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Correction of Dead-Reckoning Errors in Map
Building for Mobile Robots

Matteo Golfarelli, Dario Maio, Member, IEEE, and Stefano Rizzi

Abstract—Map building is an important issue for all the applica-
tions in mobile robotics in which the environment is unknown and,
in general, in order to have a robot exhibit a fully autonomous be-
havior. A major problem in map building is due to the imprecision
of sensor measures. In this paper, we propose a technique, called
elastic correction, for correcting the dead-reckoning errors made
during the exploration of an environment by a robot capable of
identifying landmarks. Knowledge being acquired is modeled by
a relational graph whose vertices and arcs represent, respectively,
landmarks and routes. Elastic correction is based on an analogy
between the graph modeling the environment and a mechanical
structure: the map is regarded as a truss where each route is an
elastic bar and each landmark a node. Errors are corrected as a
result of the deformations induced from the forces arising within
the structure as inconsistent measures are taken. The elasticity pa-
rameters characterizing the structure are used to model the uncer-
tainty on odometry. The paper presents results from simulations
showing the effectiveness of the method for reducing the overall
metric error and proving its robustness with reference to topolog-
ical errors and to unpredictable sensor errors.

Index Terms—Error correction, mobile robotics, odometry.

I. INTRODUCTION

M OST mobile robots need a map of the environment to
successfully carry out the navigational tasks assigned to

them. In fact, a reliable map can be used by the robot to de-
termine its position and to plan a path to reach its destination
quickly and safely. Several techniques for environment repre-
sentation have been devised in the literature, including topolog-
ical maps [1], symbolic graphs labeled with metric information
[2], and analogic descriptions [3]. Though in some applications
a detailed map of the environment is given to the robota priori
[4], map building is still an important issue for all the applica-
tions in which the environment is unknown (e.g., undersea and
space exploration) and, in general, in order to have a robot ex-
hibit a fully autonomous behavior.

The problem of building an accurate map of the environment
is strictly related to that of self-positioning: on the one hand, the
robot needs to know its position in order to build a map; on the
other, it can determine its position more easily if it has a map.
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A. Self-Positioning

Two positioning techniques are typically used, namelyrela-
tive andabsolute. Relative positioning is based on odometers
which estimate the current position by determining the offset
from the initial position, computed by counting the revolutions
of the robot wheels [5]. Absolute positioning is based either
on an absolute sensor such as a GPS [6] or on the possibility
of recognizing landmarks whose position in the environment
is known; landmarks may be identified by processing data ob-
tained by sensors such as sonars, lasers, cameras, etc. [7], [8].

Problems influencing the effectiveness of these techniques in
the real world are caused by the imprecision of measurements,
which produces metric errors. In particular, odometers typically
produce bothsystematicand nonsystematicerrors: while the
former depend entirely on the characteristics of the mobile plat-
form used [9], the latter are due to undesired interactions be-
tween the robot and the environment, such as sliding of the
wheels [10]. Systematic errors can be predicted; some are de-
terministic (e.g., if the actual wheel diameter is smaller than the
nominal one, the platform will always overestimate the distance
covered), some can be modeled by a probabilistic distribution
(e.g., the encoder finite resolution causes a normally distributed
error). The latter, which we will call dead-reckoning errors, are
inherently associated to every sensor and play a significant role
in determining the global error.

B. Map Building

An autonomous robot should be capable of recognizing and
correcting the errors made while building the map of an un-
known environment. In [2], a technique which eliminates errors
by active navigation, using a landmark-based graph to represent
the environment, is proposed. In [11], a graph-like topological
map is built and knowledge-derived constraints are used to cir-
cumscribe errors. The errors in building a graph-like map are
classified as metric or topological in [12], and some techniques
to overcome them are described. The main drawback of these
approaches is that they do not take all the information previ-
ously collected into account in order to evaluate the correctness
of the new measurements being acquired.

Our approach to map building, calledelastic correction(EC),
can be applied to correct the dead-reckoning errors made by a
robot exploring an environment where landmarks are present.
The environment is modeled by a relational graph whose ver-
tices and arcs represent, respectively, the landmarks sensed and
the interlandmark routes experienced [13]. The robot calculates
the relative position of each landmark compared to the one it met
immediately before, by applying dead-reckoning; when it meets
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Fig. 1. The robot pose at stepsk andk + 1, while covering router .

a landmark it has already seen, self-positioning and error correc-
tion are achieved together by combining the new measurements
collected with the knowledge accumulated so far. The original
contribution of EC is to base error correction on an analogy be-
tween the graph modeling the environment and a mechanical
structure: the map is regarded as a truss where each route is an
elastic bar and each landmark a node. Errors are corrected as a
result of the deformations induced by the forces arising within
the structure as inconsistent measurements are taken. The elas-
ticity parameters characterizing the structure model both the un-
certainty on odometry and the measurements collected so far;
this enables the exploitation of previously collected knowledge.
Two other methods sharing this feature with EC are described
in [14] and [15], and will be analyzed in Section III-E.

