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Abstract - Representing knowledge of the environment is a primary research issue in designing intelligent
autonomous agents. In order to reach a satisfactory level of autonomy in executing repetitive or hazardous tasks,
agents should be provided with a compact though effective method for modelling the environment at different
abstraction levels. The paper proposes a knowledge architecture for the representation of environments where
distinctive places can be identified. Knowledge is structured according to a taxonomy of layers, where each layer
represents an abstraction of the environment which can be profitably used to carry out specific tasks. Different
formalisms may be adopted for representing the different layers, so that the specific properties and advantages of each
formalism can be exploited to best advantage; in particular, we adopt an analogic representation to achieve motion
between distinctive places, and a symbolic representation to support high-level planning of paths in terms of
sequences of distinctive places. The paper briefly discusses some solutions to problems of knowledge representation
and task decomposition, and presents some experimental results.

1. INTRODUCTION

An intelligent autonomous agent (IAA) is a versatile machine including sensors, actuators and
computing devices capable of interacting coherently with an environment and executing a variety of
tasks in unpredictable conditions [7]. Agents move in the environment and improve their
navigational skill through on-line sensor-based learning of robust spatial descriptions of the
surroundings. They can be profitably employed for exploration in hazardous and hostile
environments, as well as for performance of repetitive tasks in offices, factories, hospitals, etc.
Significant research projects in this field have led to prototyping of the HERMIES series of
autonomous mobile robots, as described in [8], and of the MIT Mobots as in [1].

Autonomy implies movement, which in turn requires reactive motion control on the one hand and
capability of planning rough paths at high levels of abstraction on the other [4]. Both reactive
behaviour and high-level path planning are based on a description of the environment, but each has
radically different demands. The first asks for a well-rooted correspondence between entities in the
real world and their internal representation, and requires local sensor-based information. On the
other hand, too much detail in the description may become overwhelming for path planning which
is more easily carried out by leaning on a symbolic representation of the whole environment.

Since each knowledge representation formalism is characterized by different individual properties,
which could favour certain tasks but penalize some others, the choice of a formalism for IAAs is
still an open problem. An approach to path planning based on symbolic representation of the
environment can be found in [5], where connectivity graphs are generated by abstracting the
original map information. In [9] reinforcement learning is used to learn to perform a sequence of
elemental navigation tasks. An integrated symbolic-analogic approach is introduced in [10], where
the navigation problem is generally formulated and a complete algorithm for operating a real robot
in a real world is proposed.

Within the Neural Nets Project of the Italian National Council of Research, our sub-project has
proposed that knowledge of an environment should be represented within an IAA at two different



levels, symbolic and dynamic. The hybrid functional architecture we described in [2] is based on
the coupling of a symbolic module managing explicit knowledge on distinctive objects present in
the environment, and a dynamic (sub-symbolic) module implicitly encoding knowledge necessary
for movement among these objects. Our work has mainly concerned techniques for the correction
of sensor measures and algorithms for map clustering on the symbolic side [6], and a neural
architecture for goal-oriented navigation on the sub-symbolic side [2].

In this work we outline the approach we are currently pursuing in continuing our research in
knowledge representation for IAAs. We suggest that autonomous movement should have the
support of a multi-layered representation of the environment, where each layer corresponds to a
meaningful abstraction. Multi-layered representation supplies a semantically rich description of the
environment; besides, the agent tasks can be decomposed into parallel or sequential sub-tasks on
the different layers, so that their complexity is decreased.

Layering is based in the first place on the existence of distinctive places (landmarks) in the
environment. A landmark is a singularity in the space of available measures. The criterium for
recognizing landmarks depends on the environment. In structured environments, some classes of
objects may be a priori defined as distinctive or significant; in this case, landmarks can be
recognized by means of a classification algorithm applied to sensor data. For instance, an urban
agent endowed with a sonar might recognize every cross-roads as a landmark by classifying sonar
patterns, and an agent in an office environment might analyse the scenes taken from a camera to
recognize computers, telephones, photocopiers, etc.

The concept of landmark is used to draw a "boundary line" in the environment knowledge,
corresponding to the separation between reactive motion and path planning. Further abstraction
levels are introduced in the environment representation through clustering. The semantic role of
knowledge clusters depends on the nature of the environment: room for house-keeping robots,
operative zone for industrial robots, city district for urban vehicles.

Section 2 proposes a multi-layered architecture for knowledge representation, and outlines the
structures and functions of the different layers. An example for a specific environment is also
presented. Section 3 discusses some issues concerning conceptual navigation of layered
knowledge for solving path planning tasks.

2. MULTI-LAYERED KNOWLEDGE ARCHITECTURE

A knowledge layer is a meaningful abstraction of the environment. Each layer returns a different
view of the environment, including only the details which are significant for a specific family of
tasks or sub-tasks and using the most suitable representation formalism. The concept of layer thus
encompasses knowledge, skill and representation.

