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Abstract.  Within the framework of the data warehouse design
methodology we are developing, in this paper we investigate the problem
of vertical fragmentation of relational views aimed at minimizing the
global query response time. Each view includes several measures which,
within the workload, are seldom requested together; thus, the system
performance may be increased by partitioning the views to be materialized
into smaller tables. On the other hand, drill-across queries involve measures
taken from two or more views; in this case the access costs may be decreased
by unifying these views into larger tables. Within the data warehouse
context, the presence of redundant views makes the fragmentation problem
more complex than in traditional relational databases since it requires to
decide on which views each query should be executed. After formalizing the
fragmentation problem as a 0-1 integer linear programming problem, we
define a cost function and propose a branch-and-bound algorithm to
minimize it. Finally, we demonstrate the usefulness of our approach by
presenting a sample set of experimental results.

1 Introduction

Though designing a data warehouse (DW) requires techniques completely different
from those adopted for operational systems, no significant effort has been made so far
to develop a complete and consistent ad hoc design methodology. In [7] we have
outlined a general methodological framework for DW design, based on the conceptual
model we developed, called Dimensional Fact Model. In [6] we proposed a semi-
automated approach to conceptual modelling starting from the pre-existing (conceptual
or logical) schemes describing the operational information system; currently, we are
working on logical design, which entails producing a logical scheme for the DW
starting from the conceptual scheme (which we call dimensional scheme) and from the
expected workload. The whole process, including physical design, is sketched in
Figure 1.

The issues raised by the topic of DW logical design are many and interesting;
among them, the one most commonly considered in the literature is view
materialization, which plays a relevant role in determining the system overall
performance for a given workload [8]. Assuming that the target logical model is the
well-known star scheme [10], in this paper we investigate how the response to the
workload can be further enhanced by fragmenting vertically the fact tables which
implement the views to be materialized. By vertical fragmentation we mean the



partitioning of the attributes of a table into two or more tables by replicating the key,
as well as the unification of two or more tables with the same key into a single table
including the union of the attributes. While partitioning may be useful whenever only
a subset of the attributes is typically required by each query, unification may be
convenient when the workload is significantly affected by drill-across queries, i.e.,
queries formulated on two or more fact tables.
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Fig. 1. Design methodology for DWs

As compared to operational databases, in DW environments the benefits of
fragmentation are further enhanced by the multiple query execution plans arising from
the presence of redundant views. These benefits are particularly relevant if the DW is
implemented on a parallel architecture; in particular, if disk arrays are adopted and
fragmentation is coupled with an allocation algorithm [13], the queries requiring
multiple fragments allocated on different disks can be effectively parallelized.

The problem of determining the optimal partitioning given a workload has been
widely investigated within the context of centralized [5] [11] as well as distributed
database systems [13]; unfortunately, the results reported in the literature cannot be
applied to the DW case since the redundancy introduced by materializing views binds
the partitioning problem to that of deciding on which view(s) each query should be
executed. To the best of our knowledge, the problem of vertical fragmentation in DWs
has been dealt with only in [12], where it is formalized with reference to
multidimensional databases; no algorithm for determining the optimal fragmentation
is proposed.

2 Background

In this section we introduce the necessary background in our conceptual model. In
particular, after discussing the main features of a fact scheme, we define aggregation
patterns as a way to characterize DW queries. Finally, we show how drill-across
queries, formulated on two or more fact schemes, can be formulated within the
workload.



2 . 1 The Dimensional Fact Model

The Dimensional Fact Model (DFM) is a graphical formalism for conceptual
modeling of DW requirements [6]. The representation of reality built using the DFM
is called dimensional scheme, and consists of a set of fact schemes whose basic
elements are facts, dimensions and hierarchies. In this section we briefly recall the
features of the DFM useful within this paper, with reference to the LINEITEM
example shown in Figure 2, which models one of the star schemes included within
the TPC-D [15].
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Fig. 2. The LINEITEM fact scheme

A fact scheme is structured as a tree whose root is a fact. A fact is a focus of
interest for the enterprise; it is represented by a box which reports the fact name and,
typically, one or more numeric and continuously valued measures which "quantify"
the fact from different points of view. We will denote with Meas(f) the set of
measures of fact scheme f. In the LINEITEM scheme, Price is an example of measure.

