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ABSTRACT

In the context of data warehouse design, a basic 
role is played by conceptual modeling, that pro-
vides a higher level of abstraction in describing 
the warehousing process and architecture in all 
its aspects, aimed at achieving independence of 
implementation issues. This chapter focuses on 
a conceptual model called the DFM that suits 
the variety of modeling situations that may be 
encountered in real projects of small to large 
complexity. The aim of the chapter is to propose 
a comprehensive set of solutions for conceptual 
modeling according to the DFM and to give the 
designer a practical guide for applying them in 
the context of a design methodology. Besides the 
basic concepts of multidimensional modeling, 
the other issues discussed are descriptive and 
cross-dimension attributes; convergences; shared, 
incomplete, recursive, and dynamic hierarchies; 
multiple and optional arcs; and additivity.

INTRODUCTION

Operational databases are focused on recording 
transactions, thus they are prevalently character-
ized by an OLTP (online transaction processing) 
workload. Conversely, data warehouses (DWs) 
allow complex analysis of data aimed at decision 
support; the workload they support has com-
pletely different characteristics, and is widely 
known as OLAP (online analytical processing). 
Traditionally, OLAP applications are based on 
multidimensional modeling that intuitively rep-
resents data under the metaphor of a cube whose 
cells correspond to events that occurred in the 
business domain (Figure 1). Each event is quanti-
fied by a set of measures; each edge of the cube 
corresponds to a relevant dimension for analysis, 
typically associated to a hierarchy of attributes 
that further describe it. The multidimensional 
model has a twofold benefit. On the one hand, 
it is close to the way of thinking of data analyz-
ers, who are used to the spreadsheet metaphor; 
therefore it helps users understand data. On the 
other hand, it supports performance improvement 
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as its simple structure allows designers to predict 
the user intentions.

Multidimensional modeling and OLAP work-
loads require specialized design techniques. In 
the context of design, a basic role is played by 
conceptual modeling that provides a higher level 
of abstraction in describing the warehousing pro-
cess and architecture in all its aspects, aimed at 
achieving independence of implementation issues. 
Conceptual modeling is widely recognized to be 
the necessary foundation for building a database 
that is well-documented and fully satisfies the 
user requirements; usually, it relies on a graphical 
notation that facilitates writing, understanding, 
and managing conceptual schemata by both de-
signers and users. 

Unfortunately, in the field of data warehousing 
there still is no consensus about a formalism for 
conceptual modeling (Sen & Sinha, 2005). The 
entity/relationship (E/R) model is widespread 
in the enterprises as a conceptual formalism to 
provide standard documentation for relational 
information systems, and a great deal of effort has 
been made to use E/R schemata as the input for 
designing nonrelational databases as well (Fahrner 

& Vossen, 1995); nevertheless, as E/R is oriented, 1995); nevertheless, as E/R is oriented 
to support queries that navigate associations be-
tween data rather than synthesize them, it is not 
well suited for data warehousing (Kimball, 1996). 
Actually, the E/R model has enough expressivity 
to represent most concepts necessary for modeling 
a DW; on the other hand, in its basic form, it is 
not able to properly emphasize the key aspects of 
the multidimensional model, so that its usage for 
DWs is expensive from the point of view of the 
graphical notation and not intuitive (Golfarelli, 
Maio, & Rizzi, 1998)., 1998).

Some designers claim to use star schemata 
for conceptual modeling. A star schema is the 
standard implementation of the multidimensional 
model on relational platforms; it is just a (denor-
malized) relational schema, so it merely defines 
a set of relations and integrity constraints. Using 
the star schema for conceptual modeling is like 
starting to build a complex software by writing 
the code, without the support of and static, func-
tional, or dynamic model, which typically leads 
to very poor results from the points of view of 
adherence to user requirements, of maintenance, 
and of reuse.

Figure 1. The cube metaphor for multidimensional modeling
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For all these reasons, in the last few years the 
research literature has proposed several original 
approaches for modeling a DW, some based on 
extensions of E/R, some on extensions of UML. 
This chapter focuses on an ad hoc conceptual 
model, the dimensional fact model (DFM), that 
was first proposed in Golfarelli et al. (1998) and 
continuously enriched and refined during the fol-
lowing years in order to optimally suit the variety 
of modeling situations that may be encountered in 
real projects of small to large complexity. The aim 
of the chapter is to propose a comprehensive set 
of solutions for conceptual modeling according to 
the DFM and to give a practical guide for apply-
ing them in the context of a design methodology. 
Besides the basic concepts of multidimensional 
modeling, namely facts, dimensions, measures, 
and hierarchies, the other issues discussed are 
descriptive and cross-dimension attributes; con-
vergences; shared, incomplete, recursive, and 
dynamic hierarchies; multiple and optional arcs; 
and additivity.

After reviewing the related literature in the 
next section, in the third and fourth sections, 
we introduce the constructs of DFM for basic 
and advanced modeling, respectively. Then, in 
the fifth section we briefly discuss the different 
methodological approaches to conceptual design. 
Finally, in the sixth section we outline the open 
issues in conceptual modeling, and in the last 
section we draw the conclusions.

RELATED LITERATURE

In the context of data warehousing, the literature 
proposed several approaches to multidimensional 
modeling. Some of them have no graphical support 
and are aimed at establishing a formal foundation 
for representing cubes and hierarchies as well as 
an algebra for querying them (Agrawal, Gupta, &Gupta, & 
Sarawagi, 1995; Cabibbo & Torlone, 1998; Datta, 1995; Cabibbo & Torlone, 1998; Datta& Torlone, 1998; Datta, 1998; Datta 
& Thomas, 1997; Franconi & Kamble, 2004a;, 1997; Franconi & Kamble, 2004a;& Kamble, 2004a;, 2004a; 
Gyssens & Lakshmanan, 1997; Li & Wang, 1996;& Lakshmanan, 1997; Li & Wang, 1996;, 1997; Li & Wang, 1996;& Wang, 1996;, 1996; 

Pedersen & Jensen, 1999; Vassiliadis, 1998);& Jensen, 1999; Vassiliadis, 1998);, 1999; Vassiliadis, 1998); 
since we believe that a distinguishing feature of 
conceptual models is that of providing a graphical 
support to be easily understood by both designers 
and users when discussing and validating require-
ments, we will not discuss them.

