
UML-Based Conceptual Modeling of
Pattern-Bases?

Stefano Rizzi

DEIS - University of Bologna
Viale Risorgimento, 2
40136 Bologna - Italy
srizzi@deis.unibo.it

Abstract. The concept of pattern, meant as an interesting knowledge
artifact extracted from data, is considered to be a an effective answer to
the advanced analysis requirements emerging in complex industrial and
scientific applications. Overall, it appears that designing and building
large pattern-bases will probably be a hot issue for future applications. In
this paper we focus on conceptual design of pattern-bases, by discussing
how UML could be used and extended to this end. In particular we
address the main issues in static modeling, including the representation
of relationships between patterns, and we briefly present some issues
related to functional and dynamic modeling.

1 Introduction

Conceptual modeling is a key issue during the building of applications, since it
provides a solid foundation for the design and implementation phases, it allows
user requirements to be intuitively expressed and validated, and it provides ex-
pressive a-posteriori documentation for the design process. In particular, concep-
tual modeling of databases has been long studied and practiced; while through
the past 20 years the Entity/Relationship model [3] has undoubtedly established
itself as the most widely used formalism to this end, during the last few years
UML has been gradually superseeding Entity/Relationship by becoming a stan-
dard for modeling a very wide range of applications and domains, including
databases [2].

Recently, the research literature is emphasizing that databases may no longer
be an effective answer to the advanced analysis requirements emerging in com-
plex industrial and scientific applications. The concept of pattern, meant as an
interesting knowledge artifact extracted from data (for instance a cluster, an
association rule, a time series, etc.), is considered to be a good candidate to fill
this gap. Among the main pattern modeling efforts we cite PMML [1], that uses
XML to represent data mining models, SQL/MM [8], where the supported min-
ing models are represented as SQL types, and the Pattern Query Language [7],
? This work was partially funded by the Information Society Technologies programme

of the European Commission, Future and Emerging Technologies under the IST-
2001-33058 PANDA project (2001-2004)



that is is an SQL-like query language for patterns. In inductive databases, data
and patterns are represented together to be uniformly retrieved and manipulated
[6]. In [4] a logical framework for modeling patterns is proposed; differently from
the previously mentioned approached, here a strong emphasis is given to the
generality, extensibility, and reusability issues.

Overall, it appears that designing and building large pattern-bases will prob-
ably be a hot issue for future applications. In particular, we believe that con-
ceptual modeling will have a critical role in ensuring that the resulting pattern-
base is well-designed, robust, and capable of effectively and flexibly supporting
the analysis requirements of specialized users, especially since the conceptual
schema constitutes a privileged platform for capturing and expressing complex
relationships between patterns. Unfortunately, the peculiar nature of patterns as
compared to data makes the design techniques developed for data mostly useless
for pattern design.

In this paper we focus on conceptual modeling of pattern-bases, by discussing
how UML could be used and extended to this end. In general, modeling should
be carried out along three coordinates: static, aimed at describing the pattern-
base from a structural point of view, functional, meant to give an insight on the
processes that transform data in the pattern-base, and dynamic, that focuses on
representing the evolution in time of the state of the pattern-base. While the
discussion is mainly focused on static modeling, also some issues in functional
and dynamic modeling are considered in the paper. The reference logical model
adopted is the one proposed in [4].

The paper outline is as follows. In Section 2 we summarize the main features
of the reference logical model. In Section 3 we present some notable examples of
patterns which will be used throughout the paper to demonstrate the modeling
solutions proposed. Sections 4, 5, and 6 describe our proposal for static, func-
tional, and dynamic modeling of pattern-bases, respectively. Finally, Section 7
draws the conclusions.

2 Background on Pattern-Bases

In this section we summarize the main features of the logical model for patterns
proposed in [4].

2.1 Pattern Types, Patterns, Classes

Patterns can be regarded as artifacts which effectively describe subsets of raw
data by isolating and emphasizing some interesting properties. Thus, we may
informally say that a pattern is a compact and rich in semantics representation
of raw data. While in most cases a pattern is interesting to the end-users because
it describes a recurrent behaviour (e.g., in market segmentation, stock exchange
analysis, etc.), sometimes it is relevant just because it is related to some singular,
unexpected event (e.g., in failure monitoring).

