 
registrations that were current for at least 
one t ∈ T (those whose currency interval 
overlaps with T).

The reason for using two timestamps in a 
consolidated solution is that each registration 
records a state of the event, which is valid 
during a time interval, rather than an instant 
measurement like in a flow solution. 

Since in principle these two types of solu-
tions can be combined with either the flow or the 
stock model for first registrations, four different 
specific solutions can be distinguished, which 
we will call delta-flow, delta-stock, consolidat-
ed-flow, and consolidated-stock, respectively. In 
the following subsections, we will discuss how 
these solutions are implemented for flow and 
stock facts subject to late measurements with 
updates, and for facts subject to late measure-
ments without updates.

Flow Facts with Updates
As seen in the sixth section, a flow fact can be 
represented within the data warehouse either 
by flow or stock registrations.

In case of a flow fact represented by flow 
(first) registrations, the delta solution leads to 

events, first registrations and update registra-
tions that share the same flow semantics, which 
means that additivity is preserved for all regis-
trations. Consider for instance the enrollment 
schema; if a delta-flow solution is adopted, the 
schema is enriched as follows:

FT_ENROLL(EnrollDate, RegistrDate, Degree, 
AcademicYear, Number)

where RegistrDate is the dimension added to 
model transaction time. Table 6 shows a pos-
sible set of registrations for a given degree and 
year, including some positive and negative 
updates. While each first registration records 
the exact value of its measurement, each update 
registration records the difference between its 
measurement and the previous one.

With reference to these sample data, in the 
following we report some simple examples of 
queries of the three types together with their 
results, and show how they can be computed 
by aggregating registrations.

1. q1: Daily number of enrollments to electric 
engineering for academic year 05/06. This 
up-to-date query is answered by summing 
up Number for all registration dates related 
to the same enrollment dates, and returns 
the following result:

EnrollDate Number

Oct. 21, 2005 11

Oct. 22, 2005 6

Oct. 23, 2005 3

EnrollDate RegistrDate Degree AcademicYear Number

Oct. 21, 2005 Oct. 27, 2005 Elec. Eng. 05/06 5

Oct. 21, 2005 Nov. 1, 2005 Elec. Eng. 05/06 8

Oct. 21, 2005 Nov. 5, 2005 Elec. Eng. 05/06 –2

Oct. 22, 2005 Oct. 27, 2005 Elec. Eng. 05/06 2

Oct. 22, 2005 Nov. 5, 2005 Elec. Eng. 05/06 4

Oct. 23, 2005 Oct. 23, 2005 Elec. Eng. 05/06 3

Table 6. Delta-flow solution for the enrollment fact (update registrations in italics)
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2. q2: Daily number of enrollments to electric 
engineering for academic year 05/06 as 
known on Nov. 2. This rollback query is 
answered by summing up Number for all 
registration dates before Nov. 2:

EnrollDate Number

Oct. 21, 2005 13

Oct. 22, 2005 2

Oct. 23, 2005 3

3. q3: Number of registrations of enrollments 
to electric engineering received daily for 
academic year 05/06. This historical query 
is answered by summing up Number, for 
each registration date, along all enrollment 
dates:

RegistrDate Number

Oct. 23, 2005 3

Oct. 27, 2005 7

Nov. 1, 2005 8

Nov. 5, 2005 2

For a flow fact represented by flow registra-
tions, also the consolidated solution is possible. 
In a consolidated-flow solution, the enrollment 
schema is enriched as follows:

FT_ENROLL(EnrollDate, CurrencyStart, Curren-
cyEnd, Degree, AcademicYear, Number)

where CurrencyStart and CurrencyEnd delimit 
the currency interval. Table 7 shows the set of 

registrations corresponding to those in Table 
6: while the first registrations still report the 
same value for the fact, update registrations 
now report the exact value of measurements 
rather than a delta.

Adopting one or the other solution (delta-
flow or consolidated-flow) for a flow fact has 
a deep impact on the response to the workload. 
For instance it is easy to see that, while in the 
delta-flow solution queries q1 and q2 are an-
swered by accessing several registrations for 
each event involved, in the consolidated-flow 
solution they are answered by reading exactly 
one registration (respectively, the one that is 
current now and the one that was current on 
November 2) for each event involved.