The approaches to “strict” conceptual model-
ing for DWs devised so far are summarized in 
Table 1. For each model, the table shows if it is 
associated to some method for conceptual design 
and if it is based on E/R, is object-oriented, or is 
an ad hoc model.

The discussion about whether E/R-based, 
object-oriented, or ad hoc models are preferable 
is controversial. Some claim that E/R extensions 
should be adopted since (1) E/R has been tested for 
years; (2) designers are familiar with E/R; (3) E/R 
has proven flexible and powerful enough to adapt 
to a variety of application domains; and (4) several 
important research results were obtained for the 
E/R (Sapia, Blaschka, Hofling, & Dinter, 1998;Blaschka, Hofling, & Dinter, 1998;, 1998; 
Tryfona, Busborg, & Borch Christiansen, 1999). 
On the other hand, advocates of object-oriented 
models argue that (1) they are more expressive and 
better represent static and dynamic properties of 
information systems; (2) they provide powerful 
mechanisms for expressing requirements and 
constraints; (3) object-orientation is currently 
the dominant trend in data modeling; and (4) 
UML, in particular, is a standard and is naturally 
extensible (Abelló, Samos, & Saltor, 2002; Luján-Abelló, Samos, & Saltor, 2002; Luján-Luján-
Mora, Trujillo, & Song, 2002). Finally, we believe 
that ad hoc models compensate for the lack of 
familiarity from designers with the fact that (1) 
they achieve better notational economy; (2) they 
give proper emphasis to the peculiarities of the 
multidimensional model, thus (3) they are more 
intuitive and readable by nonexpert users. In par-
ticular, they can model some constraints related 
to functional dependencies (e.g., convergences 
and cross-dimensional attributes) in a simpler 
way than UML, that requires the use of formal 
expressions written, for instance, in OCL.
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E/R extension object-oriented ad hoc

no method

Franconi and Kambleand Kamble 
(2004b);

Sapia et al. (1998); 
Tryfona et al. (1999)

Abelló et al. (2002);
Nguyen, Tjoa, and WagnerTjoa, and Wagner 

(2000)
Tsois et al. (2001)

method Luján-Mora et al. (2002) Golfarelli et al. (1998);
Hüsemann et al. (2000)

Table 1. Approaches to conceptual modeling

Figure 2. The SALE fact modeled through a starER (Sapia et al., 1998), a UML class diagram (Luján-
Mora et al., 2002), and a fact schema (Hüsemann, Lechtenb�rger, & Vossen, 2000)Lechtenb�rger, & Vossen, 2000), 2000)
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A comparison of the different models done 
by Tsois, Karayannidis, and Sellis (2001) pointed 
out that, abstracting from their graphical form, 
the core expressivity is similar. In confirmation 
of this, we show in Figure 2 how the same simple 
fact could be modeled through an E/R based, an 
object-oriented, and an ad hoc approach.

THE DIMENSIONAL FACT MODEL:            
BASIC MODELING

In this chapter we focus on an ad hoc model 
called the dimensional fact model. The DFM is a 
graphical conceptual model, specifically devised 
for multidimensional modeling, aimed at:

• Effectively supporting conceptual design
• Providing an environment on which user 

queries can be intuitively expressed
• Supporting the dialogue between the 

designer and the end users to refine the 
specification of requirements

• Creating a stable platform to ground logical 
design

• Providing an expressive and non-ambiguous 
design documentation

The representation of reality built using the 
DFM consists of a set of fact schemata. The basic 
concepts modeled are facts, measures, dimen-
sions, and hierarchies. In the following we intui-
tively define these concepts, referring the reader 
to Figure 3 that depicts a simple fact schema for 
modeling invoices at line granularity; a formal 
definition of the same concepts can be found in 
Golfarelli et al. (1998).

Definition	1:	A fact is a focus of interest for the 
decision-making process; typically, it models a 
set of events occurring in the enterprise world. 
A fact is graphically represented by a box with 
two sections, one for the fact name and one for 
the measures.

Examples of facts in the trade domain are sales, 
shipments, purchases, claims; in the financial 
domain: stock exchange transactions, contracts 
for insurance policies, granting of loans, bank 
statements, credit cards purchases. It is essential 
for a fact to have some dynamic aspects, that is, 
to evolve somehow across time. 

Guideline 1: The concepts represented in the 
data source by frequently-updated archives are 

Figure 3. A basic fact schema for the INVOICE LINE fact
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good candidates for facts; those represented by 
almost-static archives are not.

As a matter of fact, very few things are com-
pletely static; even the relationship between cities 
and regions might change, if some border were 
revised. Thus, the choice of facts should be based 
either on the average periodicity of changes, or 
on the specific interests of analysis. For instance, 
assigning a new sales manager to a sales depart-
ment occurs less frequently than coupling a 
promotion to a product; thus, while the relation-
ship between promotions and products is a good 
candidate to be modeled as a fact, that between 
sales managers and departments is not—except 
for the personnel manager, who is interested in 
analyzing the turnover!

Definition	2: A measure is a numerical property 
of a fact, and describes one of its quantitative 
aspects of interests for analysis. Measures are 
included in the bottom section of the fact.

For instance, each invoice line is measured by 
the number of units sold, the price per unit, the net 
amount, and so forth. The reason why measures 
should be numerical is that they are used for 
computations. A fact may also have no measures, 
if the only interesting thing to be recorded is the 
occurrence of events; in this case the fact scheme 
is said to be empty and is typically queried to 
count the events that occurred.

Definition	3:	A dimension is a fact property with 
a finite domain and describes one of its analysis 
coordinates. The set of dimensions of a fact 
determines its finest representation granularity. 
Graphically, dimensions are represented as circles 
attached to the fact by straight lines.

Typical dimensions for the invoice fact are 
product, customer, agent, and date. 

Guideline 2: At least one of the dimensions of the 
fact should represent time, at any granularity.

The relationship between measures and di-
mensions is expressed, at the instance level, by 
the concept of event.

Definition	4: A primary event is an occurrence 
of a fact, and is identified by a tuple of values, 
one for each dimension. Each primary event is 
described by one value for each measure.

