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Abstract. Numerical dependencies (NDs) are a type of database con-
straints in which one limits the number of distinct Y -values that can
appear together with any X-value, where both X and Y are sets of at-
tributes. The seminal work by Grant and Minker has shown that NDs
are not finitely axiomatizable, which has cut further investigation on this
kind of constraints. In this paper we show that, given a set of sound in-
ference rules similar to those used for functional dependencies, the mem-
bership problem for NDs is NP-hard, and propose a branch & bound
algorithm for efficiently solving the problem. The algorithms adopts a
suite of optimization strategies that make it applicable in practice, pro-
viding considerable speed-up over a näıve approach.

1 Introduction

Reasoning with database constraints has a huge number of practical applica-
tions. These include database design, query processing and optimization, schema
matching, data lineage and repair, to name just a few. Consequently, properly
understanding the properties of a given type of constraints has always been a
major topic in database theory. Cardinality constraints are a remarkable class
that has been investigated in a variety of specific settings. For instance, in the
context of the Entity-Relationship model, [8] studies the problem of determining
when a set of cardinality ratio constraints, imposing restrictions on the mappings
between entities and relationships, are consistent, i.e., no entity or relationship is
compelled to be empty in all the legal instances of the schema. In [6] the focus is
on cardinality constraints that impose restrictions on the number of relationships
an object can be involved in. The entailment problem (i.e., checking whether a
given constraint set entails further constraints) is faced, and combinatorial meth-
ods for reasoning about sets of cardinality constraints are proposed. Similarly,
in [7] the satisfiability and implication problems for numerical constraints are
faced with reference to the XML language. A numerical constraint is defined in
terms of path expressions, and restricts the number of nodes that have the same
values on some selected subnodes.

In this paper we consider a specific type of cardinality constraints, called
numerical dependencies (NDs), which were introduced by Grant and Minker in
[5]. Intuitively, given two sets of attributes X and Y , there is an ND from X to
Y if each value of X can never be associated to more than k distinct values of Y ,



k ≥ 1. NDs are a natural generalization of functional dependencies, which are
obtained when k = 1. Reasoning with NDs has a number of applications in the
database field. For instance, estimating the projection size of a relation, i.e., the
number of distinct values over a subset of its attributes, is a frequent problem
in database applications [4]. When data are not available (e.g., at design time),
statistical techniques like those based on histograms or sampling cannot be used
to this end, so probabilistic approaches must be followed. These approaches rely
on the assumption that the relation attributes are independent of each other;
when this is not the case, NDs enable inter-attribute cardinality constraints to
be effectively captured, thus noticeably improving the accuracy in projection
size estimation. Similarly, estimating the cardinality of aggregate views has a
crucial importance in the field of data warehousing, with reference to logical and
physical design as well as query processing and optimization [10]. In particular,
view materialization may significantly benefit from using NDs since the algo-
rithms that select the best aggregate views to be materialized are based on view
cardinality estimates [9, 3].

Unfortunately, NDs are not finitely axiomatizable, thus no finite set of sound
and complete rules exists for them [5]. This negative result has prevented further
research aiming to deepen the understanding of NDs. In this paper we first prove
that, given a set of sound inference rules similar to those used for functional de-
pendencies, the membership problem for NDs is NP-hard. Thus, even reasoning
on derivable NDs only is a complex task. Then we propose a branch & bound
algorithm, based on a graph-based characterization of NDs, for efficiently solving
the problem. The algorithm adopts a suite of optimization strategies that make
it applicable in practice, providing considerable speed-up over a näıve approach.

2 Numerical Dependencies

In this section we provide the necessary background and prove basic facts about
NDs that are needed for the paper.

Let R(U) be a relation schema,1 and let r be an instance of R, i.e., a finite
set of tuples over U . For any X ⊆ U , dom(X) is the Cartesian product of the
domains of the attributes in X and an X-value is any value from dom(X).

Given a set of constraints ∆ = {δ1, . . . , δn}, r is legal w.r.t. ∆ iff r satisfies
all the δi’s in ∆. A set of constraints ∆ entails δ if when r is legal w.r.t. ∆ then
r also satisfies δ. The (semantic) closure ∆+ of ∆ is the set of all the constraints
entailed by ∆. A constraint δ is derivable from ∆ using a set of inference rules I
if there exists a finite derivation of δ from ∆ using the rules I. The (syntactic)
closure ∆+

I of ∆ is the set of constraints that are derivable from ∆ using I. Rules
I are sound if ∆+

I ⊆ ∆+ and complete if ∆+ ⊆ ∆+
I . Given a set of constraints

∆ of a given type T , the membership problem for T is to determine if δ ∈ ∆+.

