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Abstract. Landmark recognition in autonomous robots entails extracting symbolic information from sensory data,
and is a crucial phase in bridging the gap between the symbolic and the sub-symbolic worlds. In this paper we propose
a technique which identi�es landmarks by matching a set of templates with a local occupancy grid built by sonar
measures; another coarse-grained occupancy grid is used to decide when and where template matching is useful. Our
approach is robust since the occupancy grid is a probabilistic model which represents the uncertainty on sensory data;
hence, it may work well even on incomplete or noisy landmark shapes. It is fast since, during template matching, the
second-level occupancy grid enables the search area to be restricted; thus, the other activities of the robot are not
slowed down. The paper reports the results of experimental tests executed on a Pioneer mobile robot equipped with
an array of sonars, a compass, an odometer and a camera.

1 Introduction

Several authors agree that navigation in autonomous robots should be accomplished by coupling reactive
motion control and capability of planning paths at higher levels of abstraction [4]. Both reactive behaviour
and high-level path planning are based on a description of the environment, but each has di�erent demands.
The former requires a well-rooted correspondence between entities in the real world and their internal
representation, and needs essentially local sensor-based information. On the other hand, too much detail in
the description may become overwhelming for abstract path planning which is more easily carried out by
adopting a symbolic representation where useless details are neglected.

These requirements cannot be easily met if only one representation formalism is adopted; thus, in [9] we
argued that navigation-oriented knowledge of a structured environment should be represented at two levels,
symbolic and sub-symbolic, using di�erent formalisms. In the hybrid approach to navigation for autonomous
robots we proposed, the landmarks in the environment draw a "boundary line" in the environmental knowl-
edge, corresponding to the functional separation between abstract path planning and physical trajectory
planning. Paths of landmarks are planned at the symbolic level, on a hierarchy of graphs whose vertices
represent landmarks and clusters of landmarks; inter-landmark navigation is achieved by relying on detailed
sub-symbolic representations of the routes between pairs of landmarks.

Recognizing landmarks entails extracting symbolic information from sensory data, and is a crucial phase
in bridging the gap between the symbolic and the sub-symbolic worlds. The recognition technique depends
essentially on which sensor(s) are mounted on the robot, as well as on the semantics which landmarks are
required to express. The most common sensors are monocular and binocular cameras [1], lasers and sonars
[7]. The semantics associated to landmarks in the literature varies signi�cantly: some approaches de�ne
landmarks with low informative content but which can easily be identi�ed; for example, in [6] the authors
de�ne a landmark as a place that optimizes a measure of distinctiveness (e.g. di�erences of the distances from
near objects). Others search selectively for landmarks with high distinctive power [2]; using these landmarks
improves the recognition reliability but makes identi�cation more complex and less successful.
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From an analysis of the approaches in the literature it is clear that a landmark-identi�cation algorithm
should be robust when dealing with the uncertainty due to the errors in the robot self-positioning and in
sensor interpretation, and fast in order to avoid slowing down the robot's other activities. The technique
we propose in this paper meets these requirements for a robot working in a semi-structured environment,
i.e., an environment where landmark shapes and dimensions are known a priori but other unknown objects
(obstacles) may be present.

In our approach, landmarks are identi�ed by matching a set of templates with a local occupancy grid
built by sonar measures; another coarse-grained occupancy grid is used to decide when and where template
matching is useful. Our technique is robust since the occupancy grid is a probabilistic model which represents
the uncertainty on sensory data; thus, it may work well even on incomplete or noisy landmark shapes. It is
fast since, during template matching, the second-level occupancy grid allows the search area to be restricted.
We are currently experimenting our approach on a Pioneer I mobile platform (by Real World Interface Inc.)
equipped with an array of sonars, a compass, an odometer and a camera.

The paper is organized as follows. In Section 2 the environment representation formalism is outlined. In
Section 3 the identi�cation algorithm is described; some experimental results are shown in Section 4.

2 Environment Representation

As stated above, di�erent environment representation formalisms are needed to successfully carry out all
the functionalities of an autonomous robot. In particular, our architecture adopts a symbolic graph-based
representation for high-level path planning and an analogic grid-based representation to perform other navi-
gational tasks such as obstacle avoidance, landmark detection and inter-landmark navigation. In particular,
the analogic description is built by interpreting and combining sensory data; the landmark detection algo-
rithm bridges the gap between the two worlds by de�ning the nodes of the symbolic description.