Primary events are the elemental information 
which can be represented (in the cube metaphor, 
they correspond to the cube cells). In the invoice 
example they model the invoicing of one product 
to one customer made by one agent on one day; 
it is not possible to distinguish between invoices 
possibly made with different types (e.g., active, 
passive, returned, etc.) or in different hours of 
the day.

Guideline 3: If the granularity of primary events 
as determined by the set of dimensions is coarser 
than the granularity of tuples in the data source, 
measures should be defined as either aggregations 
of numerical attributes in the data source, or as 
counts of tuples.

Remarkably, some multidimensional models 
in the literature focus on treating dimensions 
and measures symmetrically (Agrawal et al., 
1995; Gyssens & Lakshmanan, 1997). This is& Lakshmanan, 1997). This is, 1997). This is 
an important achievement from both the point 
of view of the uniformity of the logical model 
and that of the flexibility of OLAP operators. 
Nevertheless we claim that, at a conceptual level, 
distinguishing between measures and dimensions 
is important since it allows logical design to be 
more specifically aimed at the efficiency required 
by data warehousing applications.

Aggregation is the basic OLAP operation, 
since it allows significant information useful for 
decision support to be summarized from large 
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amounts of data. From a conceptual point of 
view, aggregation is carried out on primary events 
thanks to the definition of dimension attributes 
and hierarchies.

Definition	5: A dimension attribute is a property, 
with a finite domain, of a dimension. Like dimen-
sions, it is represented by a circle.

For instance, a product is described by its type, 
category, and brand; a customer, by its city and 
its nation. The relationships between dimension 
attributes are expressed by hierarchies.

Definition	 6:	 A hierarchy is a directed tree, 
rooted in a dimension, whose nodes are all the 
dimension attributes that describe that dimension, 
and whose arcs model many-to-one associations 
between pairs of dimension attributes. Arcs are 
graphically represented by straight lines.

Guideline 4: Hierarchies should reproduce the 
pattern of interattribute functional dependencies 
expressed by the data source.

Hierarchies determine how primary events 
can be aggregated into secondary events and 
selected significantly for the decision-making 
process. The dimension in which a hierarchy is 
rooted defines its finest aggregation granular-
ity, while the other dimension attributes define 
progressively coarser granularities. For instance, 
thanks to the existence of a many-to-one associa-
tion between products and their categories, the 
invoicing events may be grouped according to 
the category of the products.

Definition	7: Given a set of dimension attributes, 
each tuple of their values identifies a secondary 
event that aggregates all the corresponding pri-
mary events. Each secondary event is described 
by a value for each measure that summarizes the 
values taken by the same measure in the corre-
sponding primary events.

We close this section by surveying some 
alternative terminology used either in the lit-
erature or in the commercial tools. There is 
substantial agreement on using the term dimen-
sions to designate the “entry points” to classify 
and identify events; while we refer in particular 
to the attribute determining the minimum fact 
granularity, sometimes the whole hierarchies 
are named as dimensions (for instance, the term 
“time dimension” often refers to the whole hi-
erarchy built on dimension date). Measures are 
sometimes called variables or metrics. Finally, in 
some data warehousing tools, the term hierarchy 
denotes each single branch of the tree rooted in 
a dimension.

THE DIMENSIONAL FACT MODEL:            
ADVANCED MODELING

The constructs we introduce in this section, 
with the support of Figure 4, are descriptive and 
cross-dimension attributes; convergences; shared, 
incomplete, recursive, and dynamic hierarchies; 
multiple and optional arcs; and additivity. Though 
some of them are not necessary in the simplest and 
most common modeling situations, they are quite 
useful in order to better express the multitude of 
conceptual shades that characterize real-world 
scenarios. In particular we will see how, follow-
ing the introduction of some of this constructs, 
hierarchies will no longer be defined as trees to 
become, in the general case, directed graphs.

Descriptive Attributes

In several cases it is useful to represent additional 
information about a dimension attribute, though 
it is not interesting to use such information for 
aggregation. For instance, the user may ask for 
knowing the address of each store, but the user 
will hardly be interested in aggregating sales 
according to the address of the store.
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Definition	 8: A descriptive attribute specifies 
a property of a dimension attribute, to which is 
related by an x-to-one association. Descriptive 
attributes are not used for aggregation; they are 
always leaves of their hierarchy and are graphi-
cally represented by horizontal lines.

There are two main reasons why a descriptive 
attribute should not be used for aggregation:

Guideline 5: A descriptive attribute either has 
a continuously-valued domain (for instance, the 
weight of a product), or is related to a dimension 
attribute by a one-to-one association (for instance, 
the address of a customer).

Cross-Dimension Attributes

Definition	9:	A cross-dimension attribute is a 
(either dimension or descriptive) attribute whose 
value is determined by the combination of two or 
more dimension attributes, possibly belonging to 
different hierarchies. It is denoted by connecting 
through a curve line the arcs that determine it.

For instance, if the VAT on a product depends 
on both the product category and the state where 
the product is sold, it can be represented by a cross-
dimension attribute as shown in Figure 4.

Convergence

Consider the geographic hierarchy on dimension 
customer (Figure 4): customers live in cities, which 
are grouped into states belonging to nations. 
Suppose that customers are grouped into sales 
districts as well, and that no inclusion relationships 
exist between districts and cities/states; on the 
other hand, sales districts never cross the nation 
boundaries. In this case, each customer belongs 
to exactly one nation whichever of the two paths 
is followed (customer → city → state → nation or 
customer → sales district → nation). 

Definition	10: A convergence takes place when 
two dimension attributes within a hierarchy are 
connected by two or more alternative paths of 
many-to-one associations. Convergences are 
represented by letting two or more arcs converge 
on the same dimension attribute.

The existence of apparently equal attributes 
does not always determine a convergence. If in 
the invoice fact we had a brand city attribute on 
the product hierarchy, representing the city where 
a brand is manufactured, there would be no con-
vergence with attribute (customer) city, since a 
product manufactured in a city can obviously be 
sold to customers of other cities as well.

Optional Arcs

Definition	11: An optional arc models the fact 
that an association represented within the fact 
scheme is undefined for a subset of the events. 
An optional arc is graphically denoted by mark-
ing it with a dash.

For instance, attribute diet takes a value only 
for food products; for the other products, it is 
undefined. 

