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Abstract. Within the framework of the data warehousedesign
methodology wearedeveloping, in thispaper weinvestigatethe problem

of vertical fragmentation of relational viewaimed atminimizing the
global queryresponse timeEach viewincludes several measureshich,
within the workload, are seldom requestedtogether; thus, thesystem
performance may be increased [pgrtitioning the views to be materialized
into smaller tables. On the other hand, drill-across queries involve measures
taken from two or more views; in this case the access costs magcbeased

by unifying these views into largetables. Within thedata warehouse
context, the presence oédundant views makes tlimgmentationproblem
more complex than itraditional relational databases sincerequires to
decide on which views eadjueryshould be executed. Aftédormalizing the
fragmentation problem as a 0-1 integer linear programming problem, we
define a cost functionand propose a branch-and-bound algorithm to
minimize it. Finally, we demonstratthe usefulness obur approach by
presenting a sample set of experimental results.

1 Introduction

Though designing aatawarehouse (DW) requires techniquesmpletely different
from those adopted for operational systems, no significant effort hasriaelenso far

to develop acompleteand consistent ad hodesignmethodology. In [7] wehave
outlined a general methodological framework for DW dedigised orthe conceptual
model wedeveloped, calleddimensionalFact Model In [6] we proposed a semi-
automated approach to conceptual modelling starting from the pre-eXisbimgeptual

or logical) schemedescribingthe operational information system; currently, we are
working on logical design, which entaifgoducing alogical scheme for the DW
starting from the conceptual scheme (which we call dimensional scheme) and from the
expectedworkload. The whole process, including physical designskistched in
Figure 1.

The issuegsaised bythe topic of DW logicaldesignare many and interesting;
among them, the one most commongpnsidered inthe literature is view
materialization, which plays a&elevant role in determinindhe systemoverall
performance for given workload [8]. Assuming that the target logicalodel is the
well-known star scheme [10], ithis paper weinvestigate how the response to the
workload can be furtheenhanced byfragmenting vertically thefact tables which
implement the views to benaterialized. By vertical fragmentation we mean the



partitioning of the attributes of a table into two or more tables by replicating the key,
as well as the unification of two or more tables with the same key into a Hihigte
including the union of the attributes. While partitioning may be usehdneveronly

a subset of the attributes is typicaligquired byeach query,unification may be
convenient when thevorkload is significantly affected bydrill-across queriesi.e.,
gueries formulated on two or more fact tables.
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Fig. 1. Design methodology for DWs

As compared tooperational databases, in DWhvironments the benefits of
fragmentation are further enhanced by the multiple query execution plans &odsing
the presence of redundant views. These bera#tparticularly relevant ithe DW is
implemented on a parallel architecture; in particular, if diglays areadopted and
fragmentation iscoupledwith an allocation algorithm [13], theueries requiring
multiple fragments allocated on different disks can be effectively parallelized.

The problem of determining theptimal partitioning given avorkload has been
widely investigatedvithin the context ofcentralized[5] [11] as well asdistributed
databasesystems [13]; unfortunately, the resuléported inthe literature cannot be
applied to the DWeasesince theredundancy introduced hyaterializing viewsbinds
the partitioning problem to that afeciding onwhich view(s)each queryshould be
executed. To the best of our knowledge, the problem of vertical fragmentation in DWs
has beendealt with only in [12], where it is formalizedwith reference to
multidimensionaldatabases; nalgorithm for determining theptimal fragmentation
is proposed.

2 Background

In this section wentroducethe necessary background wur conceptual model. In
particular,after discussing the maifeatures of a facscheme, welefine aggregation
patterns as a way toharacterize DWgueries.Finally, we show howdrill-across

queries, formulated otwo or morefact schemes,can be formulatedwvithin the

workload.