1 We use uppercase letters from the beginning (ending) of the alphabet to denote single
(respectively, sets of) attributes. We use concatenation for forming sets of attributes,
thus writing ABC for {A,B,C}, and for denoting union, thus XY stands for X∪Y .



Functional dependencies (FDs) are among the most common types of rela-
tional database constraints. The FD X −→ Y is satisfied by an instance r of
R(XY Z) if any two tuples with the same X-value also have the same Y -value.
It is known that the membership problem for FDs can be easily solved in linear
time in len(∆), the total number of non-distinct attribute symbols in ∆ [2].

NDs [5] are a generalization of FDs, in which one limits the number of Y -
values that can be associated with any X-value.

Definition 1 (Numerical Dependencies). Given R(XY Z) and a finite inte-

ger k ≥ 1, we say the numerical dependency X
k−→ Y is satisfied by an instance r

of R(XY Z) if for any k+1 tuples t1, . . . , tk+1 in r, if t1[X] = . . . = tk+1[X], then
there are at least two of these tuples, ti and tj, i 6= j, such that ti[Y ] = tj [Y ].

For an ND δ : X
k−→ Y we say that k is the weight of δ, also denoted as w(δ).

Clearly, an FD is just a particular case of ND in which k = 1, i.e., X
1−→ Y ≡

X −→ Y . NDs also allow to specify cardinality constraints over sets of attributes

[5]. For this one considers NDs of the form ⊥ k−→ Y , where ⊥ is the empty set
of attributes. This is equivalent to say that the cardinality of projection on Y

can never exceed k: |πY (r)| ≤ k ∀r. More in general, if X
k−→ Y holds, then for

any legal instance r of R(XY Z) it is |πXY (r)| ≤ k · |πX(r)|. For instance, if

BC
5−→ DE, then each BC-value can never appear with more than 5 distinct

DE-values. Thus, |πBCDE(r)| ≤ 5 · |πBC(r)| in each legal instance r.
Unlike FDs, NDs do not admit a finite set of sound and complete rules [5]. A

sound set of inference rules, that generalizes that of FDs, is the following one:2

Reflexivity (R) : ` X
1−→ X

Extended transitivity (E) : X
k−→ YW ∧ Y l−→ Z ` X

k·l−−→ YWZ

Decomposition (D) : X
k−→ Y Z ` X

k−→ Y

Given the above RED rules, our aim is to understand if a given ND δ is derivable
using them, i.e., if δ ∈ ∆+

RED. Unlike FDs, this can be a complex task for NDs.

Theorem 1. Given a set of NDs ∆ over a schema R(U), determining if the

ND δ : X
k−→ Y , XY ⊆ U , is derivable from ∆ using the RED rules is NP-hard.

Note that∆+
RED has infinite size even when∆ consists of a single NDX

k−→ Y ,

because from X
k−→ Y one can derive X

kn−−→ Y , for any n > 1.3 Although one
can easily remove such uninteresting NDs by considering only derivations that

2 This is equivalent to the set of rules proposed by Grant and Minker if one also adds

the so-called Successor rule, X
k−→ Y ` X

k+1−−→ Y , which we have intentionally
omitted since it has no influence on the problem we deal with.

3 From X
1−→ X and X

k−→ Y it is derived, using (E), X
k−→ XY ; applying again rule

(E) to X
k−→ XY and X

k−→ Y yields X
k2−→ XY , hence X

k2−→ Y by (D); and so on.



use at most once any ND in ∆, ∆+
RED would still contain several NDs with the

same left- and right-hand sides, as the following example shows.

Example 1. Let U = ABCD and ∆ = {A k1−→ B,B
k2−→ C,B

k3−→ D,D
k4−→ C}.

