
Analyzing Genomic Mappings with
the GOLAM Framework?

Lorenzo Baldacci, Matteo Golfarelli, Simone Graziani, and Stefano Rizzi

DISI – University of Bologna,
V.le Risorgimento 2, 40136 Bologna, Italy

{lorenzo.baldacci|matteo.golfarelli|simone.graziani2|stefano.rizzi}@unibo.it

Abstract. The huge amount of data made available by the technologies
for sequencing the human genome calls for sophisticated and automated
analysis techniques. In this direction, the GOLAM framework has been
developed within the scope of the GenData 2020 Project to enable multi-
resolution analysis and mining of matches between genomic regions. In
this paper we show how the GOLAM framework can be used for OLAP
analysis of the mappings between regions and samples resulting from
queries expressed in GMQL against repositories of genomic data. In par-
ticular we show the multidimensional schema that represents mappings
and we briefly address the main research challenge implied by GOLAM,
i.e., on-demand ETL.

Keywords: OLAP, ETL, Genomics, Data Warehouse

1 Introduction

High-throughput technologies that enable rapid, intelligent, and parallel acquisi-
tion of experimental genomic data are quite mature, and sequencing and genetic
screening are becoming faster and cheaper every year, trending towards even
more promising improvements. An individual’s full genome sequencing takes lit-
tle time (1-10 days) and very little money in an average laboratory. Such speed
and low cost of sequencing have led to an explosion in the rate of genomic data
generated, therefore the research challenges are moving towards the extraction of
biological meaning from this mass of data on the one hand, the storage, retrieval,
security, and presentation of information to biologists on the other.

This is the context for the GenData 2020 Project, in whose framework our
work is being developed. GenData 2020 aims at managing genomic data through
an integrated data model, expressing the various features that are embedded in
the produced bio-molecular data, or in their correlated phenotypic data that can
be extracted from clinical databases, or in the information inferred by applying
data analysis to them. This goal is achieved by enabling viewing, searching,
querying, and analyzing over a worldwide-available collection of shared genomic

? Partially supported by the GenData 2020 PRIN Project (http://gendata.weebly.com)
funded by the Italian Ministry of Education, Universities, and Research.

Analyzing Genomic Mappings with the GOLAM Framework 81

r1 r2 r3

0.2 0.4 0.4 0.6

0.1 0.8

0.2 0.6 0.7

0.3s1

s2

s3

r4 r1 r2 r3

0.3 0.3 0.5

0.1 0.8

0.4 0.6 0.7

s1

s2

s3

(a) (b)

Fig. 1. Mapping between reference regions r1, r2, r3 and input samples s1, s2, s3 (a),
and resulting genome space where each cell is computed as the average of the corre-
sponding region values (b)

data. The reference framework for storing and querying data in GenData is
Hadoop; in particular, an ad hoc language called GMQL (GenoMetric Query
Language [8]) based on Pig Latin has been devised for managing genomic data.

One of the analysis services envisioned in GenData 2020 is related to multi-
resolution analysis of matches between genomic regions (i.e., segments of the
genome, represented as grey boxes in Figure 1.a), in which the user (typically, a
biologist or a geneticist) knows the regulatory mechanisms of a gene and wants to
discover other genes with similar regulation mechanisms. To support this need, in
[2] we presented GOLAM (Genome On-Line Analytical Mining), a framework in
which the detection of similar genome areas is automated using similarity search
techniques, and the resulting matches are analyzed using OLAP and mining tech-
niques on an RDBMS. The reason why we chose to use a “traditional” DBMS for
OLAP is that, though in principle OLAP front-ends and Hadoop-based query
engines can be coupled, none of the engines in the Hadoop ecosystem present the
features necessary to efficiently support OLAP analysis since they either work
in a batch fashion (e.g., Hive) or they do not allow efficient select-anywhere ca-
pabilities. Recently, some new engines (e.g., Cloudera Impala) are trying to to
fill the gap between Big Data and OLAP and some papers investigated the re-
lated research issues [3, 11, 14]. Nonetheless the Hadoop ecosystem is still mainly
used for storing operational data, computing analytics, and executing ETL tasks
aimed at extracting multidimensional data to feed traditional OLAP systems.

In this work we discuss a different use of the GOLAM framework, aimed at
multi-resolution analysis of the mappings between regions and samples (i.e., sets
of regions and correlated metadata resulting from an experiment). Mappings are
computed by issuing a GMQL query based on the Map operation against some
repositories of genomic data such as ENCODE,1 and represent a powerful and
biologically meaningful way to relate experimental data to known annotations

1 ENCODE, the Encyclopedia of DNA Elements, is a public repository (accessible via
ftp) created and maintained by the US National Human Genome Research Institute
to identify and describe the regions of the 3 billions base-pair human genome that
are important for different kinds of functions [12].