2.1 Symbolic Level: The Hierarchic Graph

Symbolic knowledge of the environment is organized on multiple layers at di�erent abstraction levels [9];
each level is structured as a graph whose vertices and arcs represent, respectively, places and connections
between them. Within the graph at the lowest abstraction level, vertices correspond to landmarks and arcs
to routes (feasible trajectories between landmarks). Each arc is labeled with the cost paid when covering the
corresponding route; each vertex with the position of the corresponding landmark and its category, deter-
mined by the template matching algorithm. Within the graphs at the higher levels, each vertex corresponds
to a cluster, i.e., a connected sub-graph of the graph at the level below (see Figure 1). Clusters are obtained
by means of a clustering algorithm based on topological and metric criteria [8].
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Fig. 1.: Symbolic knowledge representation.

2.2 Analogic Level: The Occupancy Grid

Occupancy grids [3] are multi-dimensional (typically 2-D) tessellations of space; each cell cij stores the
probability of being occupied at a given time, P (s(cij) = occ). New sensory data acquired modify the stored



values according to the Bayesian law. Let P (s(cij) = occ j frgt) be the current estimate of the state of a
cell cij based on observation frgt = fr1; r2; :::rtg; given the new measurement, rt+1, the improved estimate
is given by:

P (s(cij) = occ j frgt+1) =
p(rt+1 j s(cij) = occ) � P (s(cij) = occ j frgt)P

s(cij)
p(rt+1 j s(cij)) � P (s(cij) j frgt+1)

:

In this recursive formulation, the previous estimate of the cell state serves as the prior and is directly obtained
from the occupancy grid; p(rt+1 j s(cij) = occ) is the probability a posteriori that the new observation be
rt+1, given s(cij) = occ, and is de�ned by the sensor model.

Occupancy grids, in this basic formulation, su�er from two problems when used for real-world applica-
tions. The �rst, typically occurring in indoor applications, is due to specular reections. Specular reection
is a property of active time-of-ight sensors such as sonars and radars, in which the energy from the device is
specularly reected by an angled surface, and may bounce on several surfaces before returning to the device.
Specular readings, unlike readings in which the beam is reected di�usely back to the device, do not give
direct information of the distance from the nearest surface.

The second problem is the presence of redundant readings. When a new reading is taken in the same
position and orientation (pose) of a previous one, it does not introduce further information. For instance, by
taking multiple readings from the same pose we cannot detect specular readings.

Both problems can be partially overcome by adopting the MURIEL method to update the occupancy
grid [5]. This method manages each sonar reading di�erently, according to its probability of being specular,
and copes with redundant readings by associating each cell with an independence log which stores the pose
from which each reading was taken (of course, only one reading from each pose is considered).

The estimate of the state of a cell depends on both P (s(cij) = occ j frgt+1) and P (s(cij) = free j frgt+1).
Consider, for example, a broken sensor that always gives the same reading r = �, no matter what the
environment. In this case it is

P (rt+1 = � j s(cij) = occ) = P (rt+1 = � j s(cij) = free) = 1

so the state of cij has no e�ect on the sensors and its probability should not change. This can be obtained
by the log-odds formulation, where the cell state is de�ned as:

O(s(cij) = occ) =
P (s(cij) = occ)

P (s(cij) = free)
;

O(s(cij) = occjfrgt+1) =
P (s(cij) = occ j frgt+1)

P (s(cij) = free j frgt+1)
:

It should be noted that the value which the MURIEL method associates to each cell of the occupancy grid
is not an occupancy probability but rather an occupancy prevision, expressed on a logarithmic scale ranging
from 0 (absolutely impossible) to +1 (absolutely true). The odds-likelihood posterior can be computed as:

O(s(cij) = occ j frgt+1) =
p(frgt+1 j s(cij) = occ)

P (frgt+1 j s(cij) = free)
� O(s(cij) = occ)

:
= �(frgt+1 j s(cij) = occ) � O(s(cij) = occ):

The occupancy prevision is then linearized and quantized within the range [0..255] (127 means equiprobability
of being free or occupied); the resulting value is called OL and stored in the occupancy grid. Linearizing the
occupancy prevision, as opposed to using the logarithmic scale, speeds up the decisional process and enables
the occupancy previsions for the second level occupancy grid to be computed simply as the weighted average
of the occupancy previsions for the �rst level occupancy grid (see Section 3.1).

When designing an occupancy grid to be used for recognizing landmarks, a crucial parameter is the spatial
resolution of cells. In fact, the smaller the side of cells, l, the higher the de�nition in representing objects,
and the higher the computational cost for processing the grid. On the other hand, recognizing landmarks
with complex irregular shapes requires high de�nition.

3 Landmark Recognition

Our approach to landmark recognition consists of three steps; the �rst and the second are aimed at de-
termining when and where the third, the actual identi�cation step, will be executed. The two �lter steps
enable the computational cost of the identi�cation process, which is primarily due to the template matching
algorithm, to be reduced.