All the following NDs relating X ≡ A and Y ≡ BCD are in ∆+
RED:

δ1 : A
k1k2k3−−−−→ BCD δ2 : A

k1k2k3k4−−−−−−→ BCD δ3 : A
k1k3k4−−−−→ BCD

Also observe that, while it is impossible to say which ND, between δ1 and δ3,
has the lowest weight without knowing the values of the ki’s involved, one can
immediately notice that δ2 is “loose”, since it is always true that w(δ2) ≥ w(δ1)
and w(δ2) ≥ w(δ3), regardless of ki’s values.

Given the above observations, we consider the following problem:

Given a set of NDs ∆ over R(U) and two sets of attributes X and Y , XY ⊆ U
Determine k(X,Y ), i.e., the minimal value of k such that X

k−→ Y ∈ ∆+
RED.

For the purpose of determining k(X,Y ), an ND like δ2 in Example 1 is
uninteresting at all since, for any assignment of values to the ki’s, its weight will
not be lower than those of δ1 and δ3. This observation is crucial for characterizing
the “interesting” part of the RED closure, which consists of all and only those
NDs for which it is necessary to look at the values of the ki’s to determine which
one has the lowest weight.

Definition 2 (Tight RED Closure). For an ND δ : X
k1·...·kn−−−−−→ Y , let K(δ)

denote the bag {{ki}}, where each ki appears as many times as it appears in δ. An

ND δ : X
w(δ)−−−→ Y ∈ ∆+

RED is tight if, for any other ND δ′ : X
w(δ′)−−−→ Y ∈ ∆+

RED,
it is not K(δ′) ⊂ K(δ), loose otherwise. The tight (RED) closure of ∆ is the set
∆∗RED ⊂ ∆

+
RED of all the tight NDs in ∆+

RED.

3 A Graph-Based Characterization

In this section we show that the tight closure of a set of NDs ∆ can be precisely
characterized in graph-theoretical terms. Without loss of generality we assume
that ∆ does not contain two NDs with the same left- and right-hand sides.4 We
represent a set of NDs through an ND-graph defined as follows:

Definition 3 (ND-graph). Given a set ∆ of NDs over R(U), the ND-graph
G∆ = (V, E) induced by ∆ is the directed graph with nodes V ⊆ 2U , arcs E =
Ef ∪ Ed (Ef ∩ Ed = ∅), and an arc labeling function ω : E → N (weight) such
that:

1. For every ND δ : X
k−→ Y ∈ ∆ there are in V two nodes X and Y , and there

is in Ef a full arc 〈X,Y 〉 (oriented from X to Y ) such that ω(〈X,Y 〉) = k.
When needed we write 〈X,Y 〉k to denote that ω(〈X,Y 〉) = k.

4 If this is the case, the one with the higher weight can be safely removed.



2. For every node X ∈ V, X = A1, . . . , Ar, r > 1, there are r nodes A1, . . . , Ar
in V and r dotted arcs 〈X,A1〉, . . . , 〈X,Ar〉 in Ed with ω(〈X,Ai〉) = 1.

3. If the empty set of attributes ⊥ is in V, then for each node Ai ∈ V there is
in Ed a dotted arc 〈Ai,⊥〉 with ω(〈Ai,⊥〉) = 1.

In the particular case ∆ = ∅, it is conventionally assumed that, for any choice
of X ⊆ U , the graph including node X, and completed respecting the above rule
2 if X consists of more than one attribute, is also an ND-graph. With a slight
abuse of terminology we say that this is the ND-graph induced by X. If Γ ⊆ ∆,
then GΓ is also called an ND-subgraph of G∆, and Attr(GΓ ) denotes the set of
all attributes appearing in at least one node of GΓ .

Example 2. The ND-graph for U = ABCDE and ∆ = {G k0−→ A,A
k1−→ B,A

k2−→
BC,E

k3−→ BC,A
k4−→ CD,A

k5−→ DE,E
k6−→ F} is shown in Figure 1.
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Fig. 1. The ND-graph for the set of NDs in Example 2

The ND-graph represents in a compact form all the relevant information
needed to derive tight NDs. The following defines when a node Y is reachable
from a node X, i.e., how one can navigate an ND-graph.

Definition 4 (Reachability). Given the ND-graph G∆ = (V, E) and a node
X ∈ V, the following rules define which nodes are reachable from X:

1. If X = A1, . . . , Ar, then any Ai is reachable from X.
2. If W is reachable from X and 〈W,Z〉k ∈ Ef , then Z is reachable from X.
3. If Z = B1, . . . , Bm, Z ∈ V, and each Bi is reachable from X, then Z is

reachable from X.

