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Abstract

A major problem in map building is due to the
imprecision of sensor measures. In this paper we propose
a technique, called elastic correction, for correcting the
dead-reckoning errors made during the exploration of an
unknown environment by a robot capable of identifying
landmarks. Knowledge of the environment being acquired
is modelled by a relational graph whose vertices and arcs
represent, respectively, landmarks and inter-landmark
routes. Elastic correction is based on an analogy between
this graph and a mechanical structure: the map is
regarded as a truss where each route is an elastic bar and
each landmark a node. Errors are corrected as a result of
the deformations induced from the forces arising within
the structure as inconsistent measures are taken. The
uncertainty on odometry is modelled by the elasticity
parameters characterizing the structure.

1 Introduction

Most mobile robots need a map of the environment to
carry out successfully the navigational tasks assigned to
them. Several techniques for environment representation
have been devised in the literature, including topological
maps [9], symbolic graphs labelled with metric
information [2] and analogic descriptions [6]. Though in
some applications a detailed map of the environment is
given to the robot a priori, map building is still an
important issue for all the applications in which the
environment is unknown and, in general, in order to have
a robot exhibit a fully autonomous behaviour.

The problem of building an accurate map of the
environment is strictly related to that of self-positioning.
Two positioning techniques are typically used (often
together), namely relative and absolute. Relative
positioning is based on odometers which estimate the
current position by determining the offset from the initial
position. Absolute positioning is based either on an
absolute sensor such as a GPS [5] or on the possibility of
recognizing landmarks by processing data obtained by

sensors such as sonars, lasers, cameras, etc. [8].
Problems influencing the effectiveness of these

techniques in the real world are caused by the imprecision
of measurements, which produces metric errors. In
particular, odometers typically produce both systematic
and non-systematic errors. The former depend entirely on
the mobile platform adopted [4]; the latter are due to
undesired interactions between the robot and the
environment, such as uneven ground. Systematic errors
can be predicted; some are deterministic, some can be
modelled by a probabilistic distribution (e.g., the encoder
finite resolution causes a normally-distributed error). The
latter, which we will call dead-reckoning erros, are
inherently associated to every sensor, thus they play a
significant role in determining the global error; we may
assume that they are distributed normally with null mean.
Non-systematic errors cannot be predicted, unless some
assumptions on the environment can be made or particular
sensors are mounted [3].

Our approach to map building can be applied to correct
the dead-reckoning errors made by a robot navigating
within an environment where landmarks are present; we
do not consider topological errors since we assume that
the robot is capable of recognizing a landmark it has
already met. The environment is modelled by a relational
graph whose vertices and arcs represent, respectively, the
landmarks sensed and the inter-landmark routes
experienced [10]. While exploring the environment, the
robot calculates the relative position of each landmark
compared to the one met immediately before, by applying
dead-reckoning; when it meets a landmark it has already
seen, self-positioning and error correction are achieved
together by combining the new measurements collected
with the knowledge accumulated so far.

The original contribution of our approach is to found
error correction on an analogy between the graph
modelling the environment and a mechanical structure:
the map is regarded as a truss where each route is an
elastic bar and each landmark a node. Errors are corrected
as a result of the deformations induced by the forces
arising within the structure as inconsistent measurements
are taken. The elasticity parameters characterizing the



structure are used to model the uncertainty on odometry.
The main advantage of our approach as compared to

those proposed in the literature (e.g. [2] [7] [12]) is that it
takes into account all the information previously collected
in order to evaluate the correctness of the new
measurements being acquired.

2 Uncertainty in Self-Positioning

Let the pose of the robot at time step k be expressed by

its position in a Cartesian plane, p(k) = [ ]x(k)

y(k) , and by its

orientation, ϕ(k); the well-known dead-reckoning formula
determines the pose at step k+1 as a function of the pose
at step k and of the moduli of the linear and angular
velocities, w(k+1) and u(k+1), respectively, measured by
sensors at step k+1:

p(k+1) = [ ]x(k)+T w(k+1) cosϕ(k)

y(k)+T w(k+1) sinϕ(k)  ,

ϕ(k+1) = ϕ(k)+T u(k+1)

where T is the sampling interval of sensors (see Figure 1).
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Figure 1. The robot at steps k and k+1.