Attributes are represented by circles and may assume a discrete set of values. Each
attribute directly attached to the fact is a dimension; dimensions determine the
granularity adopted for representing facts. We will denote with Attr(f) and
Patt(f)⊆ Attr(f), respectively, the set of attributes and the set of dimensions (dimension
pattern) of fact scheme f. The dimension pattern of the LINEITEM scheme is
{ Supplier, Part, Order, Return Flag, Ship Mode, Status, Ship Date, Commit Date,
Receipt Date}.

Subtrees rooted in dimensions are hierarchies, and determine how fact occurrences
may be aggregated and selected significantly for the decision-making process. The
dimension in which a hierarchy is rooted defines its finest aggregation granularity; the
attributes associated to the vertices along each path of the hierarchy starting from the
dimension define progressively coarser granularities. The arc connecting two attributes
represents a -to-one relationship (functional dependency) between them; thus, every
directed path within one hierarchy necessarily represents a functional dependency
between the starting and the ending attributes.



2 . 2 Fact instances and aggregation patterns

Given a fact scheme f, each n-ple of values taken from the domains of the n
dimensions of f defines an elemental cell where one unit of information for the DW
can be represented. We call primary fact instances the units of information present
within the DW, each characterized by exactly one value for each measure.

Since analysing data at the maximum level of detail is often overwhelming,
primary fact instances are typically aggregated into secondary fact instances at different
levels of abstraction, each corresponding to an aggregation pattern.

Definition 1 . Given a fact scheme f with n dimensions, a v-dimensional
aggregation pattern is a set P = {a1,...av} of attributes of f such that P ≠ Patt(f) and
no directed path of arcs (i.e., no functional dependency) exists between each pair of
attributes in P.

Examples of aggregation patterns in the LINEITEM scheme are {Part.Type,
Supplier.Region, Order, Return Flag, Ship Mode, Status, Ship Date, Commit Date,
Receipt Date}, { Part.Brand, Supplier, Order.Year}.

Given aggregation pattern P = {a1,...av}, each v-ple of values taken from the
domains of the v attributes of P defines a macro-cell which, from the logical point of
view, aggregates all the primary fact instances corresponding to n-ples of values
which functionally determine the same v-ple along the attribute hierarchies. These
macro-cells are called secondary fact instances for aggregation pattern P; each is
characterized by exactly one value for each measure, calculated by applying a grouping
function (typically the sum) to the values that measure assumes within the primary
fact instances aggregated.

In the following, we will use the term pattern to denote either the dimension
pattern or an aggregation pattern.

2 . 3 The workload

DWs are primarily directed towards answering quickly all the possible queries on the
enterprise data. Since keeping into account all the possible queries is computationally
too complex, a reduced set of significant and frequent queries will be considered to be
representative of the actual workload.

In [6] we have introduced a simple language for defining, with reference to a
dimensional scheme, the queries forming the expected workload for the DW; this
language is meant to be used for logical design, hence, it focuses on which data must
be retrieved and at which level they must be consolidated. In particular, we represent
the typical DW query by the set of fact instances, at any aggregation level, whose
measure values are to be retrieved; one or more Boolean predicates on the attributes of
the fact scheme may be formulated in order to restrict this set. Within the scope of
this paper, it will be sufficient to characterize query q with (1) its pattern, Patt(q); (2)
the set of measures required, Meas(q); (3) the selectivity, sel(q), defined as the ratio
between the number of fact instances returned by q and the total number of fact
instances, ns(Patt(q)).

In the DFM, different facts are represented in different fact schemes. However, part
of the queries the user formulates on the DW may require comparing measures taken
from distinct, though related, schemes; in the OLAP terminology, these are called



drill-across queries. In [6] we defined the rules for combining two compatible (i.e.,
sharing at least one attribute) fact schemes f' and f" into a new scheme f' ⊗  f" , which
we call their overlap and includes the union of the measures of f' and f" (see Figure 3).
A drill-across query can then be expressed on the overlap of two or more fact schemes;
for instance, the query asking for the total cost paid by the customers of each region
to receive each part, characterized by Patt(q) = {Customer.Region, Part} and Meas(q) =
{ Discount Price, Shipping Cost}, is formulated on LINEITEM ⊗  SHIPMENT.
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Fig. 3. The SHIPMENT fact scheme (a) and the LINEITEM ⊗  SHIPMENT overlapped fact
scheme (b)

Definition 2. The workload on a dimensional scheme is a set of pairs (qi, η i),
where qi denotes a query and ηi its expected frequency.