In case of a flow fact represented by stock 
registrations, as seen in the sixth section, a 
monotemporal solution leads to an update 
propagation problem. This problem also occurs 
with a bitemporal solution: in fact, since stock 
registrations are computed by accumulating past 
flow measurements, each update measurement 
received for a past event ei would lead to record-
ing a whole set of update registrations, one for 
each event with valid time after ei. Consequently, 
for a flow fact subject to late registrations with 
updates, we will not consider stock solutions 
recommendable.

Stock Facts with Updates
As seen in the sixth section, using flow regis-
trations for a stock fact is not recommendable; 
thus, we will assume that a stock solution is 
adopted.

EnrollDate CurrencyStart CurrencyEnd Degree AcademicYear Number

Oct. 21, 2005 Oct. 27, 2005 Oct. 31, 2005 Elec. Eng. 05/06 5

Oct. 21, 2005 Nov. 1, 2005 Nov. 4, 2005 Elec. Eng. 05/06 13

Oct. 21, 2005 Nov. 5, 2005 — Elec. Eng. 05/06 11

Oct. 22, 2005 Oct. 27, 2005 Nov. 4, 2005 Elec. Eng. 05/06 2

Oct. 22, 2005 Nov. 5, 2005 — Elec. Eng. 05/06 6

Oct. 23, 2005 Oct. 23, 2005 — Elec. Eng. 05/06 3

Table 7. Consolidated-flow solution for the enrollment fact
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Since both measurements and first registra-
tions have stock semantics, the most immediate 
choice is the consolidated-stock solution, that 
gives stock semantics also to update registra-
tions. In the share example, the schema is then 
enriched as follows:

FT_SHARE(Date, CurrencyStart, CurrencyEnd, 
Share, Price)

and may be populated for instance by the sample 
set of registrations reported in Table 8.

An example of up-to-date query on these 
data is “find the minimum price of BigTel from 
Jan. 7 to 9,” which returns 8.5. A rollback query 
is “find the minimum price of BigTel from Jan. 
7 to 9, as known on Jan. 10,” which returns 9. 
Finally, a historical query is “find the fluctuation 
on the price of Jan. 7 for BigTel,” which returns 
–0.5 and requires to progressively compute the 
differences between subsequent registrations. 
Thus, while up-to-date and rollback queries are 
very simply answered, historical queries may 
ask for some computation.

In case of a stock fact, also the delta-stock 
solution can be applied. See for instance Table 9 

that shows the delta solution for the same set of 
measurements reported in Table 8. In this case, 
up-to-date and rollback queries that aggregate 
the fact along valid time would have to be for-
mulated as nested queries relying on different 
aggregation operators. For instance, the average 
monthly price for a share is computed by first 
summing Price along RegistrDate for each Date, 
then averaging the partial results. On the other 
hand, a historical query like the one above is 
very simply answered.

Facts without Updates
In the case of facts where measurements may 
be delayed but done exactly once for each 
event, accountability can be achieved, for both 
flow and stock solutions, by adding a single 
temporal dimension RegistrDate that models 
the transaction time. Up-to-date queries are 
solved without considering transaction times, 
while rollback queries require to select only the 
registrations made before a given transaction 
time. Historical queries make no sense in this 
context, since only one measurement is made 
for each event. As a matter of fact, the solution 
adopted can be considered as a special case of 

Date CurrencyStart CurrencyEnd Share Price

Jan. 7, 2006 Jan. 7, 2006 Jan. 11, 2006 BigTel 9

Jan. 7, 2006 Jan. 12, 2006 — BigTel 8.5

Jan. 8, 2006 Jan. 10, 2006 — BigTel 12

Jan. 9, 2006 Jan. 10, 2006 Jan. 12, 2006 BigTel 10

Jan. 9, 2006 Jan. 13, 2006 — BigTel 10.5

Table 8. Consolidated-stock solution for the share fact

Date RegistrDate Share Price

Jan. 7, 2006 Jan. 7, 2006 BigTel 9

Jan. 7, 2006 Jan. 12, 2006 BigTel –0.5

Jan. 8, 2006 Jan. 10, 2006 BigTel 12

Jan. 9, 2006 Jan. 10, 2006 BigTel 10

Jan. 9, 2006 Jan. 13, 2006 BigTel 0.5

Table 9. Delta-stock solution for the share fact
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delta solution where no update registrations 
are recorded.