The preconditions of all the above rules can be uniformly expressed in terms
of which are the attributes appearing in the nodes of a suitably defined ND-
subgraph of G∆, which justifies the following definition.

Definition 5 (ND-path from X to Y ). Given the ND-graph G∆ = (V, E) and
X ∈ V, an ND-path from X is any ND-subgraph of G∆ that can be inductively
obtained as follows:

1. The ND-subgraph induced by X is an ND-path from X.
2. If GΠ is an ND-path from X induced by a set of NDs Π ⊂ ∆, and 〈W,Z〉k ∈
Ef , with W ⊆ Attr(GΠ) and Z 6⊆ Attr(GΠ), the ND-subgraph induced by

Π ∪ {W k−→ Z} is also an ND-path from X.



3. No other ND-subgraph of G∆ is an ND-path from X.

In order to emphasize that an ND-subgraph GΠ is also an ND-path from X, the
notation GXΠ will also be used. The weight ω(GXΠ) of GXΠ is the product of the
weights in its full arcs; by definition, the weight of GX∅ is 1.

Given an ND-path GXΠ from X and a set of attributes Y ⊆ Attr(GXΠ), GXΠ
is also called an ND-path from X to Y . GXΠ is Y -minimal iff there is no other
ND-path GXΓ from X to Y such that Γ ⊂ Π.

Notice that, although any subset of NDs Γ ⊆ ∆ induces an ND-subgraph, due
to rule 2 in the above definition not all of them are also ND-paths.

Example 3. With reference to the ND-graph introduced in Example 2, Figure 2
shows two ND-paths from A. It is Attr(GAΠ1

) = Attr(GAΠ2
) = ABCD; the

weights are ω(GAΠ1
) = k1k2k5 and ω(GAΠ2

) = k1k2, respectively. Both GAΠ1
and

GAΠ2
are ND-paths to BC and BCD, but only GAΠ2

is both BC- and BCD-
minimal. Finally, the ND-subgraph GΠ3

is not an ND-path, since there is no
way to incrementally build it by respecting rule 2 in Definition 5.
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Fig. 2. GAΠ1
and GAΠ2

are ND-paths from A obtained from the ND-graph in Figure 1;
GΠ3 is not an ND-path

It is quite simple to show that if there exists an ND-path from X to Y with

weight ω(GXΠ), then the ND δ : X
ω(GXΠ)−−−−→ Y is in ∆+

RED. However, not all such
NDs are necessarily tight. This leads to the following main result.

Theorem 2. Let G∆ be the ND-graph induced by a set of NDs ∆, and let X ∈ V.
There exists in G∆ a Y -minimal ND-path GXΠ from X to Y having weight ω(GXΠ)

iff δ : X
ω(GXΠ)−−−−→ Y ∈ ∆∗RED.

So far, we have used G∆ to reason on NDs whose left-hand side is a node
in G∆. In order to generalize to arbitrary NDs, it is sufficient to properly ex-
tend G∆ by adding the required node X; after that, all above results apply
unchanged. For this reason in the following, without losing in generality and to
avoid unnecessarily complicating the description, we will always assume that X
is a node in G∆.



4 Efficiently Finding the Minimal Weight

A Näıve algorithm (not detailed here for lack of space) would compute k(X,Y )
starting with the ND-graph GX∅ induced by X, and then progressively extending
it by adding full arcs, until all possible ND-paths from X to Y (solutions) are
generated.

Example 4. Figure 3 shows the complete search space of the Näıve algorithm
for the ND-graph in Figure 1, assuming X ≡ A and Y ≡ BE. Each node
corresponds to an ND-path from A and is represented by its set of attributes; all
leaves represent possible solutions. Each edge is labeled with the weight of the
new full arc being added. The tree includes three distinct BE-minimal ND-paths
(boxed in Figure 3), whose weights are k1k5, k2k5, and k3k5 respectively.
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Fig. 3. The complete search space of the Näıve algorithm applied to the ND-graph in
Figure 1 with X ≡ A and Y ≡ BE; boxed nodes represent BE-minimal ND-paths.
In grey, the part that is pruned by the non-numerical optimization techniques of the
BBND algorithm

As Example 4 makes evident, the Näıve algorithm has several drawbacks.
First of all, it creates some solutions using arc 〈E,F 〉k6 , that obviously can never
contribute to reach BE. Besides, it generates twice or more the same ND-paths
by adding the same set of full arcs in different orders. Furthermore, it extends
an ND-path even if its weight is higher than that of the current solution. Finally,
it does not detect non-minimal ND-paths, so it wastes time in extending them.

