Journal of Computer Science and Information Management, Vol. 2, N. 3, 1999

Designing the Data Warehouse: Key Steps and Crucial Issues

Matteo Golfarelli

DEIS - University of Bologna
Viale Risorgimento, 2
40136 Bologna, Italy
golfare@csr.unibo.it

Stefano Rizzi

DEIS - University of Bologna
Viale Risorgimento, 2
40136 Bologna, Italy
srizzi(@deis.unibo.it

e ABSTRACT

Though designing a data warehouse requires techniques completely different from those adopted for operational systems, no significant effort has been made
so far to develop a complete and consistent design methodology for data warehouses. In this paper we outline a general methodological framework for DW design
discussing the relationships between the different steps and the difficulties in carrying them out. Within this framework, conceptual design is based on the
Dimensional Fact Model, while logical design exploits multiple cost functions at increasing levels of detail in order to improve both the efficiency and efficacy of
the algorithms. A workload is characterized in terms of data volumes and expected queries, to be used as the input of the logical and physical design phases whose
output is the final scheme for the data warehouse. In particular, drill-across queries are explicitly taken into account throughout the design steps.

Keywords

Data warehouse, design methodology, conceptual model, cost function, workload.

e INTRODUCTION

The database community is devoting increasing attention to the research themes concerning data warehouses (DWs); most scientific literature concerning
DWs focuses on specific issues such as multidimensional data models [1] [14], materialization of views [2] [15] and index selection [13] [16]. It is easy to note
that most of the interest has been gathered by those practical subjects that mainly determine the DW performances, while more conceptual issues like requirement
specification and conceptual models have not been investigated enough [31]. The lack of interest in such abstract issues is probably a consequence of the practical
requirements of enterprises where early DW projects were developed. However, we believe that a methodological framework for design is an essential requirement
to ensure the success of complex projects. This can be easily confirmed by analyzing the statistic reports related to DWs project failures [17] [29], which state that
a major cause lies in the absence of a global view of the design process and, in other terms, in the absence of an organic methodology. In this direction, our
research is aimed at defining the basic steps required for a correct DW design.

To the best of our knowledge, no significant effort has been made so far to develop a complete and consistent design methodology [23]. In [5] the different
phases in DW design are described informally, but no ad hoc conceptual model to support them is devised. Most of the techniques adopted in designing
operational systems do not fit DW requirements and lead to miss some aspects which are not relevant in the conventional systems but, due to the different targets,
become fundamental in data warehousing. For example, the E/R conceptual model, that is widely used for designing operational systems, does not explicitly show
which are the hierarchies and the measures related to a fact.

The aim of this paper is to outline the basic phases in DW design motivating the sequence of actions, discussing the relationships between the different steps
and the difficulties in carrying them out. Our methodological framework is based on the conceptual DW model we developed, called Dimensional Fact Model
(DFM). The methodology we propose features 6 phases, briefly sketched in Table I and examined in the following,

e ANALYSIS OF THE INFORMATION SYSTEM

The aim of this phase is to collect the documentation concerning the pre-existing operational information system. It represents a new step with respect to the
design of operational systems, which do not require a pre-existing database as a data source. This phase involves the designer, in tight collaboration with the
people managing the information system and, if possible, with its designers. It produces in output the (conceptual or logical) schemes of either the whole or part of
the information system. In particular, the conceptual schemes are usually unreliable and sometimes unavailable at all due to a poor design of the operational
system or as the result of undocumented changes to the database structure.

Step Input Output Involves

designer; managers of the
information system
designer; final users
designer

Analysis of the information system | existing documentation database scheme

(database scheme) facts; preliminary workload
database scheme; facts; preliminary| dimensional scheme
workload
dimensional scheme;
preliminary workload

Requirement specification
Conceptual design

Workload refinement, Dim. workload designer; final users

scheme validation

Logical design dimensional scheme; target logical | logical DW scheme designer
model; workload
Physical design logical DW scheme; target DBMS; | DW physical scheme designer

workload

Table L The six phases in our DW design methodology.

While analyzing the operational system the designer should:
e Exploit the experience of the database manager in order to find out possible missing or abnormal data. In particular, correct handling of null values is

Copyright@ 1999, Maximilian Press Publisher

Journal of Computer Science and Information Management, Vol. 2, N. 3, 1999

an essential precondition for the quality of the query answers. A null value may mean that, at the time the measurement was taken, either the value did
not exist or, conversely, that the measurement process failed to deliver the data [19]. This difference must be well understood by the designer when
(s)he plans the DW loading process.

e Select operational data sources by considering the data quality and the stability of their schemes. Other equivalent data sources should be determined as
well, in order to allow the so-called view synchronization to take place. View synchronization algorithms [21][24][20] exploit meta-data to gather
consistent information even after a change in the operational system scheme caused the basic data sources to be no more available.

e Determine which data can be usefully integrated in order to obtain a complete view of the database domain. Integration of heterogeneous views has
been largely dealt with in the database literature, see [32] for a comprehensive survey.

e Deeply understand the data semantic in order to make cross-footing possible during the data staging process.

While the logical and physical phases are characterized by a high computational complexity and conceptual design involves most of the crucial choices, the
analysis of the information system will require most of the time due to its complexity and to the huge volume of data that should be gathered.

e REQUIREMENT SPECIFICATION

While the first phase of our methodology deals with the input for the DW process, the second one concerns its output. In fact, it consists in collecting and
filtering the user requirements. It involves the designer and the final users of the DW, and produces in output the specifications concerning the choice of facts on
the one hand, preliminary indications concerning the workload on the other.

In particular, the choice of facts is based on the documentation on the information system produced at the previous step. Facts are concepts of primary
interest for the decision-making process, and typically correspond to events occurring dynamically in the enterprise world. If the operational information system is
documented by E/R schemes, a fact may be represented either by an entity or by an n-ary relationship; conversely, if it is represented by relational schemes, facts
correspond to relation schemes. In general, entities or relation schemes representing frequently updated archives are good candidates for defining facts; those
representing structural properties of the domain, corresponding to nearly-static archives, are not.