In the presence of a set of optional arcs exiting 
from the same dimension attribute, their coverage 
can be denoted in order to pose a constraint on 
the optionalities involved. Like for IS-A hierar-
chies in the E/R model, the coverage of a set of 
optional arcs is characterized by two independent 
coordinates. Let a be a dimension attribute, and 
b1,..., bm be its children attributes connected by 
optional arcs:

• The coverage is total if each value of a always 
corresponds to a value for at least one of its 
children; conversely, if some values of a exist 
for which all of its children are undefined, 
the coverage is said to be partial.
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• The coverage is disjoint if each value of a 
corresponds to a value for, at most, one of 
its children; conversely, if some values of 
a exist that correspond to values for two or 
more children, the coverage is said to be 
overlapped.

Thus, overall, there are four possible cover-
ages, denoted by T-D, T-O, P-D, and P-O. Figure 
4 shows an example of optionality annotated 
with its coverage. We assume that products can 
have three types: food, clothing, and household, 
since expiration date and size are defined only 
for, respectively, food and clothing, the coverage 
is partial and disjoint.

Multiple Arcs

In most cases, as already said, hierarchies include 
attributes related by many-to-one associations. On 
the other hand, in some situations it is necessary to 
include also attributes that, for a single value taken 
by their father attribute, take several values.

Definition	12:	A multiple arc is an arc, within a 
hierarchy, modeling a many-to-many association 
between the two dimension attributes it connects. 
Graphically, it is denoted by doubling the line that 
represents the arc.

Consider the fact schema modeling the sales 
of books in a library, represented in Figure 5, 
whose dimensions are date and book. Users will 
probably be interested in analyzing sales for 
each book author; on the other hand, since some 
books have two or more authors, the relationship 
between book and author must be modeled as a 
multiple arc.

Guideline 6: In presence of many-to-many as-
sociations, summarizability is no longer guaran-
teed, unless the multiple arc is properly weighted. 
Multiple arcs should be used sparingly since, in 
ROLAP logical design, they require complex 
solutions.

Summarizability is the property of correcting 
summarizing measures along hierarchies (Lenz && 

Figure 4. The complete fact schema for the INVOICE LINE fact
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Shoshani,1997).Weightsrestoresummarizability,, 1997). Weights restore summarizability, 
but their introduction is artificial in several cases; 
for instance, in the book sales fact, each author 
of a multiauthored book should be assigned a 
normalized weight expressing her “contribution” 
to the book.

Shared Hierarchies

Sometimes, large portions of hierarchies are 
replicated twice or more in the same fact schema. 
A typical example is the temporal hierarchy: a 
fact frequently has more than one dimension of 
type date, with different semantics, and it may 
be useful to define on each of them a temporal 
hierarchy month-week-year. Another example 
are geographic hierarchies, that may be defined 
starting from any location attribute in the fact 
schema. To avoid redundancy, the DFM provides 
a graphical shorthand for denoting hierarchy 
sharing. Figure 4 shows two examples of shared 
hierarchies. Fact INVOICE LINE has two date di-
mensions, with semantics invoice date and order 
date, respectively. This is denoted by doubling the 
circle that represents attribute date and specifying 
two roles invoice and order on the entering arcs. 
The second shared hierarchy is the one on agent, 
that may have two roles: the ordering agent, that 
is a dimension, and the agent who is responsible 
for a customer (optional).

Guideline 8: Explicitly representing shared hi-
erarchies on the fact schema is important since, 

during ROLAP logical design, it enables ad hoc 
solutions aimed at avoiding replication of data in 
dimension tables.

Ragged Hierarchies

Let a1,..., an be a sequence of dimension attributes 
that define a path within a hierarchy (such as 
city, state, nation). Up to now we assumed that, 
for each value of a1, exactly one value for every 
other attribute on the path exists. In the previ-
ous case, this is actually true for each city in the 
U.S., while it is false for most European countries 
where no decomposition in states is defined (see 
Figure 6).

Definition	13:	A ragged (or incomplete) hierar-
chy is a hierarchy where, for some instances, the 
values of one or more attributes are missing (since 
undefined or unknown). A ragged hierarchy is 
graphically denoted by marking with a dash the 
attributes whose values may be missing.

As stated by Niemi (2001), within a ragged 
hierarchy each aggregation level has precise and 
consistent semantics, but the different hierarchy 
instances may have different length since one or 
more levels are missing, making the interlevel 
relationships not uniform (the father of “San 
Francisco” belongs to level state, the father of 
“Rome” to level nation).

There is a noticeable difference between a 
ragged hierarchy and an optional arc. In the first 

Figure 5. The fact schema for the SALES fact
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case we model the fact that, for some hierarchy 
instances, there is no value for one or more attri-
butes in any position of the hierarchy. Conversely, 
through an optional arc we model the fact that 
there is no value for an attribute and for all of 
its descendents.

Guideline 9: Ragged hierarchies may lead to sum-
marizability problems. A way for avoiding them 
is to fragment a fact into two or more facts, each 
including a subset of the hierarchies characterized 
by uniform interlevel relationships.

Thus, in the invoice example, fragmenting 
INVOICE LINE into U.S. INVOICE LINE and E.U. 
INVOICE LINE (the first with the state attribute, the 
second without state) restores the completeness 
of the geographic hierarchy.

Unbalanced Hierarchies

Definition	14:	An unbalanced (or recursive) hier-
archy is a hierarchy where, though interattribute 
relationships are consistent, the instances may 
have different length. Graphically, it is represented 
by introducing a cycle within the hierarchy.

A typical example of unbalanced hierarchy is 
the one that models the dependence interrelation-
ships between working persons. Figure 4 includes 
an unbalanced hierarchy on sale agents: there are 
no fixed roles for the different agents, and the 

different “leaf” agents have a variable number 
of supervisor agents above them.

Guideline 10: Recursive hierarchies lead to 
complex solutions during ROLAP logical design 
and to poor querying performance. A way for 
avoiding them is to “unroll” them for a given 
number of times.

For instance, in the agent example, if the 
user states that two is the maximum number of 
interesting levels for the dependence relationship, 
the customer hierarchy could be transformed as 
in Figure 7.