In order to obviate all these problems, we introduce a branch & bound algo-
rithm, called BBND, whose major features are described in the following.

Removing Useless NDs. The ND-graph G∆ includes all the full arcs correspond-
ing to NDs defined in the application domain, but only some of them might be



Algorithm 1 The BBND algorithm

Input: G∆, X, Y
Output: k(X,Y )
1: k(X,Y )←∞
2: ActiveNDPaths← {GX∅ } . ND-paths to be extended
3: if Y * Attr(G∆) then return k(X,Y ) . Y is not reachable from X

4: RemoveUselessNDs(G∆, X, Y )} . Remove useless NDs from G∆
5: while ActiveNDPaths 6= ∅ do
6: GXΠ ← Pop(ActiveNDPaths)
7: for all GXΓi ∈ SmartExtensions(GXΠ) do
8: if Y ⊆ Attr(GXΓi) then . found a solution. . .
9: if ω(GXΓi) < k(X,Y ) then . . . . better than the current one

10: k(X,Y )← ω(GXΓi)

11: else if ω(GXΓi) < k(X,Y ) ∧ ¬IsDominated(GXΓi , ActiveNDPaths)∧
IsMinimal(GXΓi) then

12: Push(ActiveNDPaths,GXΓi) . GXΓi must be further extended

13: return k(X,Y )

relevant in determining k(X,Y ). For instance, with reference to the ND-graph
in Figure 1, full arcs 〈G,A〉k0 and 〈E,F 〉k6 are obviously useless to compute
k(A,BE) and should be removed to improve performance.

Removal of useless NDs is carried out by the RemoveUselessNDs method (line
4), that works in two phases. In the first phase it navigates the ND-graph forward
starting from X, so as to mark all the nodes that can be reached from X, and
consequently a set of full arcs; in our example, all full arcs are marked except
〈G,A〉k0 , that is removed. In the second phase, RemoveUselessNDs navigates the
so-reduced ND-graph backward starting from the nodes corresponding to each
Ai ∈ Y , and marks all the full arcs from which Ai can be reached; in our example,
only the full arc 〈E,F 〉k6 is not marked and consequently removed.

Avoiding Repeated ND-Paths. Different sequences of extension steps might lead
to ND-paths sharing the same set of full arcs. To avoid generating repeated
ND-paths, it is necessary to be able to recognize if a given set of full arcs has
already been obtained in the enumeration process. Clearly, keeping trace of all
the sets of full arcs generated so far would require an exponential effort in terms
of space. A simpler alternative is to impose an ordering criterion on the set of
NDs, such as a lexicographically ordering of their right-hand sides. This can be
easily implemented as follows.

Let ∆ = {δ1, δ2, . . . , δn} be the given set of NDs, where subscripts reflect the
chosen ordering criterion. Consider an ND-path GXΠi , Πi ⊂ ∆, that has been

obtained by extending the ND-path GXΠ with (the full arc corresponding to)
δi. Furthermore, let Γ ⊆ ∆ \ Π be the set of NDs that could have been used
to extend GXΠ (these are precisely all the NDs in ∆ \ Π that satisfy rule 2 in
Definition 5) and Γi ⊆ ∆ \ (Π ∪ {δi}) be similarly defined. The Näıve approach
would extend GXΠi by picking all the NDs in Γi. In order to guarantee that the



same ND-path is not generated more than once, method SmartExtensions (line
7) does not pick from Γi those NDs δj such that δj ∈ Γ and j < i, i.e., those
NDs that lexicographically precede δi and that could have been added at the
previous extension step.

Pruning Non-Minimal ND-Paths. The Näıve algorithm is likely to waste a lot of
work in generating non-minimal ND-paths. As the following result shows, these
can be safely dropped.