The paper is organized as follows. Section II reports our as-
sumptions concerning the navigation model. Section III outlines
the necessary background on the matrix methods for structural
analysis and describes the EC algorithm. Section IV evaluates
the results obtained by simulating the behavior of a robot plat-
form mounting odometers and a magnetic compass, in particular
it proves the robustness of EC in the presence of topological er-
rors and magnetic fields.

II. THE NAVIGATION MODEL

Consider a mobile robot whose mission is to explore an
unknown environment; as a minimum requirement, the robot
mounts a couple of wheel encoders and is capable of identifying
landmarks in the environment (for instance, it mounts a sonar
array and/or a camera).

A. Self-Positioning

Let theposeof the robot at time step be expressed by its
position in a Cartesian plane, , and by
its orientation . The dead-reckoning formula determines the
pose at step as a function of the pose at stepand of
the data measured from sensors at step . In particular, if
only odometry is sensed, the moduli of the linear and angular
velocities, and , are used

(1)

where is the sampling interval of sensors (see Fig. 1). On
the other hand, if a compass is mounted, while is still
calculated as in (1), may be measured directly; thus, each

Fig. 2. Positional uncertainty in five places along a sample path.

new positional estimate is not affected by the errors made in
measuring the robot’s orientation at the previous steps.

The position of a robot calculated by dead-reckoning is af-
fected by errors due to the inherent imprecision of sensors. In
[16], an estimate of the positional uncertainty for a robot moving
along a path and calculating its current position without a com-
pass is derived. Each position calculated is associated with a
density function expressing the probability that, due to errors in
measurements, the robot is positioned in the surrounding area.
The area in which the robot may stand with non-negligible prob-
ability is an ellipse whose shape and dimensions depend on the
length and complexity of the path [17].

In the Appendix, we derive an estimate of the probability den-
sity function of the position for a robot mounting a compass.
While from a theoretical point of view every density function
could be used, previous experience [14], [18], [16] shows that
the errors can be effectively modeled using a Gaussian distribu-
tion with null mean [3]. In this case, the uncertainty on the robot
position is distributed around the position calculated at step,

, according to the following normal density function:

(2)

where is the covariance matrix calculated recursively, as
shown in (24).

Fig. 2 shows how positional uncertainty evolves while a robot
equipped with a compass is moving along a path.

B. Map Building

The map built by the robot is structured as a nondirected graph
. Each vertex represents a landmark sensed

and is labeled with its estimated position, . Arc
represents the route connectingand and is labeled

with the number of times the route has been covered so far,,
and with a covariance matrix expressing the uncertainty
on . We will denote by
(route orientation, ) the absolute orientation of
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the segment connecting to , and by (route stretch) the
Euclidean distance between and .

The very first landmark met within the environment is as-
sumed to be in position . Every time the robot covers
route to reach from , a new estimate for the position of

is calculated by dead-reckoning, starting from the position
estimated for (see Fig. 1). The covariance matrix expressing
the uncertainty on the new estimate is determined as shown in
the Appendix; its value depends on the length and the winding
of the route covered. Finally, is calculated as the average of
the covariance matrices determined so far.

Apparently, this approach to map building requires the robot
to be capable of recognizing exactly the landmarks it has already
met. Depending on the nature of landmarks, recognizing them
univocally may be unfeasible; most probably, the robot will only
be capable of distinguishing between a limited number of land-
mark categories. On the other hand, the estimate of positional
uncertainty we associate to each pose may have a determinant
role in achieving univocal identification of landmarks. When the
robot reaches a landmark, it searches its map to see if it has
already met a landmark of the same category whose current po-
sitional estimate in falls within the area where the robot esti-
mates to be with non-negligible probability; as shown in Sec-
tion II-A, this area is an ellipse centered in the position estimated
for . If a matching landmark is found, thenis recognized;
otherwise, it is assumed to be a new landmark. Throughout the
next section, we will assume that perfect landmark identifica-
tion is achieved. Of course, if two or more nondistinguishable
landmarks were very close to each other, they would be erro-
neously recognized as a single landmark; in Section IV-B we
will discuss the robustness of EC with reference to these topo-
logical errors.

III. ELASTIC CORRECTION

Elastic correction is applied in two different ways when
a route is covered for the first time (first-sight correction)
and when it is covered again (refinement correction). After
introducing the necessary background on structural analysis
in Section III-A, in Section III-B we define the mathematical
model underlying our approach; in Sections III-C and III-D
we describe, respectively, first-sight and refinement correction.
In Section III-E we draw a comparison between EC and the
techniques proposed in [14] and [15].

A. Background on Matrix Methods for Structural Analysis

Let an elastic structure which can be modeled as an as-
semblage of members connected at node points be given. The
problem of determining the displacements of the nodes when
one or more of them are loaded with a force can be solved by
applying thestiffness method[19].