2.1 The Dimensional Fact Model

The Dimensional FactModel (DFM) is a graphical formalism foconceptual
modeling of DW requirements [6]. The representation of rehlifft using the DFM
is calleddimensionalscheme and consists of a set ofact schemeswhose basic
elementsarefacts, dimensionandhierarchies. Inthis section we brieflyecall the
features ofthe DFM useful within this paper, witheference tothe LINEITEM
example shown in Figure 2, which models one of the star schiacieded within
the TPC-D [15].
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Fig. 2. TheLINEITEM fact scheme

A fact scheme is structured as a tweleose root is a fact. Aact is a focus of
interest for the enterprise; it is represented by a box which reportactheameand,
typically, one or more numeriand continuously valued measureswhich "quantify"
the fact from different points of view. We will denote with Meagf) the set of
measures of fact scherhdn theLINEITEM schemePrice is an example of measure.

Attributesare represented by circlaadmay assume discreteset of valuesEach
attribute directly attached tothe fact is adimension dimensionsdetermine the
granularity adopted for representing facts. Wavill denote with Attr(f) and
Patt(f)DAttr(f), respectively, the set of attributes and the set of dimensitimer{sion
patterr) of fact schemef. The dimension pattern of thelNEITEM scheme is
{Supplier Part, Order, Return Flag Ship Mode Status Ship Date Commit Date,
Receipt Datp

Subtreegooted indimensionsare hierarchies anddeterminehow fact occurrences
may beaggregated and selects@nificantly for the decision-making process. The
dimension in which a hierarchy is rooted defines its finest aggregation granularity; the
attributes associated to the vertices aleaghpath of thehierarchystarting from the
dimension define progressively coarser granularities. The arc connecting two attributes
represents a -to-onelationship (functionablependencypetweenthem; thus,every
directed path within onehierarchy necessarily representsfuectional dependency
between the starting and the ending attributes.



2.2 Fact instances and aggregation patterns

Given afact schemef, eachn-ple of values taken from the domains of the
dimensions of defines arelemental cellivhereone unit of informatiorfor the DW
can be represented. Weall primary fact instanceshe units of informatiorpresent
within the DW, each characterized by exactly one value for each measure.

Since analysingdata atthe maximum level ofdetail is often overwhelming,
primary fact instances are typically aggregated into secondary fact instartiferextt
levels of abstraction, each corresponding to an aggregation pattern.

Definition 1. Given afact schemef with n dimensions, av-dimensional
aggregation patteriis a seP = {a,,...a} of attributes off such thaP # Patt(f) and

no directed path of arcs (i.e., no functional dependency) exists between each pair of
attributes inP.

Examples of aggregation patterns in théNEITEM schemeare {Part.Type
Supplier.RegionOrder, Return Flag Ship Mode Status Ship Date, Commit Date,
Receipt Datg { Part.Brand Supplier Order.Yea}.

Given aggregation patter@ = {a,,..a}, each v-ple of values taken from the
domains of ther attributes oP defines a macro-cell which, from the logical point of
view, aggregatesll the primaryfact instancescorresponding ton-ples of values
which functionally determinethe samev-ple along the attribute hierarchiebhese
macro-cellsare calledsecondaryfact instancesfor aggregation patter?; each is
characterized by exactly one value for each measure, calculated by applying a grouping
function (typically the sum) to the values thmeasureassumes within th@rimary
fact instances aggregated.

In the following, we will use the terrpatternto denoteeither the dimension
pattern or an aggregation pattern.

2.3 The workload

DWs are primarilydirectedtowards answering quicklgll the possiblequeries on the
enterprise data. Since keeping into account all the possilelees iscomputationally
too complex, a reduced set of significantd frequentjuerieswill be considered to be
representative of the actual workload.

In [6] we haveintroduced asimple language for definingwith reference to a
dimensional scheme, thgueriesforming the expected workloador the DW,; this
language is meant to be used for logical design, hence, it focuses ondataiotust
be retrieved and athich level they must beonsolidated. In particular, wepresent
the typical DWquery bythe set offact instances, at any aggregation lewehose
measure values are to be retrieved; one or more Boolean predicates on the attributes of
the fact schemamay beformulated inorder torestrict this set. Within thecope of
this paper, it will be sufficient to characterize qugrwith (1) its pattern,Patt(q); (2)
the set ofmeasuresequired,Meagq); (3) the selectivityselq), defined asthe ratio
betweenthe number offact instancegeturned byq andthe total number offact
instancesngPatt(q)).