Using this formula, the errors made in measuring the
angular velocity u(k+1) accumulate through all the
subsequent evaluations of the pose. On the other hand, if
the robot mounts a compass, while the new coordinates
x(k+1) and y(k+1) are still calculated as above, ϕ(k+1) may
be measured directly; thus, each new positional estimate
is not affected by the errors made in measuring the robot's
orientation at the previous steps.

In [15] an estimate of the positional uncertainty for a
robot moving along a path and calculating its current
position by odometers is derived. Each position calculated
is associated with a density function expressing the
probability that, due to errors in measurements, the robot
is positioned in the surrounding area:

δ(x,y,C(k)) = 
1

2π |C(k) |1/2 
.

. exp( )−1
2
 [ ]x − x(k)

y − y(k)  (C(k))-1 [x − x(k)  y − y(k)] 

The area in which the robot may stand with non-

negligible probability is an ellipse whose shape and
dimensions depend on the length and complexity of the
path, and is represented by the covariance matrix C(k) [1].
Similarly, an estimate of the probability density function
of the position for a robot mounting a compass can be
derived.

3 Elastic Correction

The map built by the robot is structured as a non-
directed graph M=(V,R). Each vertex vi ∈ V represents a
landmark sensed and is labelled with its estimated

position pi = [ ]xi
yi

; arc rij ∈ R represents the route

connecting vi  and vj  and is labelled with the number of
times the route has been covered so far, tij . We will
denote by ϑ ij  (route orientation, 0≤ϑ ij<π) the absolute
orientation of the segment connecting vi  to vj , and by sij
(route stretch) its length, calculated as the Euclidean
distance between pi  and pj. Every time the robot moves
from vi  to vj  covering the corresponding route, the
covariance matrix expressing the uncertainty induced on
the position of vj is calculated; the value of the covariance
matrix depends on the length and on the tortuosity of the
route covered. Arc rij  is labelled with the average of the tij
covariance matrices calculated, Cij .

Error correction may be framed within the exploration
algorithm as follows:

L = ();
/* list of the routes on which first-sight
/* correction must be applied
do

reach landmark v j  by covering route r ij ;
if  r ij  never covered before
{ if  v j  never met before

add r ij  to L;
else

{ apply first-sight correction to L' ⊆ L;
L = L - L';

}
}
else

apply refinement correction to r ij ;
loop

It is remarkable that our correction technique works
independently of the specific sensors used for dead-
reckoning: in fact, it can be used by a robot mounting a
compass as well as by a robot using only odometers. Of
course, since in the first case the robot's positional
uncertainty is lower, the residual error after correction
will be significatively smaller.



3.1 Environment modelling

Elastic correction is based on the analogy between the
environment map M  and a pin-jointed truss whose
elements and nodes represent, respectively, routes and
landmarks (see Figure 2); the parameters defining the
stiffness of each element when loaded sum up the
characteristics of the corresponding route. The more
elastic an element, the greater the change in length and
orientation that it will experience when loaded; thus,
stiffness should be proportional to the certainty on the
stretch and orientation of the corresponding route.

(a)

(b)

Figure 2. Graph-based representation of an environment (a) and
equivalent truss (b).

An element representing a route r with stretch s and
orientation ϑ  may be thought of as a bar long s, oriented
according to ϑ  and behaving as follows:

• it can be compressed elastically along its axis to
model uncertainty on the route stretch, s;

• it can neither be bended nor twisted;
• it can rotate elastically to model uncertainty on the

route orientation, ϑ .

From a mechanical point of view, a bar with these
characteristics can be modelled by combining a linear
axial spring and a rotational spring (see Figure 3), whose
spring constants ka and kr must be defined in function of
the probability density function of the robot position.

For simplicity, we consider a bar representing a route r
oriented along the x axis (ϑ=0). Since ka expresses an
axial deformation along x, it is reasonable to define it in
terms of the average error ∆x made by the robot in
determining the x coordinate of the other end of r, i.e., the
average error made on the stretch of r:

ka

kr
f1x,u1x

1 2

f1y,u1y f2y,u2y

f2x,u2x

Figure 3.  Truss basic element, including a linear elastic spring
(in black) and a rotational elastic spring (in grey).

ka ∝  
1

∆x
 ,

where

∆x = ∫
-∞

+∞
 ∫
-∞

+∞
 δ(x,y,C) |x| dx dy  = √2

π C11

and C is the covariance matrix for r.
Similarly, it is possible to calculate the average error

∆y made by the robot in determining the y coordinate of
the other end of r. Since kr does not express an axial
deformation along y, it is necessary to determine the
spring constant kr' of a linear spring which, under certain
conditions, may be equivalent to the rotational one. It
turns out to be

kr = s2 kr'