It is well-known that most queries on DWs are extemporary; nevertheless, we believe that logical and physical design should be based on an expected
workload including at least all the queries used in the enterprise to generate periodical reports. The preliminary workload is expressed in pseudo-natural language
and is aimed at enabling the designer to identify dimensions and measures during conceptual design; for each fact, it should specify the most interesting measures
and aggregations. By comparing the availability of data collected in the previous phase and the preliminary workload, it is also possible to understand which of the
user requirements can be satisfied. This knowledge triggers off an iterative dialogue between the designer and the users, aimed at finding out alternative solutions
when unavailability of data makes user requirements unachievable.

e CONCEPTUAL DESIGN

While it is universally recognized that a DW leans on a multidimensional model, little is said about how to carry out its conceptual design starting from the
user requirements.

Despite its importance, conceptual design is one of the less discussed subjects within the DW literature. In fact, besides our early works [9][10], only few
papers focus on this issue. In [6] the authors propose as a conceptual model an extension of the multidimensional model described in [4]; a declaratory query
language is introduced and its expressiveness is evaluated. However, fact tables are used to support conceptual design, thus blurring the borders between
conceptual and logical design. In [22] an object-oriented model called Nested Multidimensional Data Model has been proposed, which extends the classical
multidimensional model to allow complex OLAP scenarios to be modeled. In [30] the authors present an object-oriented conceptual model based on the fact class
and dimension class concepts, including both static and dynamic properties.

Within our methodology, if the two previous phases have been successfully carried out, the operational system scheme and the preliminary workload should
be available to the designer who will be able to carry out conceptual design almost autonomously. Assuming that the operational system is relational, in [9] we
proposed a semi-automated technique to carry out conceptual modeling starting, respectively, from the E/R schemes and from the logical schemes describing it. In
both cases, the following steps must be executed for each fact:

a. Building the attribute tree
b. Pruning and grafting the attribute tree

o

Defining dimensions
d. Defining measures

e. Defining hierarchies

Steps b, ¢ and d are supported by the preliminary workload defined together with the final users or derived by analyzing the reports the DW users most frequently
ask for.

The Dimensional Fact Model

The representation of reality built using the DFM is called dimensional scheme and consists of a set of fact schemes (one for each fact) whose basic elements
are facts, dimensions and hierarchies. The dimensional fact model is aimed at:

e Efficiently supporting conceptual design

e Providing an expressive environment where the user can intuitively formulate queries

e Allowing the designer and the users to discuss constructively in order to refine the requirement specification
e Representing a solid platform for the logical design phase

e Providing a non ambiguous and expressive a posteriori documentation

Copyright@ 1999, Maximilian Press Publisher

Journal of Computer Science and Information Management, Vol. 2, N. 3, 1999

Definition 1. Let g=(V.E) be a directed, acyclic and weakly connected graph. We say g is a quasi-tree with root in voeV if each other vertex vieV can be
reached from v through at least one directed path. We will denote with path;j(g) —g a directed path (if it exists) starting in v; and ending in v;; we will denote
with sub(vi)cg the quasi-tree rooted in vizvo.

Definition 2. A fact scheme is a six-tuple

f=(M,A,N,R,O,S)

where:

e M is a set of measures, each measure m;eM is defined by a numerical or Boolean expression which involves values acquired from the operational
information system.

e Ais aset of dimension attributes. Each dimension attribute a;€ A is characterized by a discrete domain of values, Dom(a;).

e Nis a set of non-dimension attributes.

e Risaset of ordered couples, each having the form (a;,a;) where a;e Au{ag} and aje AUN (aa)), such that the graph qt(f) = (AUNU{ag},R) is a quasi-
tree with root ag. ap is a dummy attribute playing the role of the fact on which the scheme is centred. The couple (a;,a;) models a -to-one relationship
between attributes a; and aj. We call dimension pattern the set Dim(f) = {aieA | I(ao,ai)eR}; each element in Dim(f) is called a dimension. When we
need to emphasize that a dimension attribute a; is a dimension, we will denote it as d;. We call hierarchy on dimension d;e Dim(f) the quasi-tree sub(d;).

e OcR is a set of optional relationships.

e Sis a set of aggregation statements, each consisting of a triple (m;, d;, Q) where mjeM, dieDim(f) and Q is an aggregation operator. Statement (m;,
di, Q)e8 declares that measure m; can be aggregated along dimension d; by means of Q. If no aggregation statement exists for a given pair (m;, d;), then
mj cannot be aggregated at all along d;.

In the following we will discuss the different components introduced above with reference to the fact scheme SALE, shown in Figure 1, which describes the
sales in a chain store.

hierarchy —
dimension
attripute
day of week - * fact sales manager
holiday r’ ¥ sdedistrict
I SALE
O O O O— C o)
year quarter month date 1 | dty sold city county state
\| revenue add
no. of customers ress

non-additivity

non-dimension
dimension 5
measure attribute

Figure 1. The SALE fact scheme.

From a graphical point of view, a fact scheme is structured as a quasi-tree whose root is a fact. A fact is represented by a box which reports the fact name
and, typically, one or more numeric and continuously valued measures (in the sale scheme, quantity sold, revenue and no. of customers).

Dimension attributes are represented by circles and may assume a discrete set of values. Each dimension attribute directly attached to the fact is a dimension,
dimensions determine the granularity adopted for representing facts. The dimension pattern of the sale scheme is {date, product, store}.

Sub-trees rooted in dimensions are hierarchies, and determine how fact instances may be aggregated and selected significantly for the decision-making
process. The dimension in which a hierarchy is rooted defines its finest aggregation granularity; the dimension attributes in the vertices along each path of the
hierarchy starting from the dimension define progressively coarser granularity. The arc connecting two attributes represents a -to-one relationship between them
(for instance, there is a many-to-one relationship between city and county), thus, every directed path within one hierarchy necessarily represents a -to-one
relationship between the starting and the ending attributes. We denote with .a; the value of aj determined by value a;eDom(a;) assumed by a; (for instance,
Veni ce.state denotes | t al y).