COMPArISON AND
DISCUSSION
This section aims at providing a simple quanti-
tative comparison of the different solutions, in 
terms of storage space and query performance. 
Let E, µ, and |Eq| ≤ E denote, respectively, the 
total number of events recorded, the average 
number of measurements per event, and the 
number of events involved in query q.

The results are collected in Table 10. The 
first column of data reports the total number of 
registrations stored in the fact table (we neglect 
that, in consolidated solutions, each registration 
is longer due to the additional timestamp that 
represents the end of the currency interval). 
The other three columns report the execution 
cost for different types of queries, estimated 
as the number of registrations to be accessed 
(independently of the execution plans adopted, 
and assuming that each registration is read 
only once):

• For up-to-date queries we assume that, at 
query formulation time, all measurements 
for the involved events are already avail-
able. 

• For rollback queries, we consider a border 
effect related to the distribution along 
time of the measurements for each event, 
which reduces by a factor ρ (0 ≤ ρ ≤ 1) 
the number of registrations to be read (see 
Figure 2). Such factor heavily depends on 
the relationship between the width of the 
time interval defined by the valid times of 
the involved events, Tq, the relative posi-
tioning of the reference time for the query, 
t, and the average delay of measurements, 
δ. Figure 3 shows how ρ varies, assuming 
that measurements delays are normally dis-
tributed in time, in function of δ (expressed 
in numbers of refreshes), when Tq spans 12 
refreshes and t falls exactly at the end of 
Tq.

• For historical queries, there still is a reduc-
tion factor ρ' that additionally depends on 
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Figure 2. Distribution of measurements for events; in gray the measurements that are not read 
by a rollback query with reference time t

number of tuples UQ RQ HQ

monotemp.
flow E |Eq| — —

stock E |Eq| — —

bitemp.

delta-flow µ E µ |Eq| ρ µ |Eq| ρ' µ |Eq|

delta-stock µ E µ |Eq| ρ µ |Eq| ρ' µ |Eq|

cons.-flow µ E |Eq| ρ |Eq| ρ' µ |Eq|

cons.-stock µ E |Eq| ρ |Eq| ρ' µ |Eq|

Table 10. Quantitative comparison of the design solutions (UQ, RQ, and HQ stand for up-to-
date, rollback, and historical queries, respectively)
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the width of the query reference interval 
T.

Overall, the overhead induced by the design 
solutions proposed on the query performance 
and on the storage space heavily depends on the 
characteristics of the application domain and 
on the actual workload. In a bitemporal solu-
tion, frequent updates determine a significant 
increase in the fact table size, but this may be due 
to a wrong choice of the designer, who promoted 
early registrations of events that are not stable 
enough to be significant for decision support. 
The increase in the query response time may be 
reduced by a proper use of materialized views 
and indexes: a materialized view aggregating 
registrations on all transaction times cuts down 
the time for answering up-to-date queries in 
delta solutions, while an index on transaction 
time enables efficient slicing of registrations in 
consolidated solutions.

CONCLUSION
In this article we have raised the problem of late 
measurements, meant as retrospective updates 
to events registered in a data warehouse, and we 
have shown how conventional design solutions, 
that only take valid time into account, may fail 
to provide query accountability and consistency. 
Then, we have introduced some alternative 
design solutions that overcome this problem 
by modeling transaction time as an additional 

dimension of the fact, and we have discussed 
their applicability. Table 11 summarizes the 
results obtained. Most noticeably, the most 
recommended solutions for a flow and a stock 
fact with updates are, respectively, consolidated-
flow and consolidated-stock. Delta-flow and 
delta-stock, in fact, create some overhead with 
up-to-date and rollback queries.