3.1 Evaluation of Sensory Data

The robot moves in the environment following its exploration strategy. Every new sonar pattern read causes
the �rst level occupancy grid (OG1) to be updated, and may potentially lead to identifying a landmark.
Unfortunately, applying the template matching algorithm whenever OG1 is updated has prohibitive compu-
tational costs.

For this reason, we introduce a second level occupancy grid (OG2) whose cells correspond to square areas
in OG1 including n�n cells (see Figure 2). The value stored in a cell of OG2 is the weighted average of the

OG1

OG2

Fig. 2.: Relation between the �rst and the second level occupancy grid (n = 2).

occupancy previsions for all the corresponding cells in OG1. The likelihood OL of cell c2kh is computed as:

OL(s(c2kh) = occ j frgt) =

P(k+1)n�1
i=k�n

P(h+1)n�1
i=h�n (wij � OL(s(cij) = occ j frgt))P(k+1)n�1
i=k�n

P(h+1)n�1
i=h�n wij

where

wij =

�
1 if OL(s(cij) = occ j frgt) � 127
� otherwise

(� > 1 is a parameter). The weights wij are de�ned in such a way as to give more importance to the occupied
cells of OG1. In fact, the only cells whose occupancy prevision is greater than 127 are those lying on the
edge of the objects (sonar measures do not enable any occupancy prevision to be made for the cells inside);
thus, if a non-weighted average were used, even the OG2 cells corresponding to occupied areas would yield
an occupancy prevision lower than 127 (see Figure 3).

Fig. 3.: Representation of a circular landmark on OG1. White cells indicate free space, black cells indicate
the landmark edges. The second level occupancy grid has n = 5; it should be noted that for each cell in OG2
the number of free cells is greater than the number of those occupied.

A critical factor in the de�nition of OG2 is the value given to n, that should depend on both l and
dmin, the diameter of the smallest landmark. In fact, the area of each cell of OG2 should not overcome that



occupied by the smallest landmark, in order to avoid including free cells of OG1; on the other hand, it should
be large enough to signi�cantly reduce the complexity of template matching. We assume that

n � b
dmin

l
c:

The value stored in a cell of OG2 represents a prevision of the corresponding area being occupied by an
object. Whenever a new sonar reading modi�es some cells in OG1, the corresponding cells in OG2 are also
updated. The template matching algorithm is launched only when the information acquired is considered to
be su�cient to recognize a landmark, that is, when (1) the new occupancy prevision for the updated cell(s)
of OG2 is greater than a threshold value and (2) the occupancy prevision has increased signi�cantly with
respect to the last time the matching algorithm was executed on the cell(s). Let OG2 be updated by the
new reading rt+1; the template matching algorithm is triggered if both inequalities below are satis�ed:

{ OL(c2kh j frgt+1) > �min. Threshold �min expresses the minimum level of certainty below which we may
assume that there is no object in the corresponding region of OG1.

{ OL(c2kh j frgt+1) � OL(c2kh j frgt) > �var. Threshold �var expresses the minimum required increase in
certainty.

3.2 Selection of the Matching Region

When the two above conditions are veri�ed, it is necessary to determine the set of OG1 cells which will be
searched by the template matching algorithm; this set is constructed incrementally by using the information
contained in OG2.

Initially, an area of interest on OG2 is selected by considering the smallest neighborhood of c2kh which
can contain a landmark, i.e., the set of cells c2mn for which:

Distance8(c2kh; c
2
mn) < 1 + b

dmin

2nl
c:

This inequality is satis�ed when the smallest landmark is centered in c2kh, as shown in Figure 4.a. This set
is then iteratively extended with the adjacent cells whose occupancy prevision is greater than a threshold
�min. Iteration is stopped when no adjacent "promising" cells can be found or the area selected stretches to
cover the neighborhood determined by the cells c2mn for which:

Distance8(c2kh; c
2
mn) < 1 + b

dmax

nl
c

(see Figure 4.b).

(a) (b)

Fig. 4.: The smallest (a) and the largest (b) neighborhoods that can be selected for template matching.

Template matching is then executed on all the cells of OG1 corresponding to the cells selected on OG2.



3.3 Template Matching

Within a semi-structured environment, a set fgkg of categories of landmarks corresponding to objects which
the robot may meet during navigation is de�ned a priori. The choice of the categories depends on the nature
of the environment. The best candidates are objects delimited by either plane or convex surfaces; in fact,
concave surfaces may easily produce sonar reections.

Recognition is carried out by considering, for each category gk of landmarks, a set of templates ftkvg, each
reproducing the landmark contour with a di�erent orientation respect to the grid. The number of di�erent
orientations depends on the resolution of OG1 and is a trade-o� between localization accuracy and e�ciency;
obviously, it is also determined by the existence of symmetries in the landmark shape.