Lemma 1. Let GXΠ be an ND-path from X, and GXΓ be any ND-path such that
Γ ⊂ Π. If GXΓ is not Attr(GXΓ )-minimal, then GXΠ is not Y -minimal for all
Y ⊆ Attr(GXΠ).

Detection of non-minimal ND-paths is based on Definition 5. Given an ND-
path GXΓ , if all the NDs included in Γ are removed one at a time and the
corresponding ND-subgraphs GΓi are generated, then if at least one of such GΓi ’s
is indeed an ND-path from X with Attr(GΓi) = Attr(GXΓ ) it follows that GXΓ is
not minimal and can be discarded. Method IsMinimal (line 11) runs inO(nlen(Γ ))
time, where n is the number of NDs in Γ . The len(Γ )-time complexity of ND-
subgraph generation follows after observing that just checking that GΓi is an
ND-path from X with Attr(GΓi) = Attr(GXΓ ) is analogous to the problem of
computing the FD-closure of a set of attributes X, i.e., the set of all attributes
Ai such that the FD X → Ai holds. Since this can be done in linear time in the
length of the given set of constraints [2], the same result also applies to NDs.

Method IsMinimal adopts two complementary strategies for reducing the ac-
tual number of ND-subgraphs to be tested. The first of them is based on the
concept of essential NDs. Intuitively, these are those NDs whose removal makes
some attributes not reachable anymore from X, thus method IsMinimal needs
not try to remove them.

Lemma 2. Given an ND-path GXΓ , let δ ∈ Γ , δ : W
k−→ Z, be an essential ND

for GXΓ , i.e., there exists A ∈ Z \X such that no other ND in GXΓ includes A in
its right-hand side. Let GΓi be the ND-subgraph of GXΓ induced by Γi = Γ \ {δ};
then it is Attr(GXΓi) ⊂ Attr(G

X
Π).

A second way to reduce the actual running time of the minimality check is
based on the following lemma.

Lemma 3. Let GXΓ be an ND-path from X, obtained by extending a minimal

ND-path GXΠ with the ND δ : W
k−→ Z. Let δi : Wi

ki−→ Zi ∈ Π be a non-essential
ND for GXΠ . If Z ∩ Zi = ∅, then the ND-subgraph GΓi induced by Γi = Γ \ δi is
not an ND-path from X.

Figure 3 shows in grey the portion of the search space that is not explored
when methods RemoveUselessNDs, SmartExtensions, and IsMinimal are applied.
Note that all these optimization techniques are non-numerical, i.e., their appli-
cation is independent of the numerical values of the weights.



Exploiting Weights. A first, simple way to exploit the ND weights for reducing
the search space is to prune all the branches that originate from an ND-path
whose weight is not lower than that of the best solution found so far. A more
effective way to exploit weights is based on the concept of domination.

Definition 6 (Domination). Let GXΠ and GXΓ be two ND-paths from X. GXΠ
is said to dominate GXΓ if Attr(GXΠ) ⊇ Attr(GXΓ ) and ω(GXΠ) ≤ ω(GXΓ ).

Lemma 4. Let GXΠ and GXΓ be two ND-paths from X. If GXΠ dominates GXΓ
then, for any ND-path GXΓi obtained by extending GXΓ with an ND δi, either (1)

GXΠ dominates GXΓi , or (2) the ND-path GXΠi that extends GXΠ with δi dominates

GXΓi .

Lemma 4 proves that dominated ND-paths can be safely discarded. This kind
of pruning is highly effective in reducing the size of the search space because it
can be applied to generic ND-paths and even because it works in both directions,
i.e., method IsDominated (line 11) not only checks if the newly generated ND-
path GXΓ is dominated by an ND-path in ActiveNDPaths, but, if the test fails,
it also verifies if the opposite holds, in which case dominated ND-paths are
removed from the queue.

Unlike the previous optimization strategies, the influence that numerical
domination has on the search space depends on the specific strategy adopted
for enumerating ND-paths. In BBND we implemented a best-first enumeration
strategy for choosing which ND-path has to be extended.5 The specific heuristic
function we adopt attempts to predict how close the ND-path is to a solution. In
particular, we extend the ND-path GXΠ for which the cardinality of Attr(GXΠ)∩Y
is maximum, i.e., the ND-path that is “nearest” to Y , first. In case of ties, the
ND-path with the lowest weight is chosen.