3 Logical design from dimensional schemes

Logical design receives in input a dimensional scheme, a workload and a set of
additional information (update frequencies, total disk space available, maximum query
response time, time-space trade-off point, etc.) to produce a DW scheme which should
minimize the total query response time by respecting the disk space constraint.

At this time, it is necessary to choose the target logical model, relational or
multidimensional. In this paper we consider only the relational case which represents,
at the moment, the most frequent choice. A dimensional scheme can be mapped on
the relational model by adopting the well-known star scheme [10] [3], in which fact
instances and hierarchies are stored, respectively, within fact tables and denormalized
dimension tables. A fact table has logical scheme FT(    k   1,...    k   n,m1,...m z) ,
where each k i  is a foreign key imported from a dimension table and each mj  is a
measure; in general, fact table v is characterized by the pattern it is defined on,
Patt(v) = {a1,...an} (where ai is the attribute corresponding to k i ), and by the set of
measures it contains, Meas(v) = {m1,...mz}.

Within a star scheme, the primary fact instances for fact scheme f are stored within
a fact table v characterized by Patt(v) = Patt(f) and by Meas(v) = Meas(f). A technique
commonly used in order to reduce the response time for frequent queries is to pre-
compute and consolidate the secondary fact instances on one or more aggregation
patterns. In the literature, fact tables reporting data consolidated from other fact tables
are generally called views; in the following we will use the term view to denote
indifferently the fact tables containing primary fact instances (primary views) and
those containing secondary fact instances (secondary views).

Definition 3. Let Pi and Pj be two distinct aggregation patterns on fact scheme
f; we say that Pi is projectable on Pj (Pj ≥ Pj) iff, for each attribute ah∈ Pi, there
exists one attribute ak∈ Pj such that ah functionally depends on ak. Obviously, since
each attribute functionally depends on itself, each pattern is projectable on itself.

For example, with reference to the LINEITEM fact scheme, the pattern Pi =
{Part.Brand,Order.Region} is projectable on Pj = {Part.Brand, Order.Customer,
Supplier}.

Given a query q and a view v, q can be answered on v iff Patt(q) ≥ Patt(v) and
Meas(q) ⊆  Meas(v).

3 . 1 View materialization

Before facing the problem of vertical fragmentation of views, it is necessary to decide
which secondary views should be materialized. Several algorithms have been proposed
to determine the optimal set of views, often by reducing significantly the search space
[2] [9]. Discussing these algorithms is outside the scope of this paper; we will
assume that one of them is applied to determine, for each fact scheme, an optimal set
of views.

To the best of our knowledge, no materialization algorithms in the literature takes
drill-across queries into account. On the other hand, since drill-across queries play a
relevant role within our workload, it is necessary to involve them in the optimization
process by transforming them into queries on single fact schemes. Let q be a drill-



across query on the overlapped fact scheme f = f1 ⊗  ... ⊗  fz; from the point of view of
view materialization, q is equivalent to z queries q1,...qz characterized by Patt(qi) =
Patt(q) and Meas(qi) = Meas(q) ∩ Meas(fi).

Let V be the set of (primary and secondary) views to be materialized determined in
output from the materialization algorithm. Each view v∈ V, associated to fact scheme
f, is characterized by its pattern Patt(v) ≥ Patt(f) and by Meas(v) = Meas(f).

4 Vertical fragmentation of views

Vertical fragmentation is an important issue to be addressed in order to minimize the
global query response time; it is aimed at optimizing both the queries requiring a
subset of measures and drill-across queries.

Each view includes several measures which describe the same fact but, within the
workload, are seldom requested together. Thus, the system overall performance may be
increased by partitioning the views determined from the materialization algorithm into
smaller tables, each including only the measures which typically appear together
within the queries. On the other hand, drill-across queries are formulated on overlapped
fact schemes; as such, they involve measures taken from two or more views. The
access costs for these queries may be decreased by unifying these views into larger
tables where all the measures required are stored together.

With the term fragmentation we denote both partitioning and unification of (either
primary or secondary) views. The approach we propose in this section is aimed at
determining an optimal fragmentation of the set of materialized views.