The fact scheme may not be a tree: in fact, two or more distinct paths may connect two dimension attributes within a hierarchy, provided that still every
directed path represents a -to-one relationship. Consider for instance the hierarchy on dimension store: states are partitioned into counties and sale districts, and no
relationship exists between them; nevertheless, a store belongs to the same state whichever of the two paths is followed (i.e., city determines state). Thus, notation
0,.3; explained above is still not ambiguous even if two or more paths connect a; to a;. Whenever two or more arcs enter the same attribute, arrows are used to
convey the direction of the -to-one relationships.

Some terminal vertices in the fact scheme may be represented by lines instead of circles (for instance, address in Figure 1), these vertices correspond to the
non-dimension attributes. A non-dimension attribute contains additional information about an attribute of the hierarchy, and is connected to it by a -to-one
relationship; differently from the attributes of the hierarchy, it cannot be used for aggregation.

The arcs marked by a dash express optional relationships between pairs of attributes. For instance, attribute dief takes a value only for food products.

A measure is aggregable on a dimension if its values can be aggregated along the corresponding hierarchy by at least one operator; an aggregable measure is
additive if its values can be aggregated by the sum operator. Since most measures are additive, in order to simplify the graphic notation in the DFM, only the
exceptions are represented explicitly. In particular, if m; is not additive along d;, mj and d; are connected by a dashed line labeled with all operators Q (if any) such
that (m;, d;,)€S (for instance, in Figure 1, measure no. of customers is not aggregable along dimension product).

Copyright@ 1999, Maximilian Press Publisher

Journal of Computer Science and Information Management, Vol. 2, N. 3, 1999

Fact instances

Given a fact scheme f, each n-ple of values taken from the domains of its n dimensions defines an elemental cell where one unit of information for the DW
can be represented. We call primary fact instances the units of information present within the DW, each characterized by exactly one value for each measure. We
denote with pf(ay,...om) the primary fact instance corresponding to the combination of values (a.1,...0.) € Dom(dq) x... x Dom(dy). In the sale scheme, each primary
instance describes the sales of one product during one day in one store.

Since analyzing data at the maximum level of detail is often overwhelming, it may be useful to aggregate primary fact instances at different levels of
abstraction, each corresponding to an aggregation pattern.

Definition 3. Given a fact scheme f with n dimensions, a v-dimensional aggregation pattern is a set P of v dimensional attributes such that no directed path
exists within qt(f) between each pair of attributes in P (that is, each attribute in P is functionally independent of the others). A dimension d;eDim(f) is said to be
hidden within P if no attribute of its hierarchy appears within P. An aggregation pattern P is legal with reference to measure mjeM if

Vdy [3(m;,dy. Q) €S dy €5

Examples of aggregation patterns in the sale scheme are {product,county,month}, {state,date} where product is hidden, {} where all dimensions are hidden.
Pattern {brand,month} is illegal with reference to no. of customers since the latter cannot be aggregated along the product hierarchy.

An aggregation pattern declares how primary fact instances should be aggregated. If a given dimension is not interesting for the current analysis, aggregation
is carried out over all the possible values the corresponding dimension can assume. Let P={a;,...a,} be an aggregation pattern, and dy+ denote the dimension whose
hierarchy includes aneP. The secondary fact instance sf(B1,...py) corresponding to the combination of values (B1,...py)eDom(ai)x...xDom(ay) aggregates the set of
primary fact instances

{ pf(ct,...0m) | Vke{1,..n} axeDom(dy) A Vhe{l,...v} an=a=Pn }

and is characterized by exactly one value for each measure for which P is legal. This value is calculated by applying an aggregation operator to the values that the
measure assumes within the primary fact instances aggregated. In the sale scheme, an example of secondary instance is the one describing the sales of products of
a given category during one day in a city. Figure 2 shows the corresponding primary fact instances; measure no. of customers is not reported since it is non-
aggregable along the product dimension.

gty sold = ...
revenue= ...
no. of customers= ...

Figure 2. The primary fact instances aggregated by a secondary fact instance.

In the following, we will use sometimes the term pattern to denote either the dimension pattern or an aggregation pattern.

Overlapping fact schemes

In the DFM, different facts are represented in different fact schemes. However, part of the queries the user formulates on the DW may require comparing
measures taken from distinct, though related, schemes (drill-across). In this subsection we show how two related fact schemes can be combined into a new
scheme; since the same attribute a; may appear within different fact schemes, possibly with different domains, we will denote with Domga;) the domain of a;
within scheme f.

Definition 4. Two fact schemes f' =(M',A',N',R",0',S") and {"=(M",A".N".R".0",S") are said to be compatible if they share at least one dimension attribute:
A'NMA"#J. Attribute a; is considered to be common to f and " if, within the two schemes, it has the same semantics and if Dome(ai)"Domp(a;)#<.

Definition 5. Given a quasi-tree t=(Viu{ag},E) with root ap, and a subset of vertices IcV, we define the contraction of t on I as the quasi-tree
ent(t,l) = (1 u{ap}.E") where

E'= {(ai,3)) | aielufao} A ajel A Ipathi(t) A Vacel-{ai.aj} axepath(t)}

The arcs of ent(t,) are the directed paths which, inside t, connect pairs of vertices of I without including other vertices of I.

Figure 3 shows a quasi-tree and its contraction on a subset of the vertices.

o 10 11 9 10
(a) (b)

Figure 3. A quasi-tree (a) and its contraction on the grey vertices (b); the root is in black.

Definition 6. Let two compatible fact schemes f=(M',A',N',R",0',S") and f"=(M",A",N",R",0",S") be given, and let [FA'nA". Schemes ' and " are said to be
strictly compatible if ent(qt(f'),I) and cnt(qt(f"),]) are equal.

Copyright@ 1999, Maximilian Press Publisher

Journal of Computer Science and Information Management, Vol. 2, N. 3, 1999

Two compatible schemes f and ' may be overlapped to create a resulting scheme f®f"; if the compatibility is strict, the inter-attribute dependencies in the two
schemes are not conflicting and f'®f" may be defined as follows.