In the DFM, different facts areepresented in differeribct schemes. Howevepart
of the queries the user formulates on the DW meayirecomparing measurdaken
from distinct, thoughrelated,schemes; in the OLAP terminology, these called



drill-across queries. In [6] walefinedthe rules for combining tw@ompatible(i.e.,
sharing at least one attribute) fact schefhasdf' into anew schemd' O ", which

we call theiroverlapand includes the union of the measuref afdf" (see Figure 3).

A drill-across query can then be expressed on the overlap of two or more fact schemes;
for instance, the query asking for the total qomid bythe customers oéach region

to receive each part, characterizedPayt(q) = { Customer.RegiqrPart} and Meagq) =
{Discount Price Shipping Co$t is formulated ornLINEITEM O SHIPMENT
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Fig. 3. The SHIPMENTfact schemga) andthe LINEITEM O SHIPMENToverlapped fact
scheme (b)

Definition 2. The workload on @imensional scheme is st of pairs ¢, n,),
whereq, denotes a query amglits expected frequency.



3 Logical design from dimensional schemes

Logical designreceives ininput a dimensional scheme, veorkload and aset of
additional information (update frequencies, total disk spaaélable, maximunguery
response time, time-space trade-off point, etc.) to produce a DW schemestduiddh
minimize the total query response time by respecting the disk space constraint.

At this time, it is necessary tachoose the target logical model, relational or
multidimensional. In this paper we consider only the relaticaaéwhich represents,
at the moment, the mogtequentchoice. A dimensional schentan be mapped on
the relational model by adoptirtge well-known star scheme [10] [3], in whifdurt
instancesand hierarchiesare stored, respectivelyithin fact tablesand denormalized
dimension tablesA fact table has logical schemeéT(k,,... k,m,,..m ),
where eaclk; is a foreign key imported from a dimension tabfe eachm is a
measure; in general, fatdble v is characterized bythe pattern it isdefined on,
Patt(v) = {a,,..a,} (where g is the attributecorresponding td; ), and bythe set of
measures it containdjeagv) = {m,,..m}.

Within a star scheme, the primary fact instances for fact sclieare storedvithin
a fact tablev characterized bipatt(v) = Patt(f) and byMeagv) = Meagf). A technique
commonlyused inorder to reducéhe respons¢ime for frequent queries is tgre-
computeand consolidatethe secondaryfact instances ormne or moreaggregation
patterns. In the literature, fact tables reportitagaconsolidatedrom otherfact tables
are generally called views; in the following we will use the terwmiew to denote
indifferently the fact tables containing primarfact instances pfimary viewg and
those containing secondary fact instansesg¢ndary views

Definition 3. Let P, andP; be two distinctaggregation patterns on festheme
f, we say thaP; is projectableon P; (P, = P) iff, for eachattributea,0P;, there
exists one attribute, 0P, such thag, functionally depends oa,. Obviously,since
each attribute functionally depends on itself, each pattern is projectable on itself.

For example, withreference tothe LINEITEM fact scheme, the patter, =
{Part.BrandOrder.Regioh is projectable onP; = {Part.Brand Order.Customer
Supplied.

Given aqueryq and aview v, g can beanswered orv iff Pat{q) > Patt(v) and
Meagq) O Meagv).

3.1 View materialization

Before facing the problem of vertical fragmentation of views, ihésessary talecide
whichsecondary views should be materialized. Several algorithms havetopesed
to determine the optimal set of views, often by reducing significantlgebechspace
[2] [9]. Discussing these algorithms is outside the scopéhisft paper; wewill
assume that one of them is applied to determinegdoh facscheme, an optimal set
of views.

