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Abstract. In this paper we describe the control architecture we are experimenting on a Pioneer I mobile platform.
Its building blocks are called roles and are characterized by establishing a cognitive parallel with the roles played by
the di�erent crew members on a submarine entrusted with navigation tasks on unexplored soundings. The di�erent
behaviors are determined by a team-work involving all roles; thus, the de�nition of role is orthogonal to that of
behavior. On the other hand, roles are tightly related to the knowledge architecture adopted to represent the envi-
ronment, and re
ect the separation between symbolic and sub-symbolic representation of the environment enforced
by the presence of landmarks. After describing each role and its activities, and outlining the inter-role pattern of
communication, we present some experimental tests.

1 Introduction

A robotic agent operating in dynamic and unknown worlds must be capable of exploring and examining the
surrounding environment in order to execute appropriate actions for achieving its goals. In order to have
analysis and action organized e�ectively, it is necessary to de�ne how data from sensors can be combined and
integrated, and with which priority the di�erent perceptions from the environment should a�ect the robot's
behavior. The role of a control architecture for a mobile robot is that of mapping the sensory information
and the knowledge previously extracted into actions aimed at carrying out the tasks assigned.

The main issues to be considered when designing a control architecture concern the choice between
centralized and distributed architecture, reactive and deliberative behavior, sensor fusion and command
arbitration, bottom-up and top-down control. Even if some solutions explored in the literature are based on
drastic choices, intermediate solutions often proved to work better [18]. In the following, the main categories
of architectural approaches proposed in the literature are brie
y outlined.

{ Deliberative planners [14]. The key element of the architecture is a planner capable of determining the
optimal sequence of actions to take the system from the initial into the target state. The plan produced
is complete and can be directly executed. The main drawback is the high computational complexity of
the analysis process.

{ Reactive architectures [2]. Instead of building a complete model of the environment, reactive systems
directly react to sensorial perceptions; no explicit evaluation of the action consequences is made. Since
the agent can neither rely on an internal representation of the environment nor plan its actions, it can
identify its goal only if it can be reached directly; besides, local optima in achieving the goal can hardly
be avoided.

{ Layered architectures [4]. They are structured as distributed systems in which the modules are organized
on multiple control levels operating with di�erent data granularity, at di�erent abstraction levels and
di�erent time scale. This is aimed at achieving both deliberative (in the medium-long term) and reactive
behaviors. Unfortunately, this kind of architecture turned out to be not very 
exible.

{ Behavior-based architectures [1]. They are still distributed systems where each module, instead of imple-
menting an activity, achieves an elemental behavior and encapsulates perception, planning and action
capabilities. These architectures are very robust, but it is hard to predict the overall system behavior
which is de�ned by the interaction of the elemental behaviors with the environment.
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{ Blackboard architecture [15]. The components communicate via a central database: the modules indicate
their interest in certain data, and the database returns them the data required, if they are available. No
explicit control 
ow between the modules is considered.

{ Subsumption architecture [1]. It is based on a decomposition of the control system into layers, each
achieving a di�erent set of behaviors; each layer subsumes the lower levels, and can inhibit them by
suppressing their outputs. There is no central control module.

In this paper we describe the control architecture we are experimenting on a Pioneer I mobile platform. Its
building blocks are called roles and are characterized by establishing a cognitive parallel with the roles played
by the di�erent crew members on a submarine entrusted with navigation tasks on unexplored soundings. The
di�erent behaviors (react, explore, navigate, etc.) are determined by a team-work involving all roles; thus,
the de�nition of role is orthogonal to that of behavior. On the other hand, roles are tightly related to the
knowledge architecture adopted to represent the environment, and re
ect the separation between symbolic
and sub-symbolic representation of the environment enforced by the presence of landmarks.

In Section 2 a brief insight into the robot architecture and the environmental knowledge is given. Section
3 presents our control architecture, describes each role and its activities, and outlines the inter-role pattern of
communication. Finally, Section 4 compares our approach with other well-known architectures, while Section
5 proposes some experimental results.

2 The robot and its knowledge

Several authors agree that navigation in autonomous robots should be accomplished by coupling reactive
motion control and capability of planning paths at higher levels of abstraction [6]. Reactive behavior asks
for a well-rooted correspondence between entities in the real world and their internal representation, and
requires essentially local sensor-based information. On the other hand, too much detail in the description may
become overwhelming for high-level path planning which is more easily carried out by adopting a symbolic
representation where useless details are neglected.