Definition 7. Given two strictly compatible schemes ' and f", we define the overlap of ' and {" as the scheme f'®f"'=(M,A,N,R,0,S) where:
M=MuUM"
A=ANA"
VajeA (Domeer(ai) = Domg(a;)NDomp(a;))
N=NnN"
R = {(aia) | (apaj) ecnt(qi(f).A)} = {(ai.a)) | (aiaj) ecnt(qi(f").A)}
O = {(a;.,3))eR | I(aw.a,)€0' | (aw.a,) epath(qt(f)) v I(aw.a,)€0" | (aw.a,) epath;(qt(f"))}
S = {(m;,di,Q) | dieDim(f&1f") A (I(m;,di, Q2)eS" A diesub(qt(f'),dx)) v (3(mj,di,Q2)eS" A diesub(qt(t"),dx))}

Figure 4 shows the overlapping between the two strictly compatible schemes INVENTORY and SHIPMENT, which share the time and the product
dimensions. The scheme resulting from overlapping can be used, for instance, to compare the quantities shipped and stored for each product.

invoice number

order date address corporate
SHIPMENT o

O o
shipto city state

year quarter month date qty shipped

_____ ship from
address
deal contact person
terms
alowancep .)
incentive
(a)
season
product month | SHIPMENT
address o, O ®
season year \ INVENTORY
INVENTORY \ -
o—bo——o0 F—o—o0 \ | g shipped
o~ - qt ; \ - -| inventory gty
year month weekAVG aty warehouse city — State IV
MIN MIN
(b) (c)

Figure 4. The SHIPMENT scheme (a), the INVENTORY scheme (b) and their overlap (c).

e WORKLOAD REFINEMENT AND SCHEME VALIDATION

This phase is primarily aimed at refining the preliminary workload by reformulating it in deeper detail on the dimensional scheme; the next subsection
defines a simple language to denote queries according to the DFM. Another significant aspect concerns the computation of the expected data volumes. Both the
query workload and the data volumes will have a crucial role in guiding logical and physical design.

This phase is also aimed at validating the conceptual scheme produced at the previous step; in fact, the query workload can be exhaustively and correctly
expressed only if the dimensions and measures have been properly identified and hierarchies are well-structured.

Queries

Within our framework, a typical DW query can be represented by the set of fact instances, at any aggregation level, whose measure values are to be retrieved.
These information, together with the corresponding meta-data (i.g. the DBMS data type lengths), appear in the cost functions adopted within the logical and

physical design steps, thus impacting on the optimization process. In this subsection we discuss how sets of fact instances can be denoted by writing fact instance
expressions having the general form:

<fact instance expression> .= <fact name> (<pattern clause> ; <selection clause>)
<pattern clause> ::= comma-list of <pattern elements>

<pattern elements> .= <dimension name> | <dimension name> <attribute name>
<selection clause> ;= comma-list of <predicate>

The pattern clause describes a pattern. The selection clause contains a set of Boolean predicates which may either select a subset of the aggregated fact
instances or affect the way fact instances are aggregated. If an attribute involved either in a pattern clause or in a selection clause is not a dimension, it should be

Copyright@ 1999, Maximilian Press Publisher

Journal of Computer Science and Information Management, Vol. 2, N. 3, 1999

referenced by prefixing its dimension name.
The value(s) assumed by a measure within the fact instance(s) described by a fact instance expression is(are) denoted as follows:

<measure values> .= <fact instance expression><measure>
Given a fact scheme f having n dimensions dj,...d,, consider the fact instance expression

f(d1,...dpaps,...ay ; eibi)),...enbi) M

where we have assumed, without loss of generality, that the first p pattern elements involve a dimension and the other v—p involve a dimension attribute. Each
Boolean predicate ; involves one attribute b;j belonging to the hierarchy rooted in d'l*” which may also be hidden.

If p=v=n (i.e., the pattern clause describes the dimension pattern), expression (1) denotes the set of primary fact instances

{ pf(au,...0m) | Vke{l,..n} axeDom(dy) A Vje{l,..h} ej(ocij*.bil) }

For instance,
SALE(date, product, store; date.year>="1995", product="P5").qtySold

denotes the quantities of product P5 sold in each store during the days of the years since 1995.

Otherwise (p<v and/or at least one dimension is hidden), let P be the aggregation pattern described by the pattern clause. Let bll be the attribute involved by
ej; we say e is external if Ja; €P | aj],*epath()i],(qt(t)), internal otherwise. External predicates restrict the set of secondary fact instances to be returned, while
internal predicates determine which primary fact instances will form each secondary fact instance. Let ey,...er and e+1,...en be, respectively, the external and the
internal predicates (0<r<h); in this case, expression (1) denotes the set of secondary fact instances

{sf(Br....B) | Vke{l....v} PreDom(ap) A Vje L. .} efBi, bi))

where each sf(B1,...Bv) aggregates the set of primary fact instances
{ pfla,...0n) | Vke{l,..n} axeDom(di) A Vhe {1,..v} anan=PBn) A Vje{r+l,.. h} ej(aij*.b;j) }
For instance, the expressions

SALE(date.month, product.type ; date.month="JANO9S8", product.category="food").qtySold
SALE(date.month, product.type ;, date.month="JAN98", product.brand="General").qtySold

denote, respectively, the total sales of each type of products of category "food" for January 1998 and the total sales of each type of products of brand "General" for
January 1998. The predicates on month and on category are external, whereas that on brand is internal. In particular, internal attributes have great importance in
defining the granularity of data involved in the query solution. In fact, the aggregation pattern is not sufficient to determine the required level of detail that can be
made finer by the internal attributes contained in the selection clauses.

The DW workload will typically include drill-across queries, that is, queries formulated on the overlap of two or more schemes. Let q be defined by the fact
instance expression f(P;<sel>) where f=f1®...®f;,. Each fact instance returned by q is the concatenation of m fact instances returned by the m queries qt,...qm,
where q;=fi(P;<sel>,djeDomd,),... d,e Domgd,)) and d,...d, are the dimensions of f. An example of drill-across query is:

SHIPMENTQINVENTORY(month.product, month.year="1997").inventoryQty—qtyShipped

Definition 8. The workload W on a dimensional scheme is a set of pairs (q;,vi), where q; denotes a query and v; its expected frequency. Each query is
represented by a fact instance expression f(P;<sel>).G where f is a fact scheme (elemental or overlapped), G is a set of measures of f, <sel> is a selection clause
and pattern P is legal with reference to every measure meG.