If no map of the environment is available a priori, the agent is forced to learn a description of the
environment by exploring it and interpreting the measures acquired from sensors. The knowledge
architecture we propose is based on the assumption that the agent can experience the environment
through three sensor channels, conceptually distinct:

• The metric channel returns the agent current position; the sensors used to this end are, for
instance, a compass, an odometer and an altimeter.

• The visual channel returns an image of the nearby surroundings; candidate sensors are a
sonar or a camera.

• The symbolic channel allows some landmarks in the environment to be tagged with a name,
obtained for instance by "reading" a sign or a writing.

The view of the environment supplied from these measures can hardly be directly exploited by the
agent, so it should be reorganized and interpreted. This is formally done by "abstracting" from it
one or more knowledge layers which are suitable for some of the agent's tasks. Each layer may in



turn generate other layers for other tasks, through a procedure of progressive abstraction which
creates a taxonomy of layers. The global knowledge architecture is sketched in Figure 1; the
features of the single layers are outlined below, in terms of skill (why), knowledge (what) and
representation (how).
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Figure 1. Multi-layered representation for environmental knowledge.

Sub-symbolic layer

Why: The sub-symbolic layer is responsible for inter-landmark movement and obstacle
avoidance.

What: Local knowledge is essentially required; any global description of the environment would
be an unnecessary burden.

How: Neural models seem to be more appealing than symbolic ones for representing the sub-
symbolic layer, because of the properties related to distributed knowledge representation,
such as immunity to noise and capability of generalization. We use a neural network
which receives in input the measures from the metric and visual channels (the state of the
agent in the environment), and produces as output the action to be executed, i.e., the
direction to follow. A reinforcement algorithm allows optimal mapping from the set of
inputs to the set of possible actions to be learned, using the current goal (the landmark to
be reached) as a contextual input. Unlike most deterministic approaches, our
reinforcement-based approach proves itself to work independently of the environment
typology; for instance, the presence of cul-de-sacs does not affect its performance.
Specific issues related to the application of reinforcement learning techniques to inter-
landmark navigation are discussed in [3], together with some experimental results.

Symbolic layer

Why: The symbolic layer is the foundation for path planning.

What: Path planning is carried out more easily by hiding the details of the physical paths; hence,
the environment is here represented as a map of landmarks and feasible inter-landmark
paths (routes). Landmark recognition is based on data from the visual channel; each
landmark is associated with its position (metric channel) and description (symbolic



channel). A route is an abstraction corresponding to the straight-line connection between
two landmarks, and is described by a cost expressing, for instance, the length of the
corresponding physical path or the average time spent to cover it.

How: The formalism adopted is that of a directed graph whose vertices and arcs correspond to
landmarks and routes, respectively. The symbolic layer is considered to have abstraction
level 0.

Clustered layers

Why: A hierarchy of clustered layers, depending on the nature of the environment, may be
abstracted from the symbolic layer; clustering supplies a richer description of the
environment and allows for navigation tasks to be carried out more efficiently.

What: At the first abstraction level, the environment is represented as a map of clusters of
landmarks and inter-cluster passageways (bridges). At the subsequent levels, each cluster
includes clusters of the level below. The clustered layer at abstraction level k is called k-
clustered layer; k-clusters and k-bridges, respectively, its clusters and bridges. If a
significant form of structuring is present in the environment, clustering can be based on
semantic criteria derived by classification of the landmarks; for instance, in a hospital,
clusters corresponding to the progressive abstractions of rooms, wards and departments
can be identified. Within an unstructured environment such as the surface of a planet, or a
structured environment whose structure is not known a priori, clustering must be
performed according to topological and metric criteria.

How: The k-clustered layer is represented as a graph whose vertices and arcs correspond,
respectively, to k-clusters and k-bridges. A k-cluster represents a sub-graph of the (k-1)-
clustered layer; a k-bridge between two k-clusters represents all the (k-1)-bridges which
connect pairs of (k-1)-clusters of the two k-clusters. Figure 2 shows a simple example.
The representation of both the symbolic and the clustered layers is object-based; the object
schema adopted is shown in Figure 3.
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Figure 2. A k-cluster represents a sub-graph of the (k-1)-clustered layer; a k-bridge represents the set of (k-1)-bridges
which connect two k-clusters.
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Figure 3. A clustered layer (graph) is a set of clusters (vertices); zero or more bridges (arcs) enter each cluster, and
zero or more bridges depart from it. A cluster is, in turn, a graph whose vertices are clusters of the underlying layer
(the white triangle represents inheritance); a bridge is a set of bridges of the underlying level. The symbolic layer is a
particular case of clustered layer: its vertices are landmarks, and its bridges are routes.



2.1. An example: the hospital environment

Consider an IAA in a hospital, where landmarks are associated with serviceable or conceptually
relevant entities such as departments, rooms, medical equipment, etc. The IAA should be able to
execute a variety of tasks: visiting the in-patients of a department in order to bring them food and
medicines, preparing the surgery for an operation, or delivering material to wards. Generally, these
tasks entail path planning, possibly taking into account time, energy or more complex constraints
("before bringing the documents to the administration, photocopy them", "find as soon as possible
a recharge station"). Besides, the agent must be ready to re-plan its activity in order to deal with
unexpected circumstances: for instance, prepare the surgery on an emergency.