Dynamic Hierarchies

Time is a key factor in data warehousing sys-
tems, since the decision process is often based 
on the evaluation of historical series and on the 
comparison between snapshots of the enterprise 
taken at different moments. The multidimensional 
models implicitly assume that the only dynamic 
components described in a cube are the events 
that instantiate it; hierarchies are traditionally 
considered to be static. Of course this is not cor-
rect: sales manager alternate, though slowly, on 
different departments; new products are added 
every week to those already being sold; the prod-
uct categories change, and their relationship with 
products change; sales districts can be modified, 

Figure 6. Ragged geographic hierarchies
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and a customer may be moved from one district 
to another.1

The conceptual representation of hierarchy 
dynamicity is strictly related to its impact on user 
queries. In fact, in presence of a dynamic hierarchy 
we may picture three different temporal scenarios 
for analyzing events (SAP, 1998):

• Today for yesterday: All events are referred 
to the current configuration of hierarchies. 
Thus, assuming on January 1, 2005 the 
responsible agent for customer Smith has 
changed from Mr. Black to Mr. White, 
and that a new customer O’Hara has been 
acquired and assigned to Mr. Black, when 
computing the agent commissions all in-
voices for Smith are attributed to Mr. White, 

while only invoices for O’Hara are attributed 
to Mr. Black.

• Yesterday for today: All events are referred 
to some past configuration of hierarchies. In 
the previous example, all invoices for Smith 
are attributed to Mr. Black, while invoices 
for O’Hara are not considered.

• Today or yesterday (or historical truth): 
Each event is referred to the configuration 
hierarchies had at the time the event oc-
curred. Thus, the invoices for Smith up to 
2004 and those for O’Hara are attributed to 
Mr. Black, while invoices for Smith from 
2005 are attributed to Mr. White.

While in the agent example, dynamicity con-
cerns an arc of a hierarchy, the one expressing 
the many-to-one association between customer 
and agent, in some cases it may as well concern 
a dimension attribute: for instance, the name of a 
product category may change. Even in this case, 
the different scenarios are defined in much the 
same way as before.

On the conceptual schema, it is useful to denote 
which scenarios the user is interested for each arc 
and attribute, since this heavily impacts on the 

Figure 7. Unrolling the agent hierarchy

arc/attribute today for yesterday yesterday for today today or yesterday

customer-resp. agent YES YES YES

customer-city YES YES

sale district YES

Table 2. Temporal scenarios for the INVOICE fact

temporal hierarchies nontemporal hierarchies

flow measures SUM, AVG, MIN, MAX SUM, AVG, MIN, MAX

stock measures AVG, MIN, MAX SUM, AVG, MIN, MAX

unit measures AVG, MIN, MAX AVG, MIN, MAX

Table 3. Valid aggregation operators for the three types of measures (Lenz, 1997)
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specific solutions to be adopted during logical 
design. By default, we will assume that the only 
interesting scenario is today for yesterday—it 
is the most common one, and the one whose 
implementation on the star schema is simplest. If 
some attributes or arcs require different scenarios, 
the designer should specify them on a table like 
Table 2.

Additivity

Aggregation requires defining a proper operator 
to compose the measure values characterizing 
primary events into measure values characterizing 
each secondary event. From this point of view, we 
may distinguish three types of measures (Lenz 
& Shoshani, 1997):, 1997):

• Flow measures: They refer to a time period, 
and are cumulatively evaluated at the end 
of that period. Examples are the number of 
products sold in a day, the monthly revenue, 
the number of those born in a year.

• Stock measures: They are evaluated at 
particular moments in time. Examples are 
the number of products in a warehouse, the 
number of inhabitants of a city, the tempera-
ture measured by a gauge.

• Unit measures: They are evaluated at 
particular moments in time, but they are 
expressed in relative terms. Examples are 
the unit price of a product, the discount per-
centage, the exchange rate of a currency.

The aggregation operators that can be used 
on the three types of measures are summarized 
in Table 3.

Definition	15: A measure is said to be additive 
along a dimension if its values can be aggregated 
along the corresponding hierarchy by the sum 
operator, otherwise it is called nonadditive. A 
nonadditive measure is nonaggregable if no other 
aggregation operator can be used on it.

Table 3 shows that, in general, flow measures 
are additive along all dimensions, stock measures 
are nonadditive along temporal hierarchies, and 
unit measures are nonadditive along all dimen-
sions.

On the invoice scheme, most measures are 
additive. For instance, quantity has flow type: 
the total quantity invoiced in a month is the sum 
of the quantities invoiced in the single days of 
that month. Measure unit price has unit type and 
is nonadditive along all dimensions. Though it 
cannot be summed up, it can still be aggregated 
by using operators such as average, maximum, 
and minimum.

Since additivity is the most frequent case, 
in order to simplify the graphic notation in the 
DFM, only the exceptions are represented ex-
plicitly. In particular, a measure is connected to 
the dimensions along which it is nonadditive by 
a dashed line labeled with the other aggregation 
operators (if any) which can be used instead. If a 
measure is aggregated through the same operator 
along all dimensions, that operator can be simply 
reported on its side (see for instance unit price in 
Figure 4).

APPROACHES TO CONCEPTUAL 
DESIGN

In this section we discuss how conceptual de-
sign can be framed within a methodology for 
DW design. The approaches to DW design are 
usually classified in two categories (Winter & 
Strauch, 2003):

• Data-driven (or supply-driven) approaches 
that design the DW starting from a detailed 
analysis of the data sources; user require-
ments impact on design by allowing the 
designer to select which chunks of data 
are relevant for decision making and by 
determining their structure according to 
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the multidimensional model (Golfarelli et 
al., 1998; Hüsemann et al., 2000). 

• Requirement-driven (or demand-driven) 
approaches start from determining the infor-
mation requirements of end users, and how 
to map these requirements onto the available 
data sources is investigated only a posteriori 
(Prakash & Gosain, 2003; Schiefer, List &Schiefer, List & 
Bruckner, 2002).).

While data-driven approaches somehow sim-
plify the design of ETL (extraction, transformation, 
and loading), since each data in the DW is rooted 
in one or more attributes of the sources, they give 
user requirements a secondary role in determining 
the information contents for analysis, and give 
the designer little support in identifying facts, 
dimensions, and measures. Conversely, require-
ment-driven approaches bring user requirements 
to the foreground, but require a larger effort when 
designing ETL.