To the best of our knowledge, no materialization algorithms in the liter@kees
drill-across queriemto account. On the othdrand, sincdrill-across querieplay a
relevant role within our workload, it is necessary to involve them in the optimization
process by transformingpem intoqueries onsingle fact schemes. Lety be a drill-



across query on the overlapped fact schemg O ... O f,; from the point of view of
view materializationg is equivalent toz queriesq,,...q, characterized byPatt(q) =
Patt(q) andMeagq) = Meagq) n Meagf).

LetV be the set of (primargnd secondarywiews to bematerialized determined in
output from the materialization algorithm. Each viewV, associated to fact scheme
f, is characterized by its pattdpatt(v) > Patt(f) and byMeagv) = Meagf).

4  Vertical fragmentation of views

Vertical fragmentation is an important issue toaddressed irorder to minimize the
global queryresponsdime; it is aimed atoptimizing both thequeries requiring a
subset of measures and drill-across queries.

Each view includes several measuwdsch describethe samedact but, within the
workload, are seldom requested together. Thus, the system overall performance may be
increased byartitioning the views determined from the materialization algoriihio
smaller tablesgeachincluding only the measures whichypically appear together
within the queries. On the other hand, drill-across queries are formulatecedapped
fact schemes; asuch, they involvemeasures taken fronwo or more views. The
accesgosts for thesgueriesmay bedecreased bwnifying these views intdarger
tables where all the measures required are stored together.

With the termfragmentatiorwe denotéboth partitioningandunification of (either
primary orsecondaryyiews. Theapproach wepropose in this section iaimed at
determining an optimal fragmentation of the set of materialized views.

It is remarkablehat theeffectiveness of fragmentation f@Ws may behigher
than for operational databases; in fact, while in the latise it isknown a priori on
which table(s)each querywill be executed, inDWs thepresence of redundamtews
makes multiple solutions possible. In the following emmsider arexample on the
LINEITEM scheme. LeV = {v,, v}, where

Meagv,) = MeagLINEITEM); Patt(v,) = {Supplier.NationPart.Brand
Meagv,) = MeadgLINEITEM); Patt(v,) = {Supplier.NationPart, Order.Datég

Let the workload include two querigsandg, defined as follows:

Meagq,) = {Price, Qty, Discount ExtPrice DiscPricg; Patt(q,) = {Supplier.Nation
Part.Brang
Meagq,) = {Tax, DiscPrice SumChargg Patt(q,) = {Supplier.NationPart.Brand

It is convenient to execute baghandg, onv; since itscardinality is lowerthan that
of v, (Patf(v,) > Patt(v,)). Let the optimalfragmentation include foufragmented
views:

MeagV';) = {Price, Qty, Discount ExtPrice DiscPricg; Patt(v';) = Patt(v,)
MeagV',) = {Tax SumChargg Patt(v',) = Patt(v,)

MeagVv';) = {DiscPricg; Patt(Vv';) = Patt(v,)

MeagV',) = {Price, Qty, Discount ExtPrice Tax SumChargg Patt(v',) = Patt(v,)

This solution is optimafor q;, which will be executed onv';, i.e., on pattern
{Supplier.Nation Part.Brand. As to q,, it could benow convenient toretrieve
measureDiscPrice from view v'; on pattern §upplier.Nation Part, Order.Daté,



depending on the trade-off between reading less meamutiescessindess tuples. In
general, another factor to lmensidered inthe trade-off is the number of attributes
forming the fact table key: the coarser the aggregation pattern, the lower the length of
the key, the smaller the tuples to be read.

4.1 Problem statement

In principle, the fragmentation algorithm should dggplied tothe whole setv. On
the other hand, it may be convenient to unify two measures belonging thffevent
fact scheme$ andf" only if at least two views with the same pattdérave been
materialized onf' andf" andthe workload includes ateast onedrill-acrossquery,
defined orf' O f*, which could beanswered orthese two views; in thisase, we say
thatf' andf" arerelated The notion ofrelatedness inducespartitioning onto the set
of fact schemes belonging to the dimensional scheme, which in turn partitions the set
of queries and the set of viewscording tothe fact scheme(sihey aredefinedon; in
order to decrease complexity, fragmentation is meant tappked separately teach
set of queries on the corresponding set of related fact schemes.