2



A pattern type represents the intensional form of patterns, giving a formal
description of their structure and relationship with source data. Given a set of
base types and a set of type constructors, in the following we will refer to a set
T of types including all the base types together with all the types recursively
defined by applying a type constructor to one or more other types; types are
applied to attributes.

Definition 1 (Pattern type). A pattern type pt is a quintuple

pt = (n, ss, ds,ms, f)

where:

1. n is the name of the pattern type;
2. ss (structure schema) is a type in T that defines the pattern space by de-

scribing the structure of the patterns instances of the pattern type;
3. ds (source schema) is a type in T that defines the related raw data space by

describing the dataset from which patterns are constructed;
4. ms (measure schema) is a type in T describing the measures which quantify

the quality of the source data representation achieved by the pattern;
5. f is a formula, referring to attributes appearing in the source and in the

structure schemas, that describes the relationship between the source space
and the pattern space, thus carrying the semantics of the pattern.

Let raw data be stored in a number of databases and/or files. A dataset is
any subset of these data, which we assume to be wrapped under a type of our
typing system (dataset type).

Definition 2 (Pattern). Let pt = (n, ss, ds,ms, f) be a pattern type. A pattern
p instance of pt is a quintuple p = (pid, s, d, m, e) where: pid (pattern identifier)
is a unique identifier for p; s (structure) is a value for type ss; d (source) is a
dataset whose type conforms to type ds; m (measure) is a value for type ms; e
is an expression denoting the region of the source space that is related to p.

A class is a set of semantically related patterns and constitutes the key con-
cept in defining the pattern query language. A class is defined for a given pattern
type and contains only patterns of that type. Moreover, each pattern must belong
to at least one class.

Definition 3 (Class). A class c is a triple c = (cid, pt, pc) where cid (class
identifier) is a unique identifier for c, pt is a pattern type, and pc is a collection
of patterns of type pt.

2.2 Relationships Between Patterns

Three different relationships between patterns were identified in [4]: specializa-
tion, composition, refinement.

3



Definition 4 (Specialization). Pattern type pt1 specializes pattern type pt2
when the structure schema, the source schema, and the measure schema of pt1
specialize the structure schema, the source schema, and the measure schema of
pt2, respectively.

Composition and refinement relationships arise from the possibility of extend-
ing the set of base types with pattern types, thus giving the user the possibility
of declaring complex types to be used either in the structure schema or in the
source schema.

Definition 5 (Composition). Pattern type pt1 is part of pattern type pt2 when
the structure schema of pt2 is a complex type including pt1.

Definition 6 (Refinement). Pattern type pt1 refines pattern type pt2 when the
source schema of pt2 is a complex type including pt1.

While composition enables the definition of patterns recursively containing
other patterns, refinement allows for supporting the modeling of patterns ob-
tained by mining other existing patterns.

3 Working Examples

This section includes some working examples we will use in the following to
demonstrate the modeling solutions proposed.

Example 1 (Association Rule). Given a domain D of values and a set of trans-
actions, each including a subset of D, an association rule takes the form A → B
where A ⊂ D, B ⊂ D, A∩B = ∅. A is often called the head of the rule, while B
is its body [5]. A possible pattern type for modeling association rules over strings
is the following:

n : AssociationRule

ss : TUPLE(head: SET(STRING), body: SET(STRING))

ds : BAG(transaction: SET(STRING))

ms : TUPLE(confidence: REAL, support: REAL)

f : ∀x(x ∈ head ∨ x ∈ body ⇒ x ∈ transaction)

The structure schema is a tuple modeling the head and the body. The source
schema specifies that association rules are constructed from a bag of transactions,
each defined as a set of strings. The measure schema includes two common
measures used to assess the relevance of a rule: its confidence and its support.
Finally, the formula of the constraint calculus represents the pattern/dataset
relationship by associating each rule with the set of transactions which support
it.