It is remarkable that the effectiveness of fragmentation for DWs may be higher
than for operational databases; in fact, while in the latter case it is known a priori on
which table(s) each query will be executed, in DWs the presence of redundant views
makes multiple solutions possible. In the following we consider an example on the
LINEITEM scheme. Let V = {v1, v2}, where

Meas(v1) = Meas(LINEITEM); Patt(v1) = {Supplier.Nation, Part.Brand}
Meas(v2) = Meas(LINEITEM); Patt(v2) = {Supplier.Nation, Part, Order.Date}

Let the workload include two queries q1 and q2 defined as follows:

Meas(q1) = {Price, Qty, Discount, ExtPrice, DiscPrice}; Patt(q1) = {Supplier.Nation,
Part.Brand}

Meas(q2) = {Tax, DiscPrice, SumCharge}; Patt(q2) = {Supplier.Nation, Part.Brand}

It is convenient to execute both q1 and q2 on v1 since its cardinality is lower than that
of v2 (Patt(v1) > Patt(v2)). Let the optimal fragmentation include four fragmented
views:

Meas(v'1) = {Price, Qty, Discount, ExtPrice, DiscPrice}; Patt(v'1) = Patt(v1)
Meas(v'2) = {Tax, SumCharge}; Patt(v'2) = Patt(v1)
Meas(v'3) = {DiscPrice}; Patt(v'3) = Patt(v2)
Meas(v'4) = {Price, Qty, Discount, ExtPrice, Tax, SumCharge}; Patt(v'4) = Patt(v2)

This solution is optimal for q1, which will be executed on v'1, i.e., on pattern
{ Supplier.Nation, Part.Brand}. As to q2, it could be now convenient to retrieve
measure DiscPrice from view v'3 on pattern {Supplier.Nation, Part, Order.Date},



depending on the trade-off between reading less measures and accessing less tuples. In
general, another factor to be considered in the trade-off is the number of attributes
forming the fact table key: the coarser the aggregation pattern, the lower the length of
the key, the smaller the tuples to be read.

4 . 1 Problem statement

In principle, the fragmentation algorithm should be applied to the whole set V. On
the other hand, it may be convenient to unify two measures belonging to two different
fact schemes f' and f"  only if at least two views with the same pattern have been
materialized on f' and f"  and the workload includes at least one drill-across query,
defined on f' ⊗  f", which could be answered on these two views; in this case, we say
that f' and f" are related. The notion of relatedness induces a partitioning onto the set
of fact schemes belonging to the dimensional scheme, which in turn partitions the set
of queries and the set of views according to the fact scheme(s) they are defined on; in
order to decrease complexity, fragmentation is meant to be applied separately to each
set of queries on the corresponding set of related fact schemes.

Let FS be a set of related fact schemes and QS be the set of queries on the schemes
in FS. Let VS⊆ V be the set of views materialized on the fact schemes in FS and PS
be the set of patterns associated to the views in VS.

Definition 4 . Given fact scheme f∈ FS, we partition Meas(f) into the largest
subsets of measures which appear together in at least one query of QS and do not
appear separately in any other query in QS. We call each subset a minterm of f,
and denote with MS(f) the set of all minterms of f.

 For instance, on the LINEITEM scheme, given QS = {q1,q2} where Meas(q1) = {Price,
Qty, ExtPrice, Discount} and Meas(q2) = {Price, Qty, DiscPrice, SumCharge}, it is
MS(LINEITEM) = {{ Price, Qty}, { ExtPrice, Discount}, { DiscPrice, SumCharge}}.

Definition 5. Given the set of related fact schemes FS, we define a term as a set
of measures which (1) is a minterm of one of the fact schemes in FS; or (2) is the
union of two or more minterms, even belonging to different fact schemes in FS,
required together by at least a query. We denote with TS the set of terms for FS.

In the example above, if FS = {LINEITEM}, it is TS = {{ Price, Qty}, { ExtPrice,
Discount}, { DiscPrice, SumCharge}, { Price, Qty, ExtPrice, Discount}, { Price, Qty,
DiscPrice, SumCharge}}.