These requirements cannot be easily met if only one representation formalism is adopted; thus, in [12]
we argued that navigation-oriented knowledge of a structured environment should be represented at least at
two levels, symbolic and sub-symbolic, using di�erent formalisms. Assuming that it is possible to identify a
set of landmarks within the environment, we outlined a hybrid approach to execution of navigation tasks, in
which landmarks draw a "boundary line" in the environmental knowledge, corresponding to the separation
between path planning and trajectory planning. The former is carried out on a hierarchical graph whose
vertices and arcs correspond, respectively, to landmarks and inter-landmarks routes (symbolic layer), and
produces sequences of landmarks to be visited; the latter is carried out in the space between landmarks, by
means of a local sub-symbolic representation (sub-symbolic layer).

The Pioneer I platform (Real World Interface Inc.) on which we operate is equipped with an array of
sonars, a compass and a camera. The robot moves in an o�ce environment, where it recognizes simple shapes
as landmarks by analyzing the images from the camera and the sonar patterns. Inter-landmark motion is
based on local occupancy grids; obstacle avoidance is sonar-based. No absolute positioning sensors are used;
the positions of landmarks are estimated by combining the compass readings with odometric measures, and
metric error is reduced by adopting an error correction algorithm. Exploration of the environment, which is
initially unknown, is supported by a graph-exploration algorithm and an agenda. High-level path planning
is carried out on the symbolic layer by means of an heuristic algorithm which takes into account complex
time and precedence constraints.

3 The control architecture

The distinction between a sub-symbolic and a symbolic world is strongly re
ected in our control architecture
which, coarsely, consists of three levels:

{ reactive level, operating on sub-symbolic knowledge;
{ deliberative level, operating on symbolic knowledge;
{ intermediate level, carrying out symbol grounding (link between the sub-symbolic and symbolic worlds).



Within these levels, the behavior of the robot originates at each time from a team-work involving six roles,
which operate simultaneously on di�erent layers of knowledge. A role implements a set of functionalities and
is characterized by the following properties:

{ For each role, all functionalities operate on the same abstraction level and are strictly related.
{ The knowledge supporting each role is not shared with other roles.
{ The control 
ow between the roles is not hierarchical: each member has wide autonomy within its role
and its abstraction level.

Inter-role coordination is asynchronous and message-based. Messages are used both for exchanging data
and for generating control 
ows.

In order to characterize the architecture from the cognitive point of view, we consider the analogy between
our robot and a submarine, operated by a crew where each member plays a di�erent role in navigation. The
data and control 
ows between the roles are outlined in Figure 1. The messages exchanged between the

clustered 
layers

PERISCOPIST

NAVIGATORPILOT CARTOGRAPHER

SONARIST

reactive
level

deliberative
level

intermediate
level

compass

odometer

sonar

actuators

camera

meta-
knowledge

meta 
layers

sub-symbolic 
layer symbolic

layer

TELEGRAPHIST

user other
agents

landmark
sensory

descriptions

Fig. 1.: Data-
ow diagram for the role-based architecture; arrows represent data 
ows, ellipses represent roles

di�erent roles during a common task execution scenario are sketched in Figure 2 using the UML formalism,
and will be explained in the next subsections.

3.1 The sonarist

The sonarist reads data from the sonar, the electronic compass and the odometer mounted on the robot. He
and the periscopist are the only crew members who have direct vision of the outside world.

The sonarist composes the readings from the compass and the odometer in order to estimate the current
position of the robot with reference to a relative Cartesian system. He also combines sequences of sonar
patterns into a local two-level occupancy grid describing the current neighborhood of the robot. Figure 3
shows the combination of a set of occupancy grids for a room in which three landmarks are present. The
current neighborhood is associated to the positional estimate, and both are transmitted to the periscopist
and to the pilot (poseAndGrid message).

Since the sonarist reads directly the sonar patterns, he is also entrusted with the task of recognizing
potentially dangerous situations for the robot, typically unexpected obstacles or moving objects, and of
informing the pilot (warning message).

3.2 The periscopist

The role of the periscopist is to identify landmarks in the environment. To this end, he can operate a camera
mounted on a mobile support capable of executing pan and tilt movements; this enables the periscopist to
examine not only the direction strictly ahead of the robot, but the whole half-circle in front of it.

Landmark recognition is based on a set of sample patterns corresponding to di�erent categories of land-
marks. Some categories may be characterized by a sonar pattern, some by a visual pattern, some by both.
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Fig. 3.: A two-level occupancy grid: �ne-grained (a) and coarse-grained (b)

Sonar landmarks are recognized by comparing the local occupancy grid transmitted by the sonarist with
the sample patterns [7]; in particular, the coarse-grained grid is used to decide when and where template
matching is useful, while the �ne-grained one is used for template matching. Visual landmarks should be
recognized even if the image is distorted or partially hidden by opaque obstacles [3]; for each sighting of a
"promising" pattern, the periscopist transmits the direction and estimated distance of the potential land-
mark to the navigator (lmSighted message), who may decide to verify the sighting by asking the pilot to take
the robot towards the supposed landmark. As to categories having both a visual and a sonar description
in the meta-knowledge, the object is accepted as landmark only if both sensors agree. When a landmark is
classi�ed with a su�cient degree of reliability, its sensory description and its category are signaled to the
navigator, together with its estimated position (lmFound message).