In commercial platforms, late registrations 
are only partially supported. To the best of our 
knowledge, the most sophisticated solution 
is the one adopted by SAP-BW, that supports 
bitemporal solutions. In particular, BW distin-
guishes between cumulative and non-cumula-
tive key figures (corresponding to flow and stock 
facts). The former are directly modeled in the 
fact table through a delta-flow solution. The 
latter can be handled by adopting two different 
time granularities: at the coarsest one, consoli-
dated values for events are historicized within 
a support table; at the finest one, delta values 
are stored within the fact table limitedly to a 
user-defined time interval. This solution, while 
guaranteeing good querying performances, 
limits the expressivity achievable with rollback 
and historical queries.

We close this section by observing that, 
in real applications, multiple related facts are 
normally stored in the same fact table (e.g., in 
the order example, quantity and unit price for 
each order line). How do they coexist in pres-
ence of late measurements? For simplicity we 
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Figure 3. Reduction factor in function of the average measurement delay
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will reason on the order example, focusing on 
the event reported below and assuming that (i) 
on March 17 a correction is received stating 
that the quantity is not 100 but 110, and (ii) on 
March 19 another correction is received taking 
to 1.1 the unit price.

OrderNumber OrderDate Quantity UnitPrice

11001 Mar. 15, 
2007 100 1

We consider three sample cases:

1. Accountability is required for no one of 
the facts. A monotemporal solution can be 
adopted; every time a new measurement 
is made for one of the facts, the related 
registration is overwritten leaving the other 
fact unchanged. Thus, on March 20 only 
one registration is present:

OrderNumber OrderDate Quantity UnitPrice

11001 Mar. 15, 
2007 110 1.1

2. Accountability is required for Quantity only. 
A consolidated-flow solution is adopted; 
when a new measurement is made for 
Quantity, an update registration is added 
that reports the new value for Quantity and 

the previous value for UnitPrice. If a new 
measurement is made for UnitPrice, the 
value of UnitPrice is updated within all the 
related registrations. Thus, on March 20 
we have two registrations present:

Order-

Number

Order-

Date

Curren-

cyStart

Curren-

cyEnd

Quan-

tity

Unit-

Price

11001 Mar. 15, 
2007

Mar. 15, 
2007

Mar. 16, 
2007

100 1.1

11001 Mar. 15, 
2007

Mar. 17, 
2007

— 110 1.1

3. Accountability is required for both facts. 
A consolidated-flow/stock solution is ad-
opted; any new measurement for each fact 
creates a new registration:

Order-

Number

Order-

Date

Curren-

cyStart

Curren-

cyEnd

Quan-

tity

Unit-

Price

11001
Mar. 
15, 
2007

Mar. 15, 
2007

Mar. 
16, 
2007

100 1

11001
Mar. 
15, 
2007

Mar. 17, 
2007

Mar. 
18, 
2007

110 1

11001
Mar. 
15, 
2007

Mar. 19, 
2007 — 110 1.1

Remarkably, having two different solu-
tions coexist (like in cases 2 and 3) leads to 

without updates with updates

flow fact stock fact flow fact stock fact

monotemp.
flow fair, only UQ 

supported not recomm. fair, only UQ 
supported not recomm.

stock fair, only UQ 
supported

fair, only UQ 
supported not recomm. fair, only UQ 

supported

bitemp.

delta-flow good not recomm. fair, overhead 
on UQ and RQ not recomm.

delta-stock good good not recomm. fair, overhead 
on UQ and RQ

cons.-flow — — good not recomm.

cons.-stock — — not recomm. good

Table 11. Applicability of the design solutions
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no additional overhead in query performance, 
except for some specific historical queries which 
require to distinguish the updates made to one 
fact from those made to the other.
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ENDNOTE
1 Importantly, as made clear in the sixth and sev-

enth sections, the value actually stored within 
a registration is not necessarily the value of 
mij. depending on the specific design solution 
adopted.
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