An example of layered architecture for representing knowledge of the hospital is shown in Figure
4. Three clustered layers are defined; they represent, respectively, rooms as clusters of landmarks,
departments as clusters of rooms, floors as clusters of rooms (a floor may contain more
departments, and a department may take up more floors), buildings as clusters of floors.

sensor measures

sub-symbolic layer symbolic layer

room layer

department layer

building layer

floor layer

Figure 4. The taxonomy of knowledge layers for the hospital IAA.

Figure 5 shows how a fragment of the hospital would be represented by clustered layers. In Figure
5.a the map of buildings B1 and B2 is shown; B1 and B2 include two departments each. Figures
5.b, 5.c and 5.d show the room layer, the department layer and the building layer, respectively.
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Figure 5. A fragment of the hospital. (a) Topological map. (b) Room layer. (c) Department layer. (d) Building layer.



3. PATH PLANNING AND KNOWLEDGE NAVIGATION

Most activities for an IAA involve planning a path for moving in the environment satisfying some
given constraint. A simple instance of path planning problem is that of finding a path connecting
two distinctive places, possibly minimizing some global cost function. More complex instances
may involve multiple goals to be achieved, possibly inter-related, as well as contrasting cost
measures to be taken into account.

Notable features of path planning on layered knowledge are:

• The semantics of the tasks which can be required of the agent is extended by allowing the
new abstraction levels introduced by layering to be addressed.

• Complex path planning tasks can be decomposed into sequential or parallel sub-tasks on the
different layers, following a divide-et-impera policy.

In general, the solution to a path planning problem requires the integration and co-operation of
different layers. Hence, effective mechanisms for conceptual navigation of the layer taxonomy
must be provided. The environmental knowledge may be navigated horizontally, i.e. intra-layer, or
vertically, i.e. inter-layer.

Intra-layer navigation occurs when a problem concerning a specific layer must be solved; for
example, in the hospital environment, the agent might be required to plan a path for visiting all the
beds in a specific room (symbolic layer). The elemental operator for intra-layer navigation,
neighbours, when applied to a k-cluster c in the k-clustered layer returns the k-clusters adjacent to
c.

Inter-layer navigation occurs when the agent activity concerns two or more abstraction levels; an
example is the planning of a path for reaching the ambulatory (room layer), after visiting a
photocopier (symbolic layer). The elemental operators for inter-layer navigation, father and sons,
when applied to a k-cluster c in the k-clustered layer return, respectively, the (k+1)-cluster which
includes c and the (k-1)-clusters included in c.

We implemented a heuristic divide-et-impera algorithm for solving, on the hierarchy of graphs
representing the clustered layers, a generalized shortest path problem formulated as follows: find,
on the k-clustered layer, the shortest path connecting the i-cluster Cstart(i) to the j-cluster Cdest(j)

(clustered shortest path problem). Let n be the highest clustering level; coarsely, the algorithm
works as follows:

1. find, on the n-clustered layer, the shortest path connecting the ancestors of Cstart(i) and Cdest(j),
say P(n)=(C1(n),...Cp(n));

2. for h=n downto k+1 do
2.1 for each h-bridge [Cw(h)→Cw+1(h)] included in P(h), determine which of its component

(h-1)-bridges is most convenient for moving from Cw (h) to Cw + 1 (h), say

[C"w(h-1)→C'w+1(h-1)];
2.2 within C1(h), find the shortest path connecting the ancestor of Cstart(i) to C"1(h-1);
2.3 within each h-cluster Cw(h) included in P(h), find the shortest path connecting C'w(h-1) to

C"w(h-1);
2.4 within Cp(h), find the shortest path connecting C'p(h-1) to the ancestor of Cdest(j);
2.5 chain the paths obtained into a path P(h-1);

Our algorithm can be evaluated in the case i=j=k, when the clustered shortest path problem reduces
to the classical problem of finding the shortest path on a graph. The optimal solution to this
problem is yielded by Dijkstra's algorithm in O(λ2), where λ  is the number of vertices in the



graph. It can be proven that, when i=j=k=0, our algorithm has time complexity c = O(λ(n+3)/2n),
where n is the highest clustering level. Obviously, in some cases our algorithm yields a sub-
optimal solution; experimental tests conducted on a sample of random maps showed that the shift
from optimality is contained within 1% in 55% of cases, and within 20% in 90% of cases.

4. DISCUSSION

In this paper a multi-layered architecture for representing knowledge of the environment to be used
by IAAs for autonomous movement has been presented. Each knowledge layer defines an
abstraction of the environment which efficiently supports the execution of specific sub-tasks. The
adoption of different formalisms for representing layers allows the specific properties of each
formalism to be exploited at their best. Some issues concerning path planning on layered
knowledge have been discussed, and a divide-et-impera algorithm for solving the clustered shortest
path problem has been outlined.

We are currently working on algorithms for path planning in presence of complex constraints and
on the definition of ad hoc strategies for multi-agent exploration of unknown environments.
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