Figure 4 the shows the arti�cial pattern which identi�es visual landmarks. Using this pattern, the pose
of landmarks can be precisely estimated even using a monocular device. Landmark recognition is carried
out searching the environment for sequences of equidistant color gaps and then reconstructing the landmark



Fig. 4.: The pattern identifying a visual landmark

pose by means of the inverse projection technique [10].

3.3 The pilot

The pilot controls directly the actuators and moves the robot. He consults the sub-symbolic layer, which
he builds upon the data transmitted from the sonarist, to plan trajectories in the environment. The sub-
symbolic layer is structured as a set of local occupancy grids, each describing the area which surrounds a
route [5]. Using local instead of global grids keeps wrong local positional estimates from a�ecting the whole
knowledge [17].

The navigator tells the pilot in which direction to head the robot; the pilot computes the detailed tra-
jectory considering the distribution of occupancy probability. The sonarist may warn the pilot of a potential
collision with unexpected obstacles: people, other moving robots and new objects in the environment; also
a known object may become an unexpected obstacle due to an error in the estimate of the current position.
The pilot, depending on the signaled gravity of the risk and considering the sub-symbolic knowledge, decides
which strategy to adopt: move away quickly if the risk is high, replan a trajectory for reaching the target
landmark by avoiding the obstacle if the risk is low. If he cannot reach the target, he informs the navigator
(failed message).

3.4 The navigator

The navigator manages the correspondence between symbolic and sub-symbolic knowledge (symbol ground-

ing); thus, he is in contact with both the cartographer and the pilot. The cartographer suggests the navigator
which route should be followed; the navigator, in turn, tells the pilot to head the robot in the corresponding
direction (move message).

Every time the periscopist signals that a landmark of a given category has been reached, the navigator
must determine and communicate to the cartographer whether that landmark has already been experienced
(atLm message) or not (newLm message). To this end, he asks the cartographer for the list of the surrounding
landmarks (surroundingLms message), and compares their descriptions (obtained by lmList message) with
the current one.

3.5 The cartographer

The cartographer operates on the symbolic side of environmental knowledge. When the robot moves within an
unknown area of the environment, he is informed of the landmarks being experienced and of their positions
and categories by the navigator, and updates the symbolic layer accordingly. Routes are stored in the
symbolic layer as well; each represents an abstraction of a physical trajectory between two landmarks, and
is associated to a cost expressing the length of this trajectory.

The cartographer is involved in three basic activities:

{ Exploration. The cartographer carries out exploration at the symbolic level, aiming to acquire knowledge
of the graph representing the environment. Every time the robot reaches a landmark, the navigator
informs the cartographer of the routes which presumably exit from that landmark; the cartographer
decides which route the navigator should follow next in order to accomplish a given exploration strategy
[13].



{ Error Correction. The estimates of landmark positions transmitted by the sonarist are made unreliable
by the errors from metric sensors. In order to correct positional errors, the cartographer considers each
new estimate within the framework of the map global knowledge; the relevance given to the former
depends on the reliability of the latter. The correction technique we adopt is carried out in two phases:
the �rst is aimed at eliminating the metric inconsistencies which may appear in the symbolic knowledge
when unknown routes are experienced; the second is aimed at improving the estimates on the landmark
positions when known routes are followed again [9].

{ Path Planning. The cartographer is informed by the telegraphist of the tasks the user is requesting; in
general, each task is characterized by one or more actions to be executed on a resource in the environment.
On the symbolic level, a path is a sequence of adjacent landmarks; its cost is the sum of the costs of
the routes which connect each pair of consecutive landmarks. The cartographer must thus be capable of
planning the cheapest path which allows for a set of resources to be visited, in observance of temporal
and precedence constraints. Once the cartographer has planned a path, he transmits the routes to be
followed, one by one, to the navigator (nextRoute message). If the pilot gets lost, or if some tasks could
not be executed for any reasons (an unexpected change in the environment, a wrong estimate of the time
required to perform a task, etc.), the navigator informs the cartographer who adapts the previous plan
to cope with the new situation (failed message).