Data volumes

Primary data volumes are computed for each fact scheme f by considering the sparsity of facts and the cardinality of the dimension attributes. Let nkal denote

the domain cardinality of attribute a; within f; the maximum number of primary fact instances is

cp= and,

d;eDim(f)

We denote with np the actual number of primary fact instances, which we assume to be known; typically, np<<cp.

In most DW cost models (see for instance [14]), the cost of a query q is assumed to be proportional to the number of n-ples in the view on which q is
executed. Since views may be materialized at any level of abstraction, it is necessary to estimate the number of secondary fact instances corresponding to an
aggregation pattern P. The maximum number of secondary fact instances corresponding to P is

cs(p) = 1_[n1<ai

ajeP
The actual number of secondary fact instances, ns(P), may be estimated using the Yao formula [33]:

cp
ep-
P cs(P)
np

Copyright@ 1999, Maximilian Press Publisher

ns(P)=cs(P) x| 1-

Journal of Computer Science and Information Management, Vol. 2, N. 3, 1999

When cp/cs(P) is sufficiently large, this formula is well approximated by the Cardenas formula [7]:

RN
ns(P)~cs(P)x| 1- [l - cs(P)]

In the following we consider a numerical example from the SALE scheme. Let nkprodue=1000, nkgae=1000 (about 3 years) and nkgore=100, which implies

cp:108; let np:106. Consider the aggregation pattern P={product.type, date, store.city}, where nkype=100 and nk,=50, which implies cs(P):5x106. In this
case, the Cardenas formula yields ns(P)=906347.

e LOGICAL DESIGN

Several issues must be addressed in order to obtain a correct definition of the DW logical scheme. Logical design receives in input a dimensional scheme, a
workload and a set of additional information (update frequencies, total disk space availability, etc.) to produce a DW scheme which should minimize the query
response times by respecting the disk space constraint. In this context, we believe that update queries should be considered separately from the workload. In fact,
DWs are typically updated only periodically, in an off-line fashion, and during this process the warehouse is unavailable for querying. Thus, the update process
does not affect directly the DW performance, and it is sufficient to ensure that it is properly bounded in time.

At this time, it is necessary to choose the target logical model, relational or multidimensional. Although in this paper we consider only the relational case
(which represents, at the moment, the most popular choice), several intermediate approaches have been developed (e.g. Deductive OLAP, Hybrid OLAP, etc.). In
particular, a new trend in logical/physical models consists in adopting the object-oriented paradigm in order to combine the advantages of MOLAP and ROLAP
and, at the same time, eliminate their disadvantages [3].

A dimensional scheme can be mapped on the relational model by adopting the well-known star scheme [18]; it may be convenient to snowflake one or more
dimensions, depending on the cardinality of the domains.

The definition of an accurate cost model has a primary role in correctly evaluating the system performance. During logical design, adopting a simplistic
model may cause gross mistakes while adopting a too accurate one could make the design very complex. In our approach different cost models at increasing levels
of detail will support the different design steps. Obviously, the different cost functions are not conflicting with each other but they evaluate the access cost with a
different granularity.

The following subsections outline the sequence of the logical design steps; each step optimizes a different aspect in the DW structure. Dealing with different
but related problems separately induces a sub-optimal solution, nevertheless a divide-and-conquer approach must be adopted due to the huge computational cost
of an integrated solution. As a matter of fact, we do not propose any specific optimization algorithm since this is out of the scope of the paper; our aim is instead to
emphasize and motivate the basic principles that must be considered regardless of the technique that will be adopted.

View materialization

A technique commonly used to reduce the overall response time is to pre-compute (consolidate) the information that can be useful to answer frequent
queries. Fact tables reporting data consolidated from other fact tables are often called views; each view allows the costs for a set of queries to be reduced but leads
to additional update costs and disk space occupancy.

A massive work has been done in the literature on view materialization, see for instance [11] and [2] where a multidimensional lattice is defined for each
fact, based on a partial ordering relationship between the aggregation patterns. In general, the materialization problem is faced by considering each single lattice
separately. On the other hand, we claim that the whole dimensional scheme should be involved; in fact, drill-across queries may weigh significantly upon the
workload and cannot be optimized on one lattice at a time. Typically, a drill-across query executed by retrieving data from two or more views defined on the same
pattern though on different fact schemes; on the other hand, if some of these views were unified into a single fact table, the access costs could be significantly
reduced. Since the computational complexity arising when multiple lattices are optimized at the same time cannot be successfully afforded, drill-across query
optimization will be carried out in two phases. During the view materialization step drill-across queries are split into separate queries on the different fact schemes
involved. Let g=f (P;<sel>).G be a drill-across query operating on the overlapped fact scheme = fi®... ®f;. By splitting q we will obtain n new queries q;... qn
defined as follow

q=fi(P;<sel>). G

where fj is an elemental fact scheme, Gj = G n M, (M, is the set of measures for 1j). Splitting drill-across queries allows the real workload to be better estimated
without considering all the related fact schemes at once. If, at the end of this step, two views with the same aggregation pattern are materialized on both f; and £, it
will be possible to unity them. This possibility will be considered during the vertical partitioning step.

Since the final table structure is not defined yet, the cost model adopted at this step should be based on the number of logical accesses made to both fact and
dimension tables in order to solve a query. The tables that will be actually accessed are not strictly defined by the aggregation pattern but are obviously selected
from the set of materialized views.

Definition 9. Let P; and P; be two distinct patterns on fact scheme f, we say that P; is projectable on Pj (P; < Pj) ift V apeP; (3axeP;| anesub(qt(f),ax)). Given P;
and Pj such that P; < Pj, we define the projection of P; on P; as

Pi—P={(axeP|| P; m sub(qt(f).ax) #J }

For example, with reference to the sale fact scheme, the pattern Pi={category, state} is projectable on Pj={category, city, month} (and it is Pi>Pj={category,
city}) but not on P'j={marketing group, month}. The pattern P={category} is projectable on P/={type, brand} (and it is P>P={type}).