Let FSbe a set of related fact schemes @®be the set ofjueries onthe schemes
in FS. Let VSV be the set of viewsaterialized orthe fact schemes irS andP S
be the set of patterns associated to the viewssin

Definition 4. Givenfact schemdOFS, we partition Meagf) into the largest
subsets of measures which appear together in at leagjueneof QS and do not
appear separately iany otherquery in QS. We calleachsubset amintermof f,
and denote wittMS(f) the set of all minterms df

For instance, on thelNEITEM scheme, give®@S= {q,,0,} where Meagq,) = {Price,
Qty, ExtPrice Discoun} and Meagq,) = {Price, Qty, DiscPrice SumChargg it is
MSLINEITEM) = {{ Price, Qty}, { ExtPrice Discoun}, { DiscPrice SumChargg.

Definition 5. Given the set of related fact scher we define dermas a set
of measures which (1) is a minterm of one of the fact schent€s or (2) is the
union of two or more mintermsvenbelonging todifferent factschemes irFS,
required together by at least a query. We denoteTi8tine set of terms fdFrS

In the example above, ES = {LINEITEM,, it is TS = {{ Price, Qty}, { ExtPrice
Discount, { DiscPrice SumChargg { Price, Qty, ExtPrice Discoun}, {Price, Qty,
DiscPrice SumChargg.

Given FS andVS, a solution to thefragmentation problem iencoded by a
fragmentationcube i.e., abinaryarray C with three dimensiongorresponding to,
respectively, the querieg]QS the pattern®,0PS andthe termsT, 0TS The set of
fragmented views defined lyis

B : B
vVS=rv, | Oj,k| C. =210 1
! % § W

where viewy, is characterized byleagv,) = T, andPatt(v,) = P;.
A fragmentation cube not only denotes a fragmentation of the viewsSjrat the
same time, it specifies on which view(s) each query is assumed to be execftaet]. In



a 1 in cellCy, denoteghat, when answeringjueryq;, the measures inMeagq)n T,
will be obtained fromy.

The fragmentatiorencoded byC is feasiblewith reference toQS and VS iff the
following constraints are satisfied:

1. for each query, every measumguiredmust beobtainedfrom exactly oneview
(non ambiguous query execution);

2. for eachpattern,each measurenust belong toexactly one view (nomedundant
fragmentation);

3.each view inVS' must be afragmentation of one or more views XS
(consistency with view materialization).

It should be noted that, if some measures t#ca schemare used by no query in
the workload, they do notgenerateany minterm, thus, thegrenot involved in the
fragmentationalgorithm. These measuresill be reconsidereda posteriorj after an
optimal fragmentation has beedetermined, byeither creating new fragments
including them only or by adding them to one of the fragments determined. Of course,
if the workload has been properlylefined andmaterialization has beeaxecuted
correctly, the amount of unused measures should be negligible.

In the following we consider a small example on FS = {LINEITEM,
SHIPMENT. Let QS={q,, O, Us, 04, Gs}; G, Op» Gs aredefined onLINEITEM, g, on
SHIPMENTandgs onLINEITEM O SHIPMENT

Meagq,) = {Price, Qty, Discoun}; Patt(q,) = {ReturnFlag Status ShipDaté

Meagq,) = {ExtPrice DiscPricg; Patt(q,) = {Part, Customey

Meadq;) = {SumChargeTax; Patt(q,) = {Part, Customer.Natioh

Meadq,) = {QtyShippedShippCogt Patt(q,) = {Customer.NationPart. MFGR
ShipDaté

Meagqs) = {ExtPrice DiscPrice ShippCogt Patt(qs) = {Part.Brand
Customer.Natioh

We assume that, besides the primary vieyandv,, two secondaryiews v, andv,
have been materialized NEITEM, one secondary view on SHIPMENT