4



Example 2 (Cluster and clustering). Let pattern type Cluster represent any clus-
ter defined by enumerating a set of elements in a space and represented by an
element of that space:

n : Cluster

ss : representative:⊥
ds : space: SET(item: ⊥)

ms : cardinality: INTEGER

f : ∃S :item∈ S

where ⊥ denotes the root type of the typing system; the formula defines the rela-
tionship between the source space and the pattern space by trivially enumerating
all the elements belonging to the cluster. Consider now that a clustering is a set
of clusters: intuitively, also clustering is a pattern, whose structure is modeled
by a complex type which aggregates a set of clusters:

n : Clustering

ss : clusters: SET(Cluster)

ds : space: SET(item: ⊥)

ms : clusteringValidity: REAL

f :
∨

c∈clusters

c.f

Thus, there is a composition relationship between Clustering and Cluster.

Example 3 (Cluster of association rules). Let pattern type ClusterOfRules de-
scribe a cluster of association rules: the source schema here represents the space
of association rules, and the structure models one cluster-representative rule. As-
suming that each cluster trivially includes all the rules sharing the same head,
it is:

n : ClusterOfRules

ss : representative: AssociationRule

ds : space: SET(item: AssociationRule)

ms : TUPLE(deviationOnConfidence: REAL, deviationOnSupport: REAL)

f : item.ss.head = representative.ss.head

where a standard dot notation is adopted to address the components of pattern
types. Obviously, ClusterOfRules specializes Cluster; besides, there are both a
refinement relationship and a composition relationship between ClusterOfRules
and AssociationRule.

4 Static Modeling

When facing the problem of devising a formalism for conceptual modeling of
pattern-bases, the first obvious step is to verify whether a widespread standard

5



like UML can effectively be used for this task. In this section we outline the
requirements for static modeling of pattern-bases as emerging from the logical
framework proposed in [4], then we discuss to what extent each of them could
be accommodated in UML.

The main requirements for static modeling of pattern-bases can be summa-
rized as follows:

]1 The different components of pattern types should be explicitly modeled in
order to emphasize their different semantic role in describing patterns.

]2 Data sources should be modeled.
]3 Both the intensional and the extensional aspects of data should be modeled.
]4 Specialization relationships between patterns should be modeled.
]5 Composition relationships between patterns should be modeled.
]6 Refinement relationships between patterns should be modeled.

As to requirement ]1, we observe that UML represents classes by distin-
guishing three compartments, respectively reserved to the class name, the class
attributes (structure), and the class operations (behavior). Modeling pattern
types in UML requires (1) to define a �pattern type� stereotype; (2) to in-
clude in the attribute compartment two fixed attributes, ss for the structure
schema and ms for the measure schema; (3) to include in the operation compart-
ment one fixed operation f for the formula (see Figure 1). As to modeling the
source schema, two different approaches are feasible:

– When little emphasis is given to raw data, the source schema may be repre-
sented by adding one more fixed attribute ds to the pattern type, as shown
in Figure 1, top.

– When the designer wishes to give more relevance to raw data, according
to requirement ]2, the source schema may be represented by a class on its
own, possibly stereotyped, connected to the pattern type by a �refines�
dependency (see Figure 1, bottom). The reason for choosing a UML depen-
dency is that it expresses the fact that one element of the model (the pattern
type) needs another element (the raw data schema) in order to work prop-
erly; the �refines� stereotype expresses the fact that the pattern type
gives a more abstract representation of raw data.

As to requirement ]3, in UML it is possible to distinguish objects from classes
by underlining their names; besides, a�type� stereotpye can be used to model
abstract data types (intensional) as opposed to classes (extensional). In much
the same way, pattern types, patterns, and classes could be modeled as shown
in Figure 2. However, we wish to emphasize that object diagrams are seldom
used in UML; similarly, we expect that specific patterns will be modeled only
when the designer assumes that providing some notable example is useful for
understanding.