The cost of the query q, defined on pattern P and executed on a materialized view with pattern Py (P < Py) is defined by:

C(q.P) = ns(ER)sel + D mk, xsel; (2.a)
a;eP-P
sel= [[sel; 2b)
ajeP->P

where sel; is the selectivity of the predicates (if any) within the selection clause of q.
Differently from the cost function adopted in [2] and [15], ours is not necessarily monotonic with respect to the cardinality of the fact table used (i.e.

card(vi)<card(vi) = C(q,P))<C(q.Py)); as a consequence, the best pattern between two can be identified without computing the cost function only if one of the

Copyright@ 1999, Maximilian Press Publisher

Journal of Computer Science and Information Management, Vol. 2, N. 3, 1999

patterns is projectable on the other. Consider in fact query
q = SALE(product,date; product.category="food")

and suppose that two views corresponding, respectively, to P'={product.date state} and P"={product.date sales manager} have been materialized (P' is not
projectable on P", and vice versa); let nkyae< nKsales manager and ns(P'y>ns(P") (several sale managers do not sell food). Both P' and P" can be used to answer q, but
in this case it is not necessarily C(q.P')>C(q, P").

As to update cost, please note that with the term update query we denote the queries used to create a materialized view starting from a fact table or another
materialized view. We do not never consider within the workload the queries necessary to update the fact tables starting from the operational data; in fact, since we
assume that the fact tables containing the primary fact instances are always materialized, their update cost cannot be avoided and thus it cannot be optimized.

Let t be the time bound for the view update process and V the number of pages per time unit that can be read or written by the system. Thus, the constraint
on the update cost can be formulated as:

> Cu(v;.F)

vieF
- <t
\%

where F is the set of materialized views and Cu(v;,F) is defined as follows:

Cu(v;,F) =C(qvi,PV])+ns(fj.1>j).(|fj.}>j|+ 1

The first term within the sum defines the cost in reading the data necessary to update v; from its closest materialized viewl, having pattern PV],. The second term
expresses the cost for writing on v;: for each fact instance, one read access for each dimension table and one write access on the fact table are made.

Translation into tables

During this phase, the fact and dimension tables are created starting from the dimensional scheme and according to the logical model adopted. In the
simplest case, in which the classic star scheme is adopted, each fact scheme f = (M,A,N,R,0,S) having Dim(f)={di....dn} and M={m,...m,} is translated into one
fact table

FT_f(ky ... k,m,...m)

and n dimension tables

DT _d(k,a,...a,,a ,...a)

(where the hierarchy on d; includes the dimension attributes 81, Ay, and the non dimension attributes a'il,...a'iui).

The star scheme for the SALE example turns out to be:

FT_SALE(pr odKey, dat eKey, st or eKey, qt ySol d, r evenue, noCxf Cust orer s)

DT_PROD(pr odKey, product, wei ght, di et, brand, city, type, cat egory, depart nent,
dept Manager, .. .)

DT_DATE(dat eKey, dat e, dayOf Week, hol i day, nont h, . .)

DT_STORE(st or eKey, st or e, phone, addr ess, sal esManager, city, county, state,
sal eDi strict)

By snowflaking one ore more dimensions better performances can be achieved [19]. In fact, snowflaking leads to (partial) normalization of the dimension
tables since it cuts the functional dependencies induced by hierarchies; fact table data are split accordingly. Performance improvements derive from the reduced
dimension of the accessed tables; on the other hand in a completely snowflaked scheme solving a query will require several expensive joins between dimension
tables in order to filter the requested tuple-ids. Snowflaking must be transparent to the users, thus, it is possible only if the DBMS adopted is capable of

determining which tables can be more conveniently accessed. Asa general rule, snowflaking aggregation levels correspond to the materialized view aggregation
levels. It should be noted that, even if these two design choices are strictly related, they do not always coincide, thus a snowflaked fact table can still contain data
at different aggregation levels.

Vertical partitioning of fact tables

Fact schemes usually include several measures that describe the same fact but, in practice, are seldom requested together. Vertical partitioning aims at

reducing the global query response time by optimizing the queries requiring a subset of measures. Given a fact table FT_f (k,, ...k, m, ... m), vertical
partitioning is carried out by defining a partitioning of the set of measures M={mj,...m,} into y subsets (y=2) and by splitting accordingly FT_f into y tables each
containing the complete key k, . . . K and one of the measure subsets.

The problem of determining the optimal partitioning given a workload has been widely investigated within the context of centralized as well as distributed
database systems [27]. Unfortunately, the results reported in the literature cannot be applied to the DW case since the redundancy introduced by materializing
views binds the partitioning problem to that of deciding on which view each query should be executed.

Let us consider for example a couple of queries q,=f(P,<sel>).G), qx=f(P,<sel>).G, requiring different sets of measures, and two materialized views v; and va
with pattemns P and P respectively (P—>P,—P1). Though both views can be used to solve the queries, the optimal solution does not necessarily require the queries
to be executed on v,. In fact, if v; and v, have been differently partitioned, it may be less expensive to execute one of the queries on vi: a cost reduction will arise if
the extra-cost due to the finer granularity of v is smaller than the saving obtained by reading better fitting tuples (see Figure 5). The final solution for vertical

Titis easy to show [27] that the global update cost is minimized if each view is updated after those with a finer pattern.
2 The DBMS module that achieves this task is commonly called aggregate navigator [11].
Copyright@ 1999, Maximilian Press Publisher

Journal of Computer Science and Information Management, Vol. 2, N. 3, 1999

partitioning includes determining on which view(s) each query will be executed.

A second element that makes vertical partitioning in DWs more difficult is the presence of drill-across queries. Their optimization requires all the tables
obtained from related fact schemes to be considered at the same time. The optimal sets of measures are not necessarily subsets of the set of measures of the single
fact tables but may be obtained by merging measures from different facts.