Patt(v;) = {Part, Customey Patt(v,) = {Part, Customer.Natioh
Patt(v;) = {Part, Customer.Natioh

(for eachview, themeasuresrethose of thecorresponding fact schemdjigure 4
shows the fragmentatiotube representing a feasilgdelution to thisfragmentation
problem, which features five fragmented views:

MeagVv',) = {Price, Qty, Discount; Patt(v',) = Pat{(LINEITEM)

MeagVv',) = {ExtPrice DiscPricg; Patt(v’,) = {Part, Customey

MeagV';) = {SumChargeTax; Patt(v';) = {Part, Customer.Natioh

MeagqVv',) = {QtyShippedShippCost Patt(v',) = Pat{SHIPMENT)

MeagV's) = {ExtPrice DiscPrice ShippCogt Patt(v'y) = {Part.Brand
Customer.Natioh

of which the first fourare obtained by partitioning, the last one by coupling
partitioning and unification. Thecube also denotesthat, for instance,query q, is
executed on';.
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Fig. 4. Fragmentation cube representing a feasible solution

4.2 The cost function

Among all thefeasiblesolutions to th€ragmentation problem, ware interested in
the one which minimizes the cost for executing Warkload. Thecost could be
defined inseveralways, depending orthe assumptionsnade onthe DBMS features
and, consequently, otie accesgpaths whichcan be followed tosolve thequeries.
However, we believéhat it is convenient tkeep logical design separatéfom the
physical level in order to both provide a more general solaimhreduceomplexity;
thus, the cost function wpropose in thispaperintentionally abstracts from any
assumptions on the access paths. Of course, other cost functions speuiiines|yor
the different DBMSs could be adopted as well.

The cost function we adopt is based on the number of disk pages in whietthe
instances of interest for a givepery arestored. In particular, the cost glery g
within fragmentatiorC is defined as:

=) @

O
COSt(qi , C) i R DP; msq)ésel (qi ) L_mS(PJ ), EW b

This formula can be explained as follows:

* selq)-ngP) is the number of fact instances on patf@rmvolved ing.
* By is the number of tupleger disk page for view,, characterized by, and T,

o{R)E

thus, B——*=Lis the number of pages in whighis contained.
ik

0 Chs(p) & -
. qnésa(qi)ljhs(ﬂ),gﬁ—% is the expectednumber of pages in which thiact
ik

instances involved ig, are stored.



Thus,cos{q;,, C) expresses the total number of disk pages whiakt beaccessed in
order tosolve g. Though the actual number of pageadwhen executing theuery
may be highedepending orthe accesyath followed, we believe thahis function
represents a good trade-off between generality and accuracy.

The total cost for the workloa@Sturns out to be:

tcost(QS C) = ; n, @ost(q;, C) 3

Gi

4.3 A branch-and-bound approach

The problem of vertical fragmentatiolKP) can be formulated a®llows: Find, for
the binarydecisionarray C, the value which minimizes functiottos{QS C),
subject to constraints (1), (2), (8kpressed inSection 4.1.VFP is a 0-linteger
linear programming problem of kirgkt coveringwith additional constraints and is
known to be NP-hard [14]. In this section we proposesach-and-bound approach to
solve it optimally.

The essential ingredients of &ranch-and-bound proceduror a discrete
optimization problem such a&P are [1]:

1. A branching rulefor breaking up the probleinto subproblems. LeVFP, be the
problem of choosing, given a partial solution ¥FP represented by an
“"incomplete” cubeC(VFP,), the remaining elementS;, to be set to 1 in the
completesolution. Wedenotewith SUBVFP,) the set of subproblems iwhich
VFP, is broken up; each is defined by choosing one ele@gnto be set to 1 in
the partial solution, which means adding to therentsolution afragmented view
on patterrP,; to be used for retrieving some measuig® solve a query.

2. A subproblem selectiorule for choosing the next (most promising) subproblem
to be processed. The rule adopted will be explained later.