82 Lorenzo Baldacci et al.

OLAP query

GMQL query

Mapping
Cube

Genome Space

ENCODE

MDX query

Genomic
Repositories

md data

tables &
charts

REST
call

GTF files &
metadata

GTF files &
metadata

OLAP���
Front-End

ETLOLAP���
Analysis

Genome
Browser

Genometric
Query System

ref. and input
datasets

Exploratory
Analysis Mapping

GMQL query

MD Engine

On-Demand
ETL

Fig. 2. The GOLAM approach

[8]. Figure 1 shows an example of a Map operation and the resulting genome
space. As sketched in Figure 2, mappings are computed after an exploratory
analysis conducted by a biologist; the query output, called genome space, comes
in the form of a set of GTF (Gene Transfer Format, http://genome.ucsc.edu)
files and related metadata, and is stored on the Hadoop platform.

Unfortunately, the genome space generated by most biologically-relevant
queries is too large (up to hundreds of millions of elements) to enable a tra-
ditional ETL process to load it into a multidimensional mapping cube on an
RDBMS for OLAP analysis. To solve this problem, GOLAM relies on a pro-
cess called on-demand ETL, which incrementally extracts data from the genome
space, transforms them into multidimensional form, and loads them into the
mapping cube as these data are required to answer OLAP queries.

In this paper we give an overview of how genome mappings are analyzed
within the GOLAM framework. First we discuss the related literature in Section
2, then in Section 3 we describe the main components of GOLAM with an
emphasis on on-demand ETL. Section 4 draws the conclusions.

2 Related Work

Although some publications advise the usage of OLAP as a tool for information
discovering, only in a few cases it has actually been employed in the biological
domain. In [1] the authors used OLAP technologies to analyze gene expression
data, gathered from tests done on soybean roots, with the purpose of discovering

Analyzing Genomic Mappings with the GOLAM Framework 83

information to develop soybean cultivars resistant to the SCN pest. In [4], im-
portant correlations between deletion patterns in the chromosome Y and patient
populations have been found through the application of OLAP and data mining
techniques. In both studies, the fact of interest differs from ours; while we focus
on approximate genome area matches, [1] uses gene expression data —the result
of DNA microarray experiments— and [4] applies OLAP analysis to the result
of clustering performed on deletion patterns in the genome.

As to conceptual and logical modeling of data warehouses for genomic data,
the authors of [7] propose models for three gene expression data spaces (sample,
annotation, and gene expression) based on star and snowflake schemata. A more
exhaustive study of the challenges and requirements of a biomedical multidimen-
sional model is presented in [13], along with a new schema called BioStar. This
last work in particular differs from ours because we propose a true multidimen-
sional data model based on ENCODE and GenData, while BioStar is a general
framework to be used as a way to model various types of biomedical data.

Finally, the problem of on-demand ETL is discussed and motivated in the
area of scientific data in [6]. An approach similar to ours, named lazy ETL, is
roughly described but no details are provided about the subsumed architecture,
the way the data to be loaded are identified, and the way extraction is optimized.
Furthermore, the lazy-ETL process can only include SQL queries, and all the
dimension data must be loaded in advance. The need for a pay-as-you-go model
for data loading emerges when data-enthusiasts and data scientists are involved
[10]. These use cases ask for a more flexible, and possibly on-demand, definition
of the ETL process. Our solution addresses the on-demand requirement assuming
that one or more wrappers are available for extracting data or that they can be
defined on-the-fly as well.

3 The GOLAM Framework

In this section we present the GOLAM framework for OLAP analyses of map-
pings between genome regions resulting from biological experiments. With ref-
erence to Figure 2, the main phases and components of the framework can be
described as follows; the whole workflow is iterative, so as to give biologists the
possibility of dynamically changing or refining their mapping query, and compare
the new results with those obtained at previous iterations.

1. Exploratory Analysis. During this phase the biologist explores, manip-
ulates, and transforms the data in the genomic repositories aimed at de-
termining sequences of regions of interest within a chromosome. This task
can be carried out using a genome browser, and is facilitated by the GMQL
language that provides a set of operators to filter, aggregate, and compare
datasets (typically based on predicates expressed on metadata such as the
patients sex and phenotype, or the tissue and chromosome from which the
region was extracted). The goal is to prepare two datasets —reference and
input, respectively— on which the GMQL Map operation will be executed.
The reference dataset includes a set of regions belonging to a single sample,

84 Lorenzo Baldacci et al.

while the input dataset normally includes several samples. The initial selec-
tion of both datasets is driven by a biological enquiry and is based on prior
expert knowledge; however, some further iterations are often necessary to
better focus the search and obtain more meaningful results.