Given FS and VS, a solution to the fragmentation problem is encoded by a
fragmentation cube, i.e., a binary array C with three dimensions corresponding to,
respectively, the queries qi∈ QS, the patterns Pj∈ PS and the terms Tk∈ TS. The set of
fragmented views defined by C is

  

VS' v j k Cjk ijk
q QSi

= ∃ ≥










∈
∑    |  | , 1 (1)

where view vjk is characterized by Meas(vjk) = Tk and Patt(vjk) = Pj.
A fragmentation cube not only denotes a fragmentation of the views in VS; at the

same time, it specifies on which view(s) each query is assumed to be executed. In fact,



a 1 in cell Cijk denotes that, when answering query qi, the measures in Meas(qi)∩Tk

will be obtained from vjk.
The fragmentation encoded by C is feasible with reference to QS and VS iff the

following constraints are satisfied:

1. for each query, every measure required must be obtained from exactly one view
(non ambiguous query execution);

2. for each pattern, each measure must belong to exactly one view (non redundant
fragmentation);

3. each view in VS' must be a fragmentation of one or more views in V S
(consistency with view materialization).

It should be noted that, if some measures of a fact scheme are used by no query in
the workload, they do not generate any minterm, thus, they are not involved in the
fragmentation algorithm. These measures will be reconsidered a posteriori, after an
optimal fragmentation has been determined, by either creating new fragments
including them only or by adding them to one of the fragments determined. Of course,
if the workload has been properly defined and materialization has been executed
correctly, the amount of unused measures should be negligible.

In the following we consider a small example on FS = {LINEITEM,
SHIPMENT}. Let QS = {q1, q2, q3, q4, q5}; q1, q2, q3 are defined on LINEITEM, q4 on
SHIPMENT and q5 on LINEITEM ⊗  SHIPMENT:

Meas(q1) = {Price, Qty, Discount}; Patt(q1) = {ReturnFlag, Status, ShipDate}
Meas(q2) = {ExtPrice, DiscPrice}; Patt(q2) = {Part, Customer}
Meas(q3) = {SumCharge, Tax}; Patt(q3) = {Part, Customer.Nation}
Meas(q4) = {QtyShipped, ShippCost}; Patt(q4) = {Customer.Nation, Part.MFGR,

ShipDate}
Meas(q5) = {ExtPrice, DiscPrice, ShippCost}; Patt(q5) = {Part.Brand,

Customer.Nation}

We assume that, besides the primary views v1 and v2, two secondary views v3 and v4

have been materialized on LINEITEM, one secondary view v5 on SHIPMENT:

Patt(v3) = {Part, Customer} Patt(v4) = {Part, Customer.Nation}
Patt(v5) = {Part, Customer.Nation}

(for each view, the measures are those of the corresponding fact scheme). Figure 4
shows the fragmentation cube representing a feasible solution to this fragmentation
problem, which features five fragmented views:

Meas(v'1) = {Price, Qty, Discount}; Patt(v'1) = Patt(LINEITEM)
Meas(v'2) = {ExtPrice, DiscPrice}; Patt(v'2) = {Part, Customer}
Meas(v'3) = {SumCharge, Tax}; Patt(v'3) = {Part, Customer.Nation}
Meas(v'4) = {QtyShipped, ShippCost}; Patt(v'4) = Patt(SHIPMENT)
Meas(v'5) = {ExtPrice, DiscPrice, ShippCost}; Patt(v'5) = {Part.Brand,

Customer.Nation}

of which the first four are obtained by partitioning, the last one by coupling
partitioning and unification. The cube also denotes that, for instance, query q1 is
executed on v'1.
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 Fig. 4. Fragmentation cube representing a feasible solution

4 . 2 The cost function

Among all the feasible solutions to the fragmentation problem, we are interested in
the one which minimizes the cost for executing the workload. The cost could be
defined in several ways, depending on the assumptions made on the DBMS features
and, consequently, on the access paths which can be followed to solve the queries.
However, we believe that it is convenient to keep logical design separate from the
physical level in order to both provide a more general solution and reduce complexity;
thus, the cost function we propose in this paper intentionally abstracts from any
assumptions on the access paths. Of course, other cost functions specifically tuned for
the different DBMSs could be adopted as well.

The cost function we adopt is based on the number of disk pages in which the fact
instances of interest for a given query are stored. In particular, the cost of query qi

within fragmentation C is defined as:
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This formula can be explained as follows:

•  sel(qi).ns(Pj) is the number of fact instances on pattern Pj involved in qi.
•  βjk is the number of tuples per disk page for view vjk characterized by Pj and Tk:

thus, 
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instances involved in qi are stored.