Gy G2

Figure 5. Vertical partitioning for two views vi and vo. While q; can be surely executed more efficiently by accessing vo, it is not obvious whether it is convenient
to solve g2 on vy or on vy,

Merging measures coming from two different facts fi and f> is subordinated to the following constraints on the corresponding fact tables:

e They must have the same aggregation pattern

e They must have been selected for materialization during the materialization view optimization

Since optimization is based on the dimension of the accessed tuples, a cost function based on logical accesses is no more useful since by applying vertical
partitioning the number of logical accesses to the tables will be always increased. Thus, the cost function used here takes into account the reduced cost in
accessing shorter tuples as well as the overhead in accessing multiple tables. Let o be the cost in accessing a table descriptor, £ the number of tuples within a disk

page for the unpartitioned table, vfi the number of fragments defined on the view materialized on pattern P and ; the fraction of these fragments used to answer
the query q; thus the cost function can be defined as follows:

)

P
C(qi,Pk):a-fvfl«cplF—nS(2 vy g
B iy

Horizontal partitioning of fact tables

Horizontal partitioning aims at reducing the query response time by considering the selectivity of each query. In fact, most queries will not access all the n-
ples within the fact table, but only a subset determined by a selection predicate involving one or more dimension attributes. Given a fact table FT_f , horizontal
partitioning is carried out by determining an optimal set of dimension attributes and by reallocating the n-ples in FT_f to a set of tables FT_f ,,..FT_f , each
having the same relation scheme as FT_f and associated to one or more elements of the Cartesian product between the domains of the dimension attributes
involved.

The problem of horizontal partitioning for relational databases is addressed in [27]. Also in this case, the problem is made more complex by the presence of
views. Both primary and secondary horizontal partitioning can be useful:

e Primary horizontal partitioning is based on a selection predicate involving an attribute belonging to both the fact table and the dimension tables (i.e. a
foreign key k; on the fact table) and can produce a cost reduction for the queries selecting a subset of the tuples from the fact table according to the
values assumed by the i-th dimension.

e Secondary horizontal partitioning is based on a selection predicate involving an attribute a; belonging only to a dimension table. It can be useful for the
queries containing selection clauses which involve aj or other attributes functionally determined by a;.

The cost function adopted in this phase should take the reduced cost in accessing smaller tables into account. Let « be the cost in accessing a table
descriptor, £ the number of tuples within a disk page for the unpartitioned table, hfi the number of fragments defined on the view materialized on pattern Py and ¢;
the fraction of these fragments used to answer the query q;; thus the cost function can be defined as follows:

P
C(qiﬁPk) = a'|—hfk '(pl—|+ 11::{ kﬁ) ’—hfk '(pl—|

e PHYSICAL DESIGN

The main issue in physical design concerns the optimal selection of indices, which is based on both the logical scheme and the workload and requires the
specific access structures provided by the DBMS to be taken into account. Index selection has a crucial role in determining the DW performance.

With respect to conventional databases, DW update takes place in an off-line fashion; as a consequence, more complex access structures can be adopted. In
particular, besides traditional value-list indices such as B-trees, data warehousing systems usually support bitmap index[25], join index|8] and projection
index[26]. Furthermore, at update time the indices may be reorganized in an optimal clustered form producing an extra gain. Index selection should also consider
the different join algorithms, the most used being nested loop, sort merge and simple hash join.

Due to its high complexity, physical design must be carried out using heuristic algorithms [13] [16]. Such algorithms are aimed at determining the best
subset of indices that minimizes the access cost for the queries in the workload under the space and time constraints. The space of the possible solutions can be
reduced by considering the classical form of an OLAP query. Though OLAP query can require every possible subset of measures and can involve several
dimensional attributes, its structure is almost fixed. Let us consider for example the following query based on the fact scheme presented in Figure 1:

SALE(Date.Month, Product.Category, Store.City, Product. Type="Sport”, Store.State="1").Qty Sold 3)

A possible execution tree for this query is presented in Figure 5. It should be noted that:

Copyright@ 1999, Maximilian Press Publisher

Journal of Computer Science and Information Management, Vol. 2, N. 3, 1999

e When possible, selection and projection operations should be executed before join operations
e It is never convenient to execute a join between two dimension tables

e The best sequence for the join operations depends on the cardinality of the filtered dimension tables

Based on these considerations, the set of attributes on which it could be useful to build an index can be restricted to:

o Nown-key attributes of the dimension tables: the index, for example a bitmap or a B*-Tree, will be useful to speed up the selection operation

e Foreign keys attributes of the fact table belonging to the primary key: these indices will speed up the join operations

As to the update queries we believe that, similarly to logical design, an upper bound should be placed on the total update time.
X §
/ ‘\ ID Week
Month
. §

/' \ ID_Product
Category DT_DATE
. A

FT_SALE G
ID Store
, State
+ty
© DT_STORE

Type="“Sport”

_>

DT_PROD

Figure 6. A possible execution tree for the OLAP query (3).

CONCLUSION

In this paper we outlined a general methodological framework for DW design, discussing the relationships between the different steps and the difficulties in

carrying them out. The framework covers the conceptual, logical and physical steps. The conceptual step is based on the Dimensional Fact Model, while the
logical one exploits multiple cost functions at increasing levels of detail in order to improve both the efficiency and efficacy of the algorithms.

While conceptual design and workload definition have already been achieved and tested on a set of sample applications producing satisfying results, we are

currently studying effective algorithms for logical and physical design.

REFERENCES

[1] R. Agrawal, A. Gupta, and S. Sarawagi, "Modeling multidimensional databases", IBM Research Report, 1995.

[2] E. Baralis, S. Paraboschi, and E. Teniente, “Materialized view selection in multidimensional database", Proc. 23 Very Large Database Conf. (VLDB97),
Athens, Greece, 1997, pp. 156-165.

[3] TW. Buzydlowski, I. Song and L. Hassel. "A Framework for Object-Oriented On-Line Analytic Processing", Proc. of the 1% Int. Workshop on Data
Warehousing and OLAP (DOLAP’98), Washington D.C., November 1998.

[4] L. Cabibbo, and R. Torlone, "Querying Multidimensional databases", 6" Workshop on Database Programming Languages (DBPL’97), 1997.

[5] L. Cabibbo, and R. Torlone, "Un quadro metodologico per la costruzione e I'uso di un data warehouse", Proc. Sesto Convegno Nazionale sui Sistemi Evoluti
per Basi di Dati, Ancona, Italy, 1998, pp. 123-140.