Data-Driven Approaches

Data-driven approaches are feasible when all of 
the following are true: (1) detailed knowledge 
of data sources is available a priori or easily 
achievable; (2) the source schemata exhibit a 
good degree of normalization; (3) the complex-
ity of source schemata is not high. In practice, 
when the chosen architecture for the DW relies 
on a reconciled level (or operational data store) 
these requirements are largely satisfied: in fact, 
normalization and detailed knowledge are guar-
anteed by the source integration process. The 
same holds, thanks to a careful source recognition 
activity, in the frequent case when the source is 
a single relational database, well-designed and 
not very large.

In a data-driven approach, requirement analy-
sis is typically carried out informally, based on 
simple requirement glossaries (Lechtenbörger,Lechtenbörger, 
2001) rather thanonformaldiagrams.Conceptual) rather than on formal diagrams. Conceptual 
design is then heavily rooted on source schemata 

and can be largely automated. In particular, the 
designer is actively supported in identifying di-
mensions and measures, in building hierarchies, 
in detecting convergences and shared hierarchies. 
For instance, the approach proposed by Golfarelli 
et al. (1998) consists of five steps that, starting 
from the source schema expressed either by an 
E/R schema or a relational schema, create the 
conceptual schema for the DW:

1.  Choose facts of interest on the source 
schema

2.  For each fact, build an attribute tree that 
captures the functional dependencies ex-
pressed by the source schema

3.  Edit the attribute trees by adding/deleting at-
tributes and functional dependencies

4.  Choose dimensions and measures
5.  Create the fact schemata

While step 2 is completely automated, some 
advanced constructs of the DFM are manually 
applied by the designer during step 5.

On-the-field experience shows that, when ap-
plicable, the data-driven approach is preferable 
since it reduces the overall time necessary for 
design. In fact, not only conceptual design can 
be partially automated, but even ETL design is 
made easier since the mapping between the data 
sources and the DW is derived at no additional 
cost during conceptual design.

Requirement-Driven Approaches

Conversely, within a requirement-driven frame-
work, in the absence of knowledge of the source 
schema, the building of hierarchies cannot be 
automated; the main assurance of a satisfactory 
result is the skill and experience of the designer, 
and the designer’s ability to interact with the do-
main experts. In this case it may be worth adopting 
formal techniques for specifying requirements in 
order to more accurately capture users’ needs; for 
instance, the goal-oriented approach proposed by 



���  

Conceptual Modeling Solutions

Giorgini, Rizzi, and Garzetti (2005) is based on 
an extension of the Tropos formalism and includes 
the following steps: 

1.  Create, in the Tropos formalism, an organi-
zational model that represents the stakehold-
ers, their relationships, their goals as well as 
the relevant facts for the organization and 
the attributes that describe them.

2.  Create, in the Tropos formalism, a decisional 
model that expresses the analysis goals 
of decision makers and their information 
needs.

3.  Create preliminary fact schemata from the 
decisional model.

4.  Edit the fact schemata, for instance, by 
detecting functional dependencies between 
dimensions, recognizing optional dimen-
sions, and unifying measures that only differ 
for the aggregation operator.

This approach is, in our view, more difficult 
to pursue than the previous one. Nevertheless, it 
is the only alternative when a detailed analysis of 
data sources cannot be made (for instance, when 
the DW is fed from an ERP system), or when the 
sources come from legacy systems whose complex-
ity discourages recognition and normalization.

Mixed Approaches

Finally, also a few mixed approaches to design 
have been devised, aimed at joining the facilities 
of data-driven approaches with the guarantees 
of requirement-driven ones (Bonifati, Cattaneo, 
Ceri, Fuggetta, & Paraboschi, 2001; Giorgini et 
al., 2005). Here the user requirements, captured by 
means of a goal-oriented formalism, are matched 
with the schema of the source database to drive 
the algorithm that generates the conceptual 
schema for the DW. For instance, the approach 
proposed by Giorgini et al. (2005) encompasses 
three phases:

1.  Create, in the Tropos formalism, an organi-
zational model that represents the stakehold-
ers, their relationships, their goals, as well 
as the relevant facts for the organization and 
the attributes that describe them.

2.  Create, in the Tropos formalism, a decisional 
model that expresses the analysis goals 
of decision makers and their information 
needs.

3.  Map facts, dimensions, and measures identi-
fied during requirement analysis onto entities 
in the source schema. 

4.  Generate a preliminary conceptual schema 
by navigating the functional dependencies 
expressed by the source schema.

5.  Edit the fact schemata to fully meet the user 
expectations.

Note that, though step 4 may be based on the 
same algorithm employed in step 2 of the data-
driven approach, here navigation is not “blind” but 
rather it is actively biased by the user requirements. 
Thus, the preliminary fact schemata generated 
here may be considerably simpler and smaller 
than those obtained in the data-driven approach. 
Besides, while in that approach the analyst is asked 
for identifying facts, dimensions, and measures 
directly on the source schema, here such identifica-
tion is driven by the diagrams developed during 
requirement analysis.

Overall, the mixed framework is recommend-
able when source schemata are well-known but 
their size and complexity are substantial. In fact, 
the cost for a more careful and formal analysis 
of requirement is balanced by the quickening of 
conceptual design.

OPEN ISSUES

A lot of work has been done in the field of concep-
tual modeling for DWs; nevertheless some very 
important issues still remain open. We report some 
of them in this section, as they emerged during 
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joint discussion at the Perspective Seminar on 
“Data Warehousing at the Crossroads” that took 
place at Dagstuhl, Germany on August 2004.

• Lack of a standard: Though several con-
ceptual models have been proposed, none 
of them has been accepted as a standard 
so far, and all vendors propose their own 
proprietary design methods. We see two 
main reasons for this: (1) though the concep-
tual models devised are semantically rich, 
some of the modeled properties cannot be 
expressed in the target logical models, so 
the translation from conceptual to logical 
is incomplete; and (2) commercial CASE 
tools currently enable designers to directly 
draw logical schemata, thus no industrial 
push is given to any of the models. On the 
other hand, a unified conceptual model for 
DWs, implemented by sophisticated CASE 
tools, would be a valuable support for both 
the research and industrial communities.