Thus, cost(qi, C) expresses the total number of disk pages which must be accessed in
order to solve qi. Though the actual number of pages read when executing the query
may be higher depending on the access path followed, we believe that this function
represents a good trade-off between generality and accuracy.

The total cost for the workload QS turns out to be:

  
tcost QS cost qi i

q QSi

, ,C C( ) = ⋅ ( )
∈
∑η (3)

4 . 3 A branch-and-bound approach

The problem of vertical fragmentation (VFP) can be formulated as follows: Find, for
the binary decision array C, the value which minimizes function tcost(QS, C),
subject to constraints (1), (2), (3) expressed in Section 4.1. VFP is a 0-1 integer
linear programming problem of kind set covering with additional constraints, and is
known to be NP-hard [14]. In this section we propose a branch-and-bound approach to
solve it optimally.

The essential ingredients of a branch-and-bound procedure for a discrete
optimization problem such as VFP are [1]:

1. A branching rule for breaking up the problem into subproblems. Let VFPα be the
problem of choosing, given a partial solution to VFP represented by an
"incomplete" cube C(VFPα), the remaining elements Cijk to be set to 1 in the
complete solution. We denote with SUB(VFPα) the set of subproblems in which
VFPα is broken up; each is defined by choosing one element Cijk to be set to 1 in
the partial solution, which means adding to the current solution a fragmented view
on pattern Pj to be used for retrieving some measures Tk to solve a query qi.

2. A subproblem selection rule for choosing the next (most promising) subproblem
to be processed. The rule adopted will be explained later.

3. A relaxation of VFPα, i.e. an easier problem VFRα whose solution bounds that of
VFPα. We relax VFPα by removing constraint (2): in VFRα, some measures may
be replicated in two or more fragmented views defined on the same pattern.

4. A lower bounding procedure for calculating the cost of the relaxation. VFRα
consists of one set covering problem for each query qi, which can be easily solved
by adopting one of the algorithms in the literature [4]. Since in solving VFRα the
number of eligible views is higher than that for VFPα, the cost of VFRα will
necessarily be lower or equal to that of VFPα.

The branch-and-bound algorithm has the following structure (see Figure 5):

// ub: upper bound to the solution cost
// lb: lower bound to the solution cost
// next: next subproblem
// curr: current subproblem
ub ← + ∞;
next ← VFP;
while next is not null do
{ curr ← most promising subproblem in SUB(next);

if C(curr) is a feasible solution to VFP then



{ if tcost(QS, C(curr)) < ub then
ub ← tcost(QS, C(curr));

next ← most promising problem; // backtracking
}
else
{ C' ← solution to the relaxation of curr;

lb ← tcost(QS, C');
if lb < ub then

next ← curr;
else

next ← most promising problem; // backtracking
}

}
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curr
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. . . . .
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Fig. 5 . Four steps in the branch-and-bound algorithm. The circles represent the
subproblems generated; the grey ones correspond to the best solution found so far

Besides the cube C(VFPα), expressing a partial solution, each subproblem VFPα is
also associated to another cube D(VFPα) which represents the "pool" of possible
choices (cube elements which could be set to 1) for generating the subproblems in
SUB(VFPα). Let VFPα+1∈ SUB(VFPα) denote the subproblem generated by setting

C
i j k

 to 1; D(VFPα+1) is obtained from D(VFPα) by applying the following

algorithm:

D(VFP α+1) ← D(VFP α);
for each k such that T k∩  Tk ≠ ∅  do

{ for each j do 
  
D(VFP )+1 ijkα  ← 0;

if k ≠  k then
for each u do 

  
D(VFP )+1 ijkα  ← 0;

}



which drops from the set of possible choices those made unfeasible (due to constraints
(1) and (2)) by setting C

i j k
 to 1. The cube D(VFP) associated to the global problem

VFP is initialized as follows:

  

D VFP

v VS Patt v P Meas v T

Meas q T Patt q Pijk

j k

i k i j( ) =
∃ ∈ ( ) = ∧ ( )∩ ≠ ∅( )

∧ ( )∩ ≠ ∅( )∧ ( ) ≥( )