[6] Cabibbo, L., and Torlone, R., "A logical Approach to Multidimensional Databases". Lecture Notes in Computer Science, n. 1377, Proc. of the 6% Int. Conf.
on Extending Database Technology, (EDBT’98), Valencia, March 1998, pp. 183-197.

[71 AF. Cardenas, "Analysis and performance of inverted database structures”", Comm. ACM, vol. 18, n. 5, pp. 253-263, 1975.

[8] C.D. French, " 'One Size Fits All' Database Architectures Do Not Work for DSS", Proc. ACM SIGMOD Contf., 1995, pp. 449-450.

[91 M. Golfarelli, D. Maio, and S. Rizzi, "Conceptual design of data warehouses from E/R schemes", Proc. HICSS-31, VII, Kona, Hawaii, 1998, pp. 334-343.

[10] M. Golfarelli, D. Maio, and S. Rizzi, "The Dimensional Fact Model: a Conceptual Model for Data Warchouses" to appear on Int. Jour. Computer and
Information Systems.

[11] A. Gupta, V. Harinarayan, and D. Quass, "Aggregate query processing in data warehousing environments", Proc. 21% Very Large Database Conf.
(VLDB95), 1995, pp. 358-369.

[12] H. Gupta, "Selection of views to materialize in a data warehouse", Proc. Int. Conf. on Database Theory, Athens, Greece, 1997.

[13] H. Gupta, V. Harinarayan, and A. Rajaraman, "Index selection for OLAP", Proc. Int. Conf. Data Engineering, Binghamton, UK, 1997.

[14] M. Gyssens, and L.V.S. Lakshmanan, "A foundation for multi-dimensional databases", Proc. 231 Very Large Database Conf. (VLDB97), Athens, Greece,

1997, pp. 106-115.

Copyright@ 1999, Maximilian Press Publisher

Journal of Computer Science and Information Management, Vol. 2, N. 3, 1999

[15]
[16]

[17]
[18]
[19]
[20]

[21]
[22]

[23]
[24]

[25]
[26]
[27]
[28]
[29]
[30]

31]
[32]

[33]

V. Harinarayan, A. Rajaraman, and J. Ulman, "Implementing Data Cubes Efficiently"”, Proc. of ACM Sigmod Conf., Montreal, Canada, 1996.

T. Johnson, and D. Shasha, "Hierarchically split cube forests for decision support: description and tuned design”, Bulletin of Technical Committee on Data
Engineering, vol. 20, 1997.

S. Kelly, "Data Warehousing in Action", New York: John Wiley & Sons, 1997.
R. Kimball, "The data warehouse toolkit", New York: John Wiley & Sons, 1996.
R. Kimball, L. Reeves, M. Ross and W. Thornthwaite, "The data Warehouse Lifecycle Toolkit", NewYork: John Wiley & Sons, 1998.

A. Koeller, E.A. Rundensteiner and N. Hachem, "Integrating the Rewriting and Ranking Phases of View Synchronization”, Proc. of the 1% Int. Workshop on
Data Warehousing and OLAP (DOLAP’98), Washington, D.C. November 1998.

A.J. Lee, A. Nica and E.A. Rundensteiner, "Keeping Virtual Information Resources Up and Running", Proc. of IBM CASCO97, November 1997, pp. 1-14.

W. Lehner, "Modeling Large Scale OLAP Scenarios”, Lecture Notes in Computer Science, n. 1377, Proc. of the 6™ Int. Conf. on Extending Database
Technology, (EDBT’98), Valencia, March 1998, pp. 183-197.

F. McGuff, "Data modeling for data warehouses", http://members.aol.com/fimcguff/dwmodel/dwmodel. htm, 1996.

A. Nica, A.J. Lee and E.A. Rundensteiner, "The CVS Algorithm for View Synchronization in Evolvable Large-Scale Information Systems", Proc. of the 6
Int. Conf. on Extending Database Technology, (EDBT’98), Valencia, March 1998, pp. 359-373.

P. O'Neil, "Model 204 Architecture and Performance", Lectures Notes in Computer Science n. 359, Springer-Verlag, 1987.

P. O'Neil and G. Graefe, "Multi-Table Joins Through Bitmapped Join Indices", SIGMOD Record, pp. 8-11, September 1995.

M.T. Ozsu, and P. Valduriez, "Principles of distributed database systems", Prentice-Hall Int. Editors, 1991.

D. Quass, "Maintenance Expressions for Views with Aggregation", Proc. ACM Workshop on Materialized Views: Techniques and Applications, June 1996.
L. Silverston, W.H. Inmon and K. Graziano. "The Data Model Resource Book", New York: John Wiley & Sons, 1997.

J. Trujillo, M. Palomar. "An Object Oriented Approach to Multidimensional Database Conceptual Modeling (OOMD)", Proc. of the 1 Int. Workshop on
Data Warehousing and OLAP (DOLAP’98), Washington, D.C. November 1998.

J. Widom, "Research Problems in Data Warehousing", Proc. 4™ Int. Conf. on Information and Knowled ge Management, 1995.

G. Wiederhold, "Integrating artificial intelligence and database technologies", Journal of Intelligent Information Systems, Special issue: Intelligent
Integration of Information, vol. 6, 1996.

S.B. Yao, "Approximating block accesses in database organizations”, Comm. ACM, vol. 20, n. 4, pp. 260-61, 1977.

Matteo Golfarelli received his degree in Computer Science from the University of Bologna, Italy, in 1995. Since November 1995 he
has been a PhD student at the Faculty of Computer Science of the University of Bologna, with research theme "Autonomous
Agent". His current research interests also include data warehousing and biometric systems.

Stefano Rizzi received his degree in Electronic Engineering from the University of Bologna, Italy, in 1988, he received the Ph.D.
degree for his work on autonomous agents in 1996. Since 1998 he is Associate Professor at the Computer Science Department of
the University of Bologna, Cesena, Italy. His current research interests include data warehousing, mobile robotics, pattern
recognition and visual query systems.

Copyright@ 1999, Maximilian Press Publisher