• Design patterns: In software engineering, 
design patterns are a precious support for de-
signers since they propose standard solutions 
to address common modeling problems. 
Recently, some preliminary attempts have 
been made to identify relevant patterns for 

multidimensional design, aimed at assisting 
DW designers during their modeling tasks 
by providing an approach for recognizing 
dimensions in a systematic and usable way 
(Jones & Song, 2005). Though we agree& Song, 2005). Though we agree, 2005). Though we agree 
that DW design would undoubtedly benefit 
from adopting a pattern-based approach, and 
we also recognize the utility of patterns in 
increasing the effectiveness of teaching how 
to design, we believe that further research 
is necessary in order to achieve a more 
comprehensive characterization of multi-
dimensional patterns for both conceptual 
and logical design.

• Modeling security: Information security is 
a serious requirement that must be carefully 
considered in software engineering, not 
in isolation but as an issue underlying all 
stages of the development life cycle, from 
requirement analysis to implementation 
and maintenance. The problem of infor-
mation security is even bigger in DWs, as 
these systems are used to discover crucial 
business information in strategic decision 
making. Some approaches to security in 
DWs, focused, for instance, on access control 
and multilevel security, can be found in the 
literature (see, for instance, Priebe &Pernul,& Pernul,, 

Figure 8. Editing a fact schema in WAND
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2000), but neither of them treats security as 
comprising all stages of the DW development 
cycle. Besides, the classical security model 
used in transactional databases, centered on 
tables, rows, and attributes, is unsuitable for 
DW and should be replaced by an ad hoc 
model centered on the main concepts of 
multidimensional modeling—such as facts, 
dimensions, and measures.

• Modeling ETL: ETL is a cornerstone of the 
data warehousing process, and its design 
and implementation may easily take 50% 
of the total time for setting up a DW. In the 
literature some approaches were devised for 
conceptual modeling of the ETL process 
from either the functional (Vassiliadis, 
Simitsis, & Skiadopoulos, 2002), the dy-, 2002), the dy-
namic (Bouzeghoub, Fabret, & Matulovic,Bouzeghoub, Fabret, & Matulovic, 
1999),or thestatic (Calvanese,DeGiacomo,), or the static (Calvanese, DeGiacomo,De Giacomo, 
Lenzerini, Nardi, & Rosati, 1998) points of, 1998) points of 
view. Recently, also some interesting work 
on translating conceptual into logical ETL 
schemata has been done (Simitsis, 2005). 
Nevertheless, issues such as the optimiza-
tion of ETL logical schemata are not very 
well understood. Besides, there is a need 
for techniques that automatically propagate 
changes occurred in the source schemas to 
the ETL process.

CONCLUSION

In this chapter we have proposed a set of solutions 
for conceptual modeling of a DW according to 
the DFM. Since 1998, the DFM has been success-
fully adopted, in real DW projects mainly in the 
fields of retail, large distribution, telecommuni-
cations, health, justice, and instruction, where it 
has proved expressive enough to capture a wide 
variety of modeling situations. Remarkably, in 
most projects the DFM was also used to directly 
support dialogue with end users aimed at validat-
ing requirements, and to express the expected 

workload for the DW to be used for logical and 
physical design. This was made possible by the 
adoption of a CASE tool named WAND (ware-
house integrated designer), entirely developed 
at the University of Bologna, that assists the 
designer in structuring a DW. WAND carries out 
data-driven conceptual design in a semiautomatic 
fashion starting from the logical scheme of the 
source database (see Figure 8), allows for a core 
workload to be defined on the conceptual scheme, 
and carries out workload-based logical design to 
produce an optimized relational scheme for the 
DW (Golfarelli & Rizzi, 2001).

Overall, our on-the-field experience confirmed 
that adopting conceptual modeling within a DW 
project brings great advantages since:

• Conceptual schemata are the best support 
for discussing, verifying, and refining user 
specifications since they achieve the optimal 
trade-off between expressivity and clarity. 
Star schemata could hardly be used to this 
purpose.

• For the same reason, conceptual schemata 
are an irreplaceable component of the docu-
mentation for the DW project.

• They provide a solid and platform-inde-
pendent foundation for logical and physical 
design.

• They are an effective support for maintain-
ing and extending the DW.

• They make turn-over of designers and ad-
ministrators on a DW project quicker and 
simpler.

REFERENCES

Abelló, A., Samos, J., & Saltor, F. (2002, July 
17-19). YAM2 (Yet another multidimensional 
model): An extension of UML. In Proceedings 
of the International Database Engineering & Ap-
plications Symposium (pp. 172-181). Edmonton, 
Canada.



  ���

Conceptual Modeling Solutions

Agrawal, R., Gupta, A., & Sarawagi, S. (1995). 
Modeling multidimensional databases (IBM Re-
search Report). IBM Almaden Research Center, 
San Jose, CA.

Bonifati, A., Cattaneo, F., Ceri, S., Fuggetta, A., 
& Paraboschi, S. (2001). Designing data marts for 
data warehouses. ACM Transactions on Software 
Engineering and Methodology, 10(4), 452-483.

Bouzeghoub, M., Fabret, F., & Matulovic, M. 
(1999). Modeling data warehouse refreshment 
process as a workflow application. In Proceed-
ings of the International Workshop on Design and 
Management of Data Warehouses, Heidelberg, 
Germany.

Cabibbo, L., & Torlone, R. (1998, March 23-27). 
A logical approach to multidimensional databases. 
In Proceedings of the International Conference 
on Extending Database Technology (pp. 183-197). 
Valencia, Spain.

Calvanese, D., De Giacomo, G., Lenzerini, M., 
Nardi, D., & Rosati, R. (1998, August 20-22). 
Information integration: Conceptual modeling 
and reasoning support. In Proceedings of the 
International Conference on Cooperative Infor-
mation Systems (pp. 280-291). New York.

Datta, A., & Thomas, H. (1997). A conceptual 
model and algebra for on-line analytical process-
ing in data warehouses. In Proceedings of the 
Workshop for Information Technology and Sys-
tems (pp. 91-100).

Fahrner, C., & Vossen, G. (1995). A survey of 
database transformations based on the entity-rela-
tionship model. Data & Knowledge Engineering, 
15(3), 213-250.

Franconi, E., & Kamble, A. (2004a, June 7-11). 
The GMD data model and algebra for multidi-
mensional information. In Proceedings of the 
Conference on Advanced Information Systems 
Engineering (pp. 446-462). Riga, Latvia.