1

0

  if 

  otherwise

|

(4)

 which encodes all the possible views which may be derived by fragmenting views in
VS and all the queries which can be answered on each of them. The starting cube
D(VFP) for the example presented in Section 4.1 is shown in Figure 6.
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Fig. 6. Starting cube D(VFP)

The algorithm uses two subproblem selection rules for choosing, respectively, the
current subproblem from SUB(next) and the next subproblem to be processed. The
first rule, in order to select from D(next) the element C

i j k
 to be set to 1 in C(next) to

generate C(curr), operates as follows:

among the i,j,k such that D(next) ijk  = 1
{ find 

  
P
j
 such that ns(

  
P
j
) is minimum;

find   i,   k such that 
  Meas(q )

i
∩  Tk  has max. cardinality;

}

The second rule selects, from the set of all the problems generated so far (except
those such that all their subproblems have already been generated and processed), the
one for which the cost of the relaxation is minimum.

5 Experimental tests

The tests we have carried out are based on the well-known TPC-D benchmark [15],
which features two related fact schemes (LINEITEM and PARTSUPPLIER). The



number of primary fact instances generated for the two schemes is 6.000.000 and
800.000, respectively; the total amount of data is about 1 Gbyte.

We have tested our approach with five workloads, the first including only the 17
TPC-D queries (all with the same frequency), the others being progressively extended
with more queries. For each workload, the views to be fragmented have been selected
by means of the heuristic approach to view materialization proposed in [2], by
considering a global space constraint of 2 Gbytes (1 Gbyte for primary views + 1
Gbyte for secondary views).

Table I reports the results obtained. The percentage saving is evaluated by
comparing the workload cost on the set of views selected by the materialization
algorithm and the one on the set of fragmented views; the time for finding the optimal
fragmentation has been measured on a Pentium II - 300 MHz processor.

Table 1. Results of experimental tests

n. queries in the
workload

n. secondary
views

n. subproblems
generated

computing time percentage
saving

17 8 2775 about 1 min 8.2%
25 12 4439 about 2 mins 22.0%
30 13 348925 about 30 mins 20.4%
35 14 51099 about 12 mins 9.0%
40 16 403420 about 75 mins 11.8%

In the following we describe in more detail the last experiment. The total number
of fragments obtained is 29, 3 of which are primary; in fact, the primary view on
LINEITEM is splitted in two fragments with measures {Discount Price, Sum Charge,
Extended Price, Qty} and {Discount, Price, Tax}, respectively. We consider in
particular two representative cases:

•  Queries q11 and q12, on PARTSUPPLIER, are characterized by Patt(q11) =
{Part.Container, Date.Week}, Meas(q11) = {Available Qty, Supply Cost} and
Patt(q12) = {Part, Date.Week}, Meas(q12) = {Available Qty}; the frequencies are
η11 = 10 and η12 = 26. In the absence of fragmentation, both queries would be
executed on the secondary view v characterized by Patt(v) = {Part, Date.Week},
Meas(v) = Meas(PARTSUPPLIER) = {Available Qty, Supply Cost}, yielding a
total cost 10×16490+26×323232=8568932. Within the optimal fragmentation, v is
partitioned into two fragments v' and v" characterized by Meas(v') = {Available
Qty}, Meas(v") = {Supply Cost}. In this case, q11 requires both v' and v" to be read
and its cost raises to 32240; on the other hand, q12 reads smaller tuples and its cost
is decreased to 243386. The total cost is thus decreased to
10×32240+26×243386=6650436.

•  Query q19, on LINEITEM ⊗  PARTSUPPLIER, is characterized by Patt(q19) =
{Part.Brand, Supplier}, Meas(q19) = {Discount, Available Qty, Supply Cost}. In
the absence of fragmentation, this query would require two views to be read,
yielding a cost of 98700. Within the optimal fragmentation, these two views are
partitioned by eliminating the unused measures and unified; as a result, q19 is
executed on a fragment v''' characterized by Meas(v''') = Meas(q19), yielding a cost
of 44860. It should be noted that, if the two views had been partitioned but not
unified, the cost would have been 82940.



6 Conclusion

In this paper we have proposed an approach to vertical fragmentation of views in data
warehouses. The experimental results presented confirm the utility of the approach in
terms of reduction of the cost for executing the expected workload.

Our future work on the topic of DW logical design will address the problem of
horizontal fragmentation of views, aimed at enhancing the performance for the queries
which operate on subsets of fact instances.
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