2. Mapping. The Map operation performs an overlap between the reference
and the input datasets. An example of query based on Map is the one that
maps the peaks (enriched regions) of each input sample to the promoter
regions (a promoter is a DNA region that initiates the transcription of a
particular gene) and, for each promoter, counts how many of such peaks
co-localize with the promoter, saving the obtained results. The output of
Map is a new dataset, called genome space, where each couple of a reference
region r and an input sample s is associated to a set of numerical values
each obtained by applying an aggregate function (e.g., the average) to a
specific feature (e.g., the p-value) of the regions of s that overlap with r.
Thus, a single mapping in the genome space is defined by a reference region,
an input sample, the selected aggregate function, and the region feature used
to aggregate. In practice, the genome space resulting from a Map operation
is materialized as a set of GTF and metadata files —precisely, one GTF and
one metadata file for each input sample. Note that, though using GMQL it
is possible to materialize just a subset of the mappings of a genome space,
the mappings related to a single input sample are necessarily contained in
exactly one GTF file.

3. On-Demand ETL. This phase aims at incrementally loading the mappings
belonging to the genome space, together with the related metadata, on a
multidimensional cube. When a user formulates an OLAP query q, the front-
end translates q into MDX [9] and sends it to the on-demand ETL component
for processing. If all the multidimensional data necessary to answer q are
already present in the mapping cube (i.e., they have been previously loaded),
then they are sent to the front-end and shown to the user. Otherwise, the
genome space is accessed via a REST call to fetch all the missing data, that
are then put in multidimensional form and loaded on the mapping cube,
so that q can be answered as above. Of course, from time to time, some
data used for past OLAP queries must be dropped from the cube to make
room for the data needed for new queries. The functional architecture of the
on-demand ETL process is sketched in Figure 3. It includes the following
subprocesses:

– Cache Management takes the OLAP query q (received in MDX form
from the OLAP front-end) and checks, using cache metadata that keep
track of the data currently available in the cube, if q can be immediately
answered or some data are missing. In the first case, q is sent to the
multidimensional engine for processing. In the second case, the differ-
ence between the data required by q and the available data is computed
(missing data) and handed to the optimization subprocess. The data cur-
rently stored in the cube, those required to answer q, and those missing
are compactly represented as multidimensional intervals of coordinates.

Analyzing Genomic Mappings with the GOLAM Framework 85

Genome
Space

MDX query

REST call GTF files & metadata

Mapping
Cube

MDX query
md data

MDX query

missing data

requested data

On-Demand ETL

md data

md data
loaded data

MD Engine

OLAP���
Analysis

Optimization

Cache
ManagementCache

Metadata

ETL

Fig. 3. Functional breakdown of the on-demand ETL process

– Optimization. The interface for accessing the genome space is REST-
based, and the extraction of missing data is done on a file basis. As
previously mentioned, extracting exactly the mappings required by the
OLAP query would be feasible, but it would require only a subset of
the Map operation result to be materialized —which would add an extra
processing cost to each OLAP query. So, the approach we are currently
pursuing in GOLAM is to materialize the full genome space when the
Map operation is executed, and then extract the GTF files that cover all
the missing data needed to answer each OLAP query. In this scenario,
the finest granularity offered for fetching data is the set of mappings
of all the regions of a single reference sample against a single input
sample (i.e., a selection on a subset of reference regions cannot be made
when fetching). Based on this constraint and knowing the cost of each
REST call in terms of data to be transferred, the optimization subprocess
determines, through an approach based on hierarchical clustering, a set
of requested data that cover all the missing data and has total minimum
cost. The requested data are then fetched from the genome space and
transformed into multidimensional form.

4. OLAP Analysis. Analysis sessions in biology are inherently exploratory
and dynamic, so an OLAP approach is well suited since it provides power-
ful and flexible tools to explore data from different perspectives and levels
of detail. So, at this stage, biologists can analyze mappings using classical
OLAP operators such as roll-up, slice-and-dice, etc. Obviously, a primary
role in ensuring the effectiveness of OLAP analysis is played by the multidi-

86 Lorenzo Baldacci et al.

Fig. 4. Multidimensional schema for the mapping cube

mensional schema adopted for representing data. Figure 4 shows the schema
we use to model mappings, based on the DFM notation [5]. Each mapping
is associated to one region of a reference sample and one input sample, and
is described by a set of statistical measures —count, average, max, min, and
sum. Notably, except count, the other measures are computed on a specific
feature of the regions found in the input sample. Since such features are not
known a-priori, we use the Feature dimension to support a variable number
of measures. For instance, measure Max of a mapping associated with fea-
ture p-value refers to the maximum p-value found in the mapped regions.
As denoted in Figure 4 by a circle with a double border, reference and input
samples share the same hierarchy. The Sample hierarchy mostly reflects the
ENCODE data model [2]. An experiment is the result of a single biological
analysis over a portion —called cell line— of a tissue extracted from a pa-
tient. In particular, the meaning of an experiment depends on its specific
type (e.g., ChiP-Seq, DNA-Seq, etc.). Samples, which are the necessary in-
put for a Map operation, are the result of one (or more) GMQL operations
over a set of experiments.