Requirement ]4 is already supported by the specialization hierarchies of
UML, whose semantics accomodate inheritance of attributes, operations, and
other properties, plus the possibility of extending the specialized class with new,

6



Fig. 1. Modeling of pattern types, giving different relevance to raw data

Fig. 2. Classes, patterns, and pattern types

Fig. 3. Pattern specialization

7



specific structure and behaviour. Figure 3 shows the specialization relationship
between ClusterOfRules and Cluster. Besides, the composition semantics provided
by UML directly supports requirement ]5 (see Figure 4). As a matter of fact,
we prefer using the aggregation syntax of UML (a white diamond) in order to
emphasize that the component type is generally not a weak one.

Fig. 4. Pattern composition

Finally, requirement ]6 could be satisfied through stereotyping, by using the
same�refines� dependency adopted for source schemas, as depicted in Figure
5.

Fig. 5. Pattern refinement and composition

Currently, the logical model proposed in [4] does not consider the possibility
of defining associations between patterns; however, these would be easily mod-
eled in UML. This is equally true for the behavioural component of patterns,
that could be modeled by properly defining class operations.

5 Functional Modeling

Functional modeling of a pattern-base mainly requires to represent the processes
used to establish the relationship between data and patterns: in most cases, these
will be mining or extraction algorithms, but they could as well be sets of rules
used to enforce constraints on the dataset. Different functional formalisms could
be adopted:

1. DFDs, that give an overview of the processes, actors, and archives involved
emphasizing the data flows between them.

2. UML use case diagrams, that describe the processes from the point of view
of users and of the utility they carry.

8



Fig. 6. Use cases for a Pattern-Base Management System

3. Flow charts or UML activity diagrams, that sketch the control flow within
an algorithm (thus, they could be used to specify a DFD process or a use
case).

An example is shown in Figure 6, were a simple use case diagram is used to
represent the main activities supported by a Pattern-Base Management System.

6 Dynamic Modeling

Dynamic modeling of a pattern-base mainly requires to describe how patterns
and raw data are kept in sync. Different dynamic formalisms could be adopted
to this end:

1. State charts, that represent how the state of the pattern-base evolves in
response to events.

9



2. UML sequence diagrams, that describe the sequences of messages exchanged
by patterns and raw data during some relevant scenario.

Figure 7 shows a sequence diagram modeling the asynchronous approach chosen
to trigger the execution of an extraction algorithm when some changes in the
raw data occur.

Fig. 7. Sequence diagram for updating the pattern-base

7 Conclusion

In this paper we have shown how it would be possible to conceptually model a
pattern-base from the static, functional, and dynamic points of view by prop-
erly extending UML through the stereotyping mechanism. Though a new, ad
hoc formalism for modeling pattern-bases could actually be devised in order to
better express the semantics of patterns and their components, we believe that
adopting UML is still preferrable since it is a standard de facto for most software
engineering applications. Besides, as seen in Sections 4, 5, and 6, all the main
issues related to pattern-bases can be expressively represented without giving
up the usual syntax and semantics of UML. This is especially true for complex
inter-pattern relationships, whose accurate representation is necessary to achieve
high modeling expressivity.

References

1. Predictive Model Markup Language (PMML). http://www.dmg.org/pmmlspecs v2

/pmml v2 0.html, 2003.
2. G. Booch, J. Rumbaugh, and I. Jacobson. The UML user guide G. Booch, J.

Rumbaugh, I. Jacobson. The UML user guide. Addison Wesley, 1999. Addison
Wesley, 1999.

10



3. P. Chen. The entity-relationship model - toward a unified view of data. ACM
TODS, 1(1):9–36, 1976.

4. S. Rizzi et al. Towards a logical model for patterns. In Proc. ER Conference, pages
77–90, Chicago, 2003.

5. J. Han and M. Kamber. Data Mining: Concepts and Techniques. Academic Press,
2001.

6. T. Imielinski and H. Mannila. A Database Perspective on Knowledge Discovery.
Communications of the ACM, 39(11):58–64, 1996.

7. Information Discovery Data Mining Suite. http://www.patternwarehouse.com
/dmsuite.htm, 2002.

8. ISO SQL/MM Part 6. http://www.sql-99.org/SC32/WG4/Progression Documents/

FCD/fcd-datamining-2001-05.pdf, 2001.

11