3.6 The telegraphist

The telegraphist manages the communications between the robot and the other agents who may inhabit
the environment, including the users. Communication with arti�cial agents may be aimed for instance at
cooperation during exploration or to task negotiation during path planning [13]. The negotiation protocol we
implemented is an extension of the Contract Net Protocol [16]; it assumes that no explicit support for utility
transfer is available and thus is based on task swaps [8]. The Contract Net Protocol requires the telegraphist
to evaluate the utility of a swap (evaluateSwap message); this utility is estimated by the cartographer on
the symbolic knowledge in terms of the reduction in the execution cost and is returned to the telegraphist
(swapUtility message). If the swap takes place, the telegraphist informs the cartographer (swap message)
who replans the new path.

Communications usually take place also between the telegraphist and the users, who may be interested
in monitoring the robot behavior, in ordering the robot to execute tasks (task message), or in querying
the symbolic knowledge of the environment. sectionArchitecture analysis Even if our role-based architecture
belongs to the distributed architectures category, the way the tasks are decomposed is innovative. Though
commands 
ow from the telegraphist to the pilot through the cartographer and the navigator, each role
interprets the commands received and decides whether to execute or delay them. Nevertheless, the agents
behavior is still guided by a plan generated at a high level of abstraction, which ensures good performance
even for complex tasks.

In particular, the presence of roles impacts on the planning activity. As already stated, roles can be
classi�ed as belonging to three di�erent levels: deliberative (telegraphist and cartographer), reactive (pilot,
sonarist and periscopist) and intermediate (navigator). Planning is carried out at the deliberative level and
produces a sequence of landmarks and routes to be covered. The navigator is responsible for �lling the gap
between each route and the physical trajectory allowing navigation in the real environment. As proved by
experiences on real robots, the percentage of plan failures increases proportionally to the level of detail of
the plans [11]. This is a consequence of the impossibility of keeping the environment dynamism and sensor
errors into account in medium and long term plans. At the deliberative level, the robot is guided instead of
being directly controlled.

The choice of supporting each role with a speci�c knowledge representation formalism encourages inde-
pendence between roles and enhances their capabilities. Di�erently from behavior-based systems, the dif-
ferent knowledge representations are related, though not strictly. Thus, the bottleneck due to continuously
integrating data is overcome, yet the actions of the di�erent roles are based on consistent information.

Message-based communication and the adoption of independent knowledge representations makes each
role an atomic unit which can be modi�ed independently of the others, assuming that the inter-role interface
is stable. Hence, roles represent robust modules to be used for system design.



4 Conclusions and tests

In this paper we presented a new architecture for mobile robot control. The architecture is characterized
by roles which correspond to the architecture modules. Our solution tries to overcome the drawbacks of the
previous architectures by providing at the same time a wide autonomy to each role and a hierarchical control

ow. We are currently implementing the architecture on a Pioneer I robotic platform; in the following we
report the results of some experimental tests.

Figure 5 shows the trajectory followed by the robot while exploring an unknown environment where
visual landmarks are present. In approaching the landmarks sighted, the robot follows trajectories shaped as

Fig. 5.: Exploration of a 27 � 27m arena with visual landmarks, represented by colored segments (the vi-
sual pattern is on the light-gray side); circles represent the positions the robot had when landmarks were
recognized

Bezier curves. In the top right area of the �gure, the robot wanders around for a while since the landmark
is too oblique to be recognized.

Figure 6 shows the trajectory followed by the robot while exploring an unknown environment where
sonar landmarks are present. As the robot moves around each landmark, its con�dence about the correct

Fig. 6.: Exploration of a 9� 9m arena with sonar landmarks, represented by their shapes; circles represent
the positions the robot had when landmarks were recognized

landmark category increases; it is remarkable that a satisfactory level of con�dence is already obtained when
only a partial view of the landmark is available to the robot.

Figure 7 shows a navigation test in which the robot was asked to plan a path to reach landmark D
starting from A; the path planned entails reaching landmarks B and C before D. Obstacle avoidance is
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Fig. 7.: Execution of a simple navigation task

based on a neural network.
Figure 8 shows the result of a simulation conducted on the map of a real environment in order to test

the error correction algorithm. Table 1 reports the average errors on the length and orientation of the routes

(a) (b)

Fig. 8.: Error correction. The real map is in light gray; the measured one (a) and the corrected one (b) in
black

before correction and after the map has been covered repeatedly. The reason why the error appears to
increase after the �rst tour is that, as already stated in Section 3.5, the �rst correction is primarily aimed
at restoring topological consistency.



error on length (%) error on orientation (rad)

before correction 6.8 0.071
after one tour 7.3 0.079
after two tours 4.9 0.049

after three tours 3.6 0.035
after four tours 2.8 0.031
after �ve tours 2.7 0.030

Table 1.: Average error on route length and orientation during exploration for the map in Figure 8
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