3. A relaxationof VFP,, i.e. an easier probleMFR, whose solutiorboundsthat of
VFP,. We relaxVFP, by removing constraint (2): iNFR,, somemeasures may
be replicated in two or more fragmented views defined on the same pattern.

4. A lower boundingprocedurefor calculating the cost of the relaxatioWFR,
consists of one set covering problem &ach queny;,, which can beeasily solved
by adopting one of the algorithms in the literature [4]. Sincsoiring VFR, the
number of eligible views is higher than that féFP,, the cost ofVFR, will
necessarily be lower or equal to thaM#iP,.

The branch-and-bound algorithm has the following structure (see Figure 5):

[/l ub: upper bound to the solution cost

/' b: lower bound to the solution cost

/[ next: next subproblem

/I curr: current subproblem

ub « + o

next  VFP;

while next is not null do

{ curr  — most promising subproblem in SUB(next);
if ~ C(curr) is a feasible solution to VFP then



{ if tcost(QS, C(curr)) < ub then
ub ~ tcost(QS, C(curr));
next ~ most promising problem; I/l backtracking
}
else
{ C < solution to the relaxation of curr;
Ib < tcost(QS, C);

if Ib < ub then
next « curr;
else
next  most promising problem; // backtracking
}
}
VFP/) next
SUB(VFP) O curr
@
VFP ﬁ VFP O next VFP
O curr : next
O/ next O/ ......... o) curr
feasible / / C/ feasible
solution curr solution
(b) © (@)

Fig. 5. Four steps in the branch-and-bouralgorithm. The circles represent the
subproblems generated; the grey ones correspond to the best solution found so far

Besides the cub&(VFP,), expressing a partial solution, each subprob\&a®, is
also associated to another cubgVFP,) which representthe "pool" of possible
choices (cubelements whicttould beset to 1) for generating the subproblems in
SUBRVFPR,). Let VFP,,,0SUBVFP,) denotethe subproblengenerated bysetting
c. to 1; D(VFP,,, is obtainedfrom D(VFP,) by applying the following

iik

algorithm:
D(VFP 1)  « D(VFP,);
for each k such that T «n T # Odo
{ for each j do D(VFR.)r, = O
ifk #k then

for each u do D(VFP.), ¢ = O



which drops from the set of possible choices those made unfeasible (due to constraints
(1) and (2)) by settin@T to 1. The cub®(VFP) associated tahe global problem
ij

VFP is initialized as follows:
1 if (ovOvs| Patt(v) = P, OMeas(v) n T, # 0
D(VFP), =0 o(Meas(q ) n T, #0) D(Patt(qi )>P @
0
[0 otherwise

which encodes all the possible views which maydérved byfragmenting views in
V'S andall the querieswhich can beanswered on each dhem. The startingube
D(VFP) for the example presented in Section 4.1 is shown in Figure 6.

B £ ©dg § H § ©@@m § dg B

£ & EF & E£E5 & £5 & B5 &

72} Sy I Sl I Sapw 1 Sy 1 m A Il

HEEon EIo S G0 EEo EZo

2ELF Jefs SBEL gZif JZEf

TS EEEE EEEE £S££& ££££ £££&

{Disc,Qty,Price} 1 0 0 0 0000 0000 0000 0000

{DiscPrice,ExtPrice} 0 0 0 0 1010 0000 0000 1011

{SumCharge,Tax} 0 0 0 0 0000 1011 0000 0000

{ShippCost} 0 0 0 0 0000 0000 0100 0101

{QtyShipped} 0 0 0 0 0000 0000 0100 0000

{ShippCost,QtyShipped} 0 0 0 0 0000 0000 0100 0000

{DiscPrice,ExtPrice,ShippCost} 0 0 0 0 0000 0000 0000 0001
q1 q92 q3 94 qs

Fig. 6. Starting cubeD(VFP)

The algorithm uses two subproblem selection rules for choosing, respectively, the
currentsubproblem fromSUBnex) andthe next subproblem to hgrocessed. The
first rule, in order to select from(nex) the eIemeanR to be set to 1 irC(nex) to
i

generateC(curr), operates as follows:

among the i,j,k such that D(next) ik =1
{ find P such that ns( F}) is minimum;

find i, k such that Meas(q.) N T, has max. cardinality;
}

The secondrule selects, from the set of all the problegeserated so far (except
those such that all their subproblehes/ealreadybeengenerated angrocessed), the
one for which the cost of the relaxation is minimum.