5 Experimental Results and Conclusions

In this paper we have shown how, given a set of sound inference rules for NDs,
one can efficiently determine the best possible (minimal) value k(X,Y ) such

that the ND X
k(X,Y )−−−−−→ Y is derivable. The branch & bound algorithm we have

proposed is based on a graph characterization of the NDs and adopts a suite of
optimization strategies. Our ND-graph representation is largely inspired to the
one proposed in [1] for FDs; however, the major difference with [1] is that, in the
worst case, we have to generate all possible minimal paths from X to Y , which
is not an issue for FDs.

We extensively tested the BBND algorithm against different sets of NDs.
Since deriving tight bounds is crucial in physical design of data warehouses,
the relation schema for our tests was inspired by a star schema. We created
a relation schema R including 24 attributes, on which we defined 40 “basic”

5 Other strategies we tested, such as breadth-first and depth-first, lead to considerable
higher running times.



NDs: 16 FDs that model multidimensional hierarchies, plus 24 NDs of the form

⊥ ki−→ Ai that put a cardinality constraint ki on each simple attribute Ai in R.
Note that, using only this data, the cardinality bound of each projection Ym
of R is simply the product of the cardinalities of the attributes in Ym. Then,
we randomly generated three sets of additional NDs (∆1, ∆2, and ∆3, with
∆1 ⊂ ∆2 ⊂ ∆3) over R. Finally, we randomly generated 300 projections Ym
(each including from 2 to 8 attributes); for each set Ym and for each ∆j , we
applied the BBND algorithm to compute the minimal weight kj,m such that

⊥ kj,m−−−→ Ym ∈ ∆+
j , which corresponds to finding the best cardinality bound for

Ym given ∆j . Thus, 900 optimization problems were solved overall.

Table 1. Results of BBND tests; execution times are in seconds

∆1 ∆2 ∆3

] NDs (40+)10 (40+)25 (40+)50
% bound 43% 11% 4%

BBND exec. time 11.81 14.62 62.09
BBNDuseless exec. time 79.8 15.63 90.97

BBNDminimal exec. time 15.54 15.57 39.7
BBNDnumerical exec. time 152.85 593.27 > 5 000

] useless NDs 6 2 5
] ND-paths generated by BBND 316 417 572 061 1 952 367

Table 1 summarizes the results. The second row gives a measure of effective-
ness of NDs in reducing cardinality bounds by showing the average ratio between
the cardinality bound for Ym obtained using NDs and the one computed as the
product of the cardinalities of the attributes in Ym. The following four rows ad-
dress efficiency by reporting the average execution times (on a Pentium 4, 3.4
GHz, 2 GB RAM) of four variants of our algorithm: BBND (the complete algo-
rithm shown in Section 4), BBNDuseless (useless NDs not removed), BBNDminimal

(no minimality check executed), and BBNDnumerical (no numerical domination
check executed). The last two rows report the average number of useless NDs
and the average number of ND-paths generated by BBND. Finally, Figure 4
shows how effectiveness and efficiency depend on the number of additional NDs
used in the optimal solution.

It is apparent from these results that: (1) NDs are highly effective in reducing
cardinality bounds: even having a single additional ND in the optimal solution
reduces the cardinality bound by about 80%; (2) although the problem is NP-
hard, our algorithm finds the solution within a reasonable time even for a very
large state space thanks to its optimization strategies; (3) removing useless NDs
highly improves efficiency, because detecting these NDs is a low-cost operation
and may drastically cut the search space; (4) checking ND minimality may sig-
nificantly reduce the search space size, but for large sets of NDs the cost for
checking overcomes the benefit; (5) the most effective pruning strategy is the
one based on numerical domination, in fact the execution times of BBNDnumerical

are (at least) one order of magnitude higher than those of BBND. Of course, the
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Fig. 4. Average effectiveness and efficiency of BBND in function of the number of
additional NDs used in the optimal solution

impact of optimization strategies also depends on the order in which they are
evaluated (in our implementation, low-cost strategies are applied first) and on
the topology of the ND-graph (for instance, for ∆2 the impact of useless NDs
removal is low because there are only two useless NDs).

We finally remark that, though the detailed results are not reported for lack
of space, the tests also show that, on the average, the bound found by BBND in
3 seconds differs from the optimal bound by less than 10%.
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