Thus we may assume

kr ∝  
s2

∆y
 ,

where

∆y = ∫
-∞

+∞
 ∫
-∞

+∞
 δ(x,y,C) |y| dx dy  = √2

π C22

The certainty on the stretch and orientation of route r
also depends on the number t of times r has been covered;
in fact, the higher t, the higher the amount of data
concerning r collected. The stiffness matrix for a bar
representing a route r oriented along the x axis turns out to
be

K  = 
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The stiffness matrix for a bar representing a route r
oriented along direction ϑ  is obtained by

1. rotating by −ϑ the covariance matrix C;
2. calculating ∆x and ∆y by formulae;



3. building the stiffness matrix K ;
4. rotating K  by ϑ.

The stiffness matrix for the whole structure is
assembled by superimposing the stiffness matrices of the
single elements belonging to the structure. The
displacements of the nodes can then be solved by
applying the stiffness method [11].

3.2 Correction of first-sight errors

Suppose the robot is exploring an unknown area
starting from a known landmark v0. It meets the unknown
landmarks v1,...vm-1 by covering a sequence of unknown
routes, and finally reaches a landmark vm which it has
already met either before or during the current exploration
session. If vm has been met before v0, the segments
orderly connecting v0 to vm form an open polygonal (see
Figure 4.a). Otherwise, let 0≤k<m-1 such that vk≡vm; in
this case, the segments orderly connecting vk to vm form a
closed polygonal (see Figure 4.b). When vm is reached,
the new positional estimate p"m computed by dead-
reckoning may be compared to the previous one, p'm; due
to sensor errors, the two estimates will almost certainly
differ. Let

u–m = p"m − p'm

v0

vm

(a)

v0

vm

vk

(b)

Figure 4. Error correction on open (a) and closed (b)
polygonals.

The graph representing the environment should be
metrically consistent at each time during exploration,
hence, the two positional estimates for vm must be forced

to agree exactly. We assume the error on the stretch of
each route to be proportional to the positional uncertainty
induced by that route. On our mechanical model, this
corresponds to

• constraining v0 and applying a displacement u–m to
vm if the polygonal is open;

• constraining vk and applying a displacement u–m to
vm if the polygonal is closed.

In both cases, the displacement applied moves vm in
position p'm thus restoring the metric consistency of the
graph; the displacements calculated for the free nodes
determine the new positions for the landmarks involved.

Figure 5 shows an example for a simple closed
polygonal.

   
(a) (b)

Figure 5. Elastic correction on a regular hexagon. The real
graph is in light grey; the measured one in dark grey (a); the
corrected one is in black (b).

3.3 Refinement of map measurements

Every time the robot covers a route rij  it has covered
before, it can exploit the new information acquired to
improve the current estimate of the stretch and orientation
of rij  and, thus, that of the positions of its end landmark vi
and vj . Reasonably, the estimates for rij  should be equal,
at each time, to the average of the data measured so far.
The desired displacements for vi and vj  are calculated by
imaging to rotate rij  around its midpoint in order to let it
assume the new stretch and orientation.

This solution is not satisfactory since it does not take
into account all the knowledge of the environment
collected so far, while using global knowledge to correct
the error on a single route is essential when the certainty
on the routes is not evenly distributed. Another issue
arising when correcting the error on a route is how metric
consistency for the graph representing the environment is
maintained: in fact, correcting the stretch and orientation
of rij  implies modifying the stretches and orientations of
the adjacent routes.

Our mechanical model allows both issues to be
addressed. Let M  be the graph representing the



environment, and rij ∈ M be the last route experienced. Our
approach consists of two phases:

1. The forces f
–
i  and f

–
j  producing the desired

displacements u–i  and u–j  on the ends of rij  are
calculated on a reference structure including rij  and
the two adjacent routes of maximum stiffness, rih
and rjk ; both rih and rjk  are constrained in the
vertices not shared with rij  (see Figure 6).

vi

vj

vh

vk

rij

rih
rjk

Figure 6. Reference structure for calculating the forces to be
applied.

2. The forces calculated in the previous phase for vi
and vj, f

–
i  and f

–
j , are applied to vi and vj  within a

larger structure including the set of routes
connecting the η landmarks nearest to rij .