Franconi, E., & Kamble, A. (2004b). A data 
warehouse conceptual data model. In Proceed-
ings of the International Conference on Statisti-
cal and Scientific Database Management (pp. 
435-436).

Giorgini, P., Rizzi, S., & Garzetti, M. (2005, No-
vember 4-5). Goal-oriented requirement analysis 
for data warehouse design. In Proceedings of the 
ACM International Workshop on Data Warehous-
ing and OLAP (pp. 47-56). Bremen, Germany.

Golfarelli, M., Maio, D., & Rizzi, S. (1998). The 
dimensional fact model: A conceptual model for 
data warehouses. International Journal of Coop-
erative Information Systems, 7(2-3), 215-247.

Golfarelli, M., & Rizzi, S. (2001, April 2-6). 
WAND: A CASE tool for data warehouse design. 
In Demo Proceedings of the International Confer-
ence on Data Engineering (pp. 7-9). Heidelberg, 
Germany.

Gyssens, M., & Lakshmanan, L. V. S. (1997). A 
foundation for multi-dimensional databases. In 
Proceedings of the International Conference on 
Very Large Data Bases (pp. 106-115), Athens, 
Greece.

Hüsemann, B., Lechtenbörger, J., & Vossen, G. 
(2000). Conceptual data warehouse design. In 
Proceedings of the International Workshop on 
Design and Management of Data Warehouses, 
Stockholm, Sweden.

Jones, M. E., & Song, I. Y. (2005). Dimensional 
modeling: Identifying, classifying & applying 
patterns. In Proceedings of the ACM International 
Workshop on Data Warehousing and OLAP (pp.(pp. 
29-38). Bremen, Germany.

Kimball, R. (1996). The data warehouse toolkit. 
New York: John Wiley & Sons.

Lechtenbörger , J. (2001). Data warehouse 
schema design (Tech. Rep. No. 79). DISDBIS 
Akademische Verlagsgesellschaft Aka GmbH, 
Germany.



���  

Conceptual Modeling Solutions

Lenz, H. J., & Shoshani, A. (1997). Summariz-
ability in OLAP and statistical databases. In 
Proceedings of the 9th International Conference 
on Statistical and Scientific Database Manage-
ment (pp. 132-143). Washington, DC.

Li, C., & Wang, X. S. (1996). A data model for 
supporting on-line analytical processing. In 
Proceedings of the International Conference on 
Information and Knowledge Management (pp. 
81-88). Rockville, Maryland.

Luján-Mora, S., Trujillo, J., & Song, I. Y. (2002). 
Extending the UML for multidimensional mod-
eling. In Proceedings of the International Con-
ference on the Unified Modeling Language (pp. 
290-304). Dresden, Germany.

Niemi, T., Nummenmaa, J., & Thanisch, P. (2001, 
June 4). Logical multidimensional database design 
for ragged and unbalanced aggregation. Proceed-
ings of the 3rd International Workshop on Design 
and Management of Data Warehouses, Interlaken, 
Switzerland (p. 7). 

Nguyen, T. B., Tjoa, A. M., & Wagner, R. (2000). 
An object-oriented multidimensional data model 
for OLAP. In Proceedings of the International 
Conference on Web-Age Information Manage-
ment (pp. 69-82). Shanghai, China.

Pedersen, T. B., & Jensen, C. (1999). Multidi-
mensional data modeling for complex data. In 
Proceedings of the International Conference 
on Data Engineering (pp. 336-345). Sydney, 
Austrialia.

Prakash, N., & Gosain, A. (2003). Requirements 
driven data warehouse development. In Proceed-
ings of the Conference on Advanced Information 
Systems Engineering—Short Papers, Klagenfurt/
Velden, Austria.

Priebe, T., & Pernul, G. (2000). Towards OLAP 
security design: Survey and research issues. In 
Proceedings of the ACM International Workshop 

on Data Warehousing and OLAP (pp. 33-40).(pp. 33-40). 
Washington, DC.

SAP. (1998). Data modeling with BW. SAP 
America Inc. and SAP AG, Rockville, MD.

Sapia, C., Blaschka, M., Hofling, G., & Dinter, 
B. (1998). Extending the E/R model for the mul-
tidimensional paradigm. In Proceedings of the 
International Conference on Conceptual Mod-
eling, Singapore.

Schiefer, J., List, B., & Bruckner, R. (2002). A 
holistic approach for managing requirements of 
data warehouse systems. In Proceedings of the 
Americas Conference on Information Systems.

Sen, A., & Sinha, A. P. (2005). A comparison of 
data warehousing methodologies. Communica-
tions of the ACM, 48(3), 79-84.

Simitsis, A. (2005). Mapping conceptual to logical 
models for ETL processes. In Proceedings of the 
ACM International Workshop on Data Warehous-
ing and OLAP (pp. 67-76). Bremen, Germany.

Tryfona, N., Busborg, F., & Borch Christiansen, 
J. G. (1999). starER: A conceptual model for data 
warehouse design. In Proceedings of the ACMACM 
International Workshop on Data Warehousing 
and OLAP, Kansas City, Kansas (pp. 3-8).

Tsois, A., Karayannidis, N., & Sellis, T. (2001). 
MAC: Conceptual data modeling for OLAP. In 
Proceedings of the International Workshop onInternational Workshop on 
Design and Management of Data Warehouses 
(pp. 5.1-5.11). Interlaken, Switzerland.

Vassiliadis, P. (1998). Modeling multidimensional 
databases, cubes and cube operations. In Pro-
ceedings of the 10th International Conference on 
Statistical and Scientific Database Management, 
Capri, Italy.

Vassiliadis, P., Simitsis, A., & Skiadopoulos, 
S. (2002, November 8). Conceptual modeling 
for ETL processes. In Proceedings of the ACM 



  ���

Conceptual Modeling Solutions

International Workshop on Data Warehousing 
and OLAP (pp. 14-21). McLean, VA.(pp. 14-21). McLean, VA.

Winter, R., & Strauch, B. (2003). A method for 
demand-driven information requirements analysis 
in data warehousing projects. In Proceedings of 
the Hawaii International Conference on System 
Sciences, Kona (pp. 1359-1365).

ENDNOTE

1 In this chapter we will only consider dy-
namicity at the instance level. Dynamicity 
at the schema level is related to the problem 
of evolution of DWs and is outside the scope 
of this chapter.
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