A template includes only the cells belonging to the edge of the landmark. In fact, although the occupancy
prevision for a cell located inside a landmark should not change in time, undesired specular reections may
cause some readings to update its value; on the other hand, the border cells are a�ected less signi�cantly
because the high number of readings makes the occupancy prevision more reliable.

The matching degree between a template and the pattern de�ned by an area of OG1 is calculated by
centring the template on a cell of the pattern and comparing the occupancy prevision gradients for each pair
of corresponding cells. Gradient values carry more information than occupancy previsions, since they are
determined by the cell neighborhoods; they are computed1 by the Sobel operator r. The matching degree
between pattern r and template tkv in cell q 2 r is de�ned as:

Match(r; tkv ;q) =

= 1�

P
i;j2tkv

p
(rx(r)[qx + i; qy + j]�rx(tkv)[i; j])2 + (ry(r)[qx + i; qy + j]�ry(tkv)[i; j])2

zkv � �

where zkv is the number of cells belonging to tkv and � is the highest mismatch value of the Sobel operator.
The matching degree ranges between 0 (no matching) and 1 (full matching); due to its fuzzy nature, it
operates particularly well on distorted or incomplete landmark shapes.

Given a pattern r to classify, the template matching phase consists in computing the matching degree,
for every template available, in correspondence to each cell of r; for each template tkv , the cell qkv which
maximizes the matching degree is determined. Let Mkv be the maximum matching degree for template
tkv ; Mkv expresses our con�dence in ascribing r to template tkv . Pattern r is classi�ed as belonging to the
category gh, if any, which satis�es the following constraints:

9thw j (Mhw > �min) ^ 8tmn(Mhw > Mmn):

When this constraint is not satis�ed by any template, the pattern is not classi�ed as a landmark; this
situation usually occurs when:

{ The robot has not collected enough sonar readings about that region.
{ The pattern does not belong to any of the categories de�ned as landmarks.
{ Some wrong sonar readings determine a strongly corrupted reconstruction.

When a pattern is classi�ed as a landmark, it is added as a new vertex within the symbolic graph, and
labelled with its position qhw and its category gh. Actually, in order to make future identi�cations more
reliable, each landmark is also associated with the set of the templates for which Mkv > �min.

4 Experimental Results

This section reports the results of experimental tests performed on the Pioneer mobile robot. The tests have
been executed in an o�ce environment where three categories of arti�cial landmarks had been inserted: circle,
square, and triangle; the templates have been de�ned for each category in order to achieve an orientation
precision of 15�.

Figure 5 and Table 1 show a simple example where all the categories of landmarks are present. The good
quality of the environment reconstruction allows the landmark to be recognized. As the robot moves on the
path, its con�dence about the correct landmark category increases. It is remarkable that a satisfactory level
of con�dence is already obtained when only a partial view of the landmark is available to the robot.
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Fig. 5.: First-level occupancy grid (b) built during a simple exploration session (a). Labels from P1 to P9
denote places on the exploration path.

Label Circle Triangle Square

P1 0.2 0.3 0.2

P2 0.4 0.2 0.5

P3 0.4 0.2 0.8

P4 0.2 0.1 0.2

P5 0.4 0.2 0.3

P6 0.7 0.2 0.5

P7 0.1 0.2 0.2

P8 0.2 0.4 0.3

P9 0.2 0.7 0.4

Table 1.: Each row reports the matching degree expressing to what extent the landmark indicated by the
arrow in Figure 5.a belongs to the three categories. Template matching was carried out 103 times, each with
a mean duration of 0.01 seconds (on a 133 MHz Pentium).

Figure 6 shows how the maximum matching degrees for di�erent templates and categories vary during
the recognition of a square landmark.

Several tests have been carried out to detect the limitations of the algorithm. Obviously, most problems
arise when wrong sonar readings are taken. In this case, the landmark category may be correctly recognized
but its orientation may be missed. Less commonly, the landmark category may be missed. The probability
that such errors occur can be reduced by tuning the thresholds. Of course, the thresholds are the result of
a trade-o� between the risk of incorrect classi�cation and that of completely missing the landmark.

5 Conclusions

In this work we have presented an algorithm for fast landmark identi�cation in semi-structured environments.
Our algorithm represents the environment by an occupancy grid and identi�es landmarks by matching a set
of templates on the occupancy prevision gradient of the cells. A second-level occupancy grid, with coarser
granularity, is used to speed up recognition by deciding when and where template matching is needed.
Experimental tests executed on the Pioneer mobile robot show that our approach works well even on blurred
occupancy grids.

1 The gradients for all the templates available are computed a priori.
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Fig. 6.: Maximum matching degrees returned while the robot is moving around a square-shaped landmark
oriented at 0�. Each chart spans one lap made by the robot around the landmark. (a) Di�erent landmark
categories; (b) Di�erent templates of the square category.
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