5 Experimental tests

The tests wédhavecarriedout are based otthe well-known TPC-Dbenchmark [15],
which featurestwo relatedfact schemes(NEITEM and PARTSUPPLIER The



number of primaryfact instancegjeneratedor the two schemes i6.000.000 and
800.000, respectively; the total amount of data is about 1 Gbyte.

We have testedur approachwith five workloads, the first includingnly the 17
TPC-D queries (all with the sanfiequency)the others being progressivedytended
with more queries. For each workload, the views tdrhgmentechave beerselected
by means of the heuristiapproach toview materializationproposed in[2], by
considering aglobal spaceconstraint of 2 Gbytes (1 Gbyte for primary views + 1
Gbyte for secondary views).

Table | reports the results obtained. Thercentagesaving is evaluated by
comparing theworkload cost on the set of viewselected bythe materialization
algorithm and the one on the set of fragmented views; the time for finding the optimal
fragmentation has been measured on a Pentium Il - 300 MHz processor.

Table 1. Results of experimental tests

n.queries in the n. secondary | n. subproblemscomputing time percentage
workload views generated saving
17 8 2775 about 1 min 8.2%
25 12 4439 about 2 ming 22.0%
30 13 348925 about 30 mins 20.4%
35 14 51099 about 12 mins 9.0%
40 16 403420 about 75 mins 11.8%

In the following wedescribe inmore detail the last experiment. The totaumber
of fragments obtained i29, 3 of whichare primary; in fact, the primary view on
LINEITEM is splitted in two fragments with measur&idcount Price Sum Charge
Extended Price Qty} and {Discount Price, Tax}, respectively. Weconsider in
particular two representative cases:

e Queries ¢,; and g,,, on PARTSUPPLIER are characterized byPati(q,,) =
{Part.Container DateWeek, Meadq,;) = {Available Qty, Supply Cogt and
Patf(q,,) = {Part, Date.Week Meagq,,) = {Available Qty; the frequencies are
n,; = 10 andn,, = 26. In theabsence ofragmentation, botlgueries would be
executed orthe secondaryiew v characterized byPatt(v) = {Part, Date Week,
Meagv) = MeagPARTSUPPLIER= {Available Qty, Supply Cog yielding a
total cost 1816490+2&323232=8568932. Within the optimal fragmentatioris
partitionedinto two fragmentsv' andv" characterized byMeagv') = {Available
Qty}, Meagv") = {Supply Cost In this caseq;, requires botlv' andv" to be read
and its cost raises to 32240; on the other hapdeadssmaller tuplesandits cost
is decreased to 243386. The total <cost is thusdecreased to
10x32240+26243386=6650436.

¢ Queryq,, on LINEITEM O PARTSUPPLIER is characterized byati(q,s) =
{PartBrand Supplie#, Meagq,,) = {Discount Available Qty, Supply Cogt In
the absence ofragmentation, thisquery would require two views to beread,
yielding a cost of 98700. Within the optimal fragmentation, these two views are
partitioned byeliminating theunused measureand unified; as aresult, g, is
executed on #ragmentv"' characterized byvleagv") = Meagq,,), Yielding a cost
of 44860. It should beotedthat, if the two viewshad been partitionedut not
unified, the cost would have been 82940.
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Conclusion

In this paper we have proposed an approach to vertical fragmentation of vidata in
warehouses. The experimental results presented confirmtititg of the approach in
terms of reduction of the cost for executing the expected workload.

Our future work on the topic of DW logicalesignwill addressthe problem of

horizontal fragmentation of views, aimed at enhancing#réormanceor the queries
which operate on subsets of fact instances.
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