As mentioned above, the size of the data being processed may be significant.
To give an idea of the data volumes, we remark that a typical sample might
include some hundreds of thousands of regions, while a Map operations usually
takes one reference sample to be mapped against (up to) a couple of thousands
of input samples. Since the Map operation maps each region of a reference sam-
ple against each input sample, the resulting set of mappings might amount to
hundreds of millions of elements.

4 Final Remarks

The goal of the GOLAM framework is to address a problem in modern genomic,
that of overcoming the current limitations of genome analysis methods by par-
tially automating and speeding-up the analysis process on the one hand, and by

Analyzing Genomic Mappings with the GOLAM Framework 87

making it more flexible on the other. In this direction we presented the GOLAM
framework, whose goal is to enable biologists to run multi-resolution analyses
on genome region mappings. With reference to Figure 2, the OLAP Analysis
component has been developed using open source tools; in particular, MySQL,
Mondrian, and Saiku are used as RDBMS, multidimensional engine, and OLAP
front-end, respectively. As to on-demand ETL, Talend Open Studio implements
basic ETL (see Figure 3); the cache management subprocess has already been
implemented in C++, while optimization is currently being implemented.

References

1. Alkharouf, N., Jamison, C., Matthews, B.: Online analytical processing (OLAP): a
fast and effective data mining tool for gene expression databases. BioMed Research
International 2005(2), 181–188 (2005)

2. Baldacci, L., Golfarelli, M., Graziani, S., Rizzi, S.: GOLAM: a framework for an-
alyzing genomic data. In: Proc. DOLAP. pp. 3–12. Shanghai, China (2014)

3. Cuzzocrea, A., Song, I.Y., Davis, K.C.: Analytics over large-scale multidimensional
data: the big data revolution! In: Proc. DOLAP. pp. 101–104 (2011)

4. Dzeroski, S., Hristovski, D., Peterlin, B.: Using data mining and OLAP to discover
patterns in a database of patients with Y-chromosome deletions. In: Proc. AMIA.
pp. 215–219 (2000)

5. Golfarelli, M., Rizzi, S.: Data Warehouse design: Modern principles and method-
ologies. McGraw-Hill (2009)

6. Kargin, Y., Pirk, H., Ivanova, M., Manegold, S., Kersten, M.L.: Instant-on scientific
data warehouses: Lazy ETL for data-intensive research. In: Proc. BIRTE. pp. 60–
75. Istanbul, Turkey (2012)

7. Markowitz, V., Topaloglou, T.: Applying data warehouse concepts to gene expres-
sion data management. In: Proc. BIBE. pp. 65–72. Bethesda, Maryland (2001)

8. Masseroli, M., Pinoli, P., Venco, F., Kaitoua, A., Jalili, V., Paluzzi, F., Muller, H.,
Ceri, S.: Genometric query language: A novel approach to large-scale genomic data
management. Bioinformatics, to appear (2015)

9. Microsoft: MDX reference. http://msdn.microsoft.com/en-
us/library/ms145506.aspx (2015)

10. Morton, K., Balazinska, M., Grossman, D., Mackinlay, J.: Support the data en-
thusiast: Challenges for next-generation data-analysis systems. Proc. VLDB 7(6)
(2014)

11. Moussa, R.: TPC-H benchmark analytics scenarios and performances on Hadoop
data clouds. In: Networked Digital Technologies, pp. 220–234. Springer (2012)

12. Raney, B., Cline, M., Rosenbloom, K., Dreszer, T., Learned, K., Barber, G., Meyer,
L., Sloan, C., Malladi, V., Roskin, K., Suh, B., Hinrichs, A., Clawson, H., Zweig,
A., Kirkup, V., Fujita, P., Rhead, B., Smith, K., Pohl, A., Kuhn, R., Karolchik,
D., Haussler, D., Kent, J.: ENCODE whole-genome data in the UCSC genome
browser (2011 update). Nucleic Acids Res. (39), D871–D875 (2011)

13. Wang, L., Zhang, A., Ramanathan, M.: BioStar models of clinical and genomic
data for biomedical data warehouse design. International Journal of Bioinformatics
Research and Applications 1(1), 63–80 (2005)

14. Zhao, H., Ye, X.: A practice of TPC-DS multidimensional implementation on
NoSQL database systems. In: Performance Characterization and Benchmarking,
pp. 93–108. Springer (2014)