It should be noted that choosing a value η  for the
number of free nodes in the structure entails determining
an upper bound on the computational complexity of each
correction. Conversely, the lower η is, the less effective
error correction is. Thus, the design of η may be guided
by two different criteria:

• If limiting computational complexity is a relevant
issue for the current application, a proper value
should be fixed and maintained during navigation (in
most of our tests we used η=50).

• Otherwise, η  should be estimated before each
correction, based on the magnitude of the force
applied and on the pattern of connectivity of the
map, as the number of nodes η− which are expected
to undergo a non negligible displacement.

Simulations showed that, by reducing η  up to 25%, the
average error on the route lengths does not increase
significantly (less than 10%).

4 Experimental Results

The robot platform on which we are experimenting our
approach is a Pioneer I (by Real World Interface); it
mounts a sonar array and a camera for obstacle avoidance

and landmark identification, as well as a fluxgate compass
and a pair of wheel encoders to determine its position. We
have extensively tested the elastic correction technique on
a set of environments in order to evaluate its effectiveness
and robustness. The tests presented in this section are
based on the sensorial model of the Pioneer I robot. In
particular, the sensory covariance matrix was measured by
means of a set of experiments carried out on the robot; the
(absolute) average odometric and compass errors turned
out to be, respectively, 5% of the distance measured and
0.03 radiants.

We estimate the error on the map metric by two
measurements: the average percentage error on the stretch
of the routes, σ, and the average error on the orientation
of the routes, ρ.

Some tests focus on comparing our approach with one
which estimates the stretch and orientation of each route
as the weighted average of the measurements acquired so
far for that route. Please note that the weighted average
technique does not constrain the extremes of pairs of
adjacent routes to overlap; thus, it does not guarantee the
metric consistency of the map. Nevertheless, we believe
this comparison is useful to prove that using global
besides local knowledge leads to more effective
corrections of the metric errors. The other correction
methods proposed in the literature can hardly be
quantitatively compared with elastical correction, since
they are either based on assumptions and sensory
equipments radically different from ours [7] [13] or were
devised within a different framework [14].

Figure 7. First-sight correction. The measured map is grey, the
corrected one is black; crosses represent the true positions of
vertices.



Figure 7 and Table I show the result of first-sight
correction on a square-meshed map. This phase is
primarily aimed at eliminating the metric inconsistencies
due to sensor errors; the resulting map is consistent but
still affected by a significant error.

σ ρ
before correction 0.049 0.033
after correction 0.046 0.032

Table I. Errors for the first-sight correction in Figure 7.

(a)

(b)

(c)

Figure 8. Correction after 1 tour (a), after 5 tours (b), after 50
tours (c). The true maps are grey, the corrected ones are black.

Figures 8 and 9 show the result of refinement
correction on a map being toured several times; it is
remarkable that both errors are already reduced by half
after 3 complete tours of the map. Both error
measurements adopted are referred to routes, that is, to the
relative positioning of landmarks, which we believe to be
the most relevant issue from the point of view of planning
and executing navigational tasks. Nevertheless, we have
also considered the absolute positioning of landmarks; it
turned out that the average error on the landmark
positions reduced to 20÷30% of the one measured before
correction during the first 10 tours and dropped below
10% in the following tours.

We have carried out some tests assuming that the
odometric and compass errors were higher than those
measured on the Pioneer I: 8% and 0.08 radiants,
respectively. The errors on stretch and orientation are still
reduced by half after 3÷4 tours of the map.

We have also carried out some experiments aimed at
determining the behaviour of our technique when the
average odometric and compass errors are strongly
unbalanced. The results confirm that both errors are
reduced by half after 3÷4 tours. These tests prove that the
effectiveness of our approach does not depend on the
amount of sensory errors and confirm that the
mathematical model adopted distributes corrections
properly on the map.



0.01

0.02

0.03

0.04

0.05
elastic correction

weighted average

number of tours

0
0 10 20 30 40 50 60

σ

number of tours

0

0.01

0.02

0.03

0.04

0 10 20 30 40 50 60

elastic correction

weighted average

ρ

Figure 9. Comparison between elastic correction and weighted
average for the map in Figure 8.

5 Conclusion

In this paper we have presented a technique for
correcting sensory errors during a map building process in
mobile robots; error correction is based on an analogy
between the graph modelling the environment and a
mechanical structure whose elasticity parameters model
the uncertainty on odometry. The experimental tests
confirm the effectiveness of our technique in reducing the
global metric error and prove its robustness with reference
to the amount of error.
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