Let be the number of nodes in an elastic bidimensional
structure; the relationships linking the displacements of the
nodes to the forces applied to them are expressed in matrix
form by thestiffness equation

(3)

Fig. 3. Truss basic element, including a linear elastic spring (in black) and a
rotational elastic spring (in gray).

where

are, respectively, the column matrix of- and -components of
the nodal forces and of the nodal displacements;is a sym-
metric square matrix with rank (stiffness matrix), whose el-
ements are the stiffness coefficients of the structure.

The structures we are interested in analyzing are pin-jointed
trusses whose elements can be modeled by combining a linear
elastic spring and a rotational elastic spring, as shown in Fig. 3.
As reported in [19], the stiffness matrix associated to a single
truss element of lengthand directed along the axis is

(4)

where and are, respectively, the spring constants for the
linear and the rotational springs. In the general case in which the
truss element forms an anglewith the axis, its stiffness ma-
trix can be obtained from the stiffness matrixof an element
with the same spring constants but directed along theaxis, by
rotating by . The stiffness matrix for a complex structure is
calculated by superimposing the stiffness matrices of the single
elements belonging to the structure. Each member matrix is ex-
panded to the order of the total structure matrix; this is done by
adding columns and rows of zeros for the nodal displacements
which are irrelevant for the member in question. The expanded
member matrices are then summed together.

Node is said to beconstrainedif its displacement is
known and assigneda priori, freeotherwise; a constrained node
for which is said to behinged. In order to solve the stiff-
ness equation, the n nodes are partitioned into two setsand
which include, respectively, the free and the constrained nodes.
The relationship between displacements and forces can thus be
rewritten as

(5)

where and represent, respectively, the loads applied to the
free nodes and the reactions in the constrained nodes. Unknown
nodal displacements are obtained by inverting and solving
a linear system with degree twice the number of free nodes

(6)
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Fig. 4. Graph-based representation of an environment (top) and equivalent
truss (bottom).

Unknown reactions are calculated by substituting (6) into (5)

(7)

Further details on the stiffness method can be found in [19].

B. Environment Modeling

Elastic correction is based on the analogy between the
environment map and a pin-jointed truss whose elements
and nodes represent, respectively, routes and landmarks (see
Fig. 4); the parameters defining the stiffness of each element
when loaded sum up the characteristics of the corresponding
route. The more elastic an element, the greater the change in
length and orientation that it will experience when loaded; thus,
stiffness should be proportional to the certainty on the stretch
and orientation of the corresponding route.

An element representing a routewith stretch and orienta-
tion may be thought of as a bar long, oriented according to

and behaving as follows.

• It can be compressed elastically along its axis to model
uncertainty on the route stretch.

• It can neither be bent nor twisted.
• It can rotate elastically to model uncertainty on the route

orientation.
A bar with these characteristics can be modeled by combining
a linear axial spring and a rotational spring (see Fig. 3) whose
spring constants and must be defined in function of the
positional uncertainty of the robot.

For simplicity, we consider a bar representing a routeori-
ented along the axis ( ). Since expresses an axial
deformation along , it is reasonable to define it in terms of the
average error made by the robot in determining thecoor-
dinate of the other end of, i.e., the average error made on the
stretch of : , where

(8)

and is the density function as defined in (2), is the covari-
ance matrix associated to, and is its upper-left element.

(a)

(b)

Fig. 5. Equivalence between (a) an element including a rotational spring and
(b) one including a linear spring. The triangular symbol denotes a hinged node.

Similarly, it is possible to calculate the average errormade
by the robot in determining the coordinate of the other end
of . Unfortunately, does not express an axial deformation
along ; in order to associate to , it is necessary to de-
termine the spring constant of a linear spring, which under
certain conditions may be equivalent to the rotational one. When
the robot goes from landmark to landmark , it evaluates the
positional uncertainty for by assuming that the position esti-
mated for is correct. Within our mechanical analogy, this cor-
responds to considering the structure shown in Fig. 5(a), ruled
by the following equation:

(9)

where is the length of the element. This structure is equivalent
to that shown in Fig. 5(b), ruled by

(10)

if and only if . Thus, consistently with what occurred
for the axis, we may assume , where

(11)

and is the lower-right element of .
The certainty on the stretch and orientation ofalso depends

on the number of times has been covered; in fact, the higher
, the higher the amount of data concerningcollected. Thus,

from (4) and (11), the stiffness matrix for a bar representing a
route oriented along the axis turns out to be

(12)
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(a)

(b)

Fig. 6. Error correction on (a) open and (b) closed polygons.

where is a proportionality constant which we will assume
equal to 1.

The stiffness matrix for a bar representing a routeoriented
along direction is obtained as follows.

1) by rotating by the covariance matrix ;
2) by calculating and by (8) and (11);
3) by building the stiffness matrix by (12);
4) by rotating by .
Once the stiffness matrices for all the routes experienced have

been determined, the stiffness matrix for the whole structure is
assembled as described in Section III-A.

C. First-Sight Correction

Suppose the robot is exploring an unknown area starting
from a known landmark . It meets the unknown landmarks

by covering a sequence of unknown routes, and
finally reaches a landmark which it has already met. When

is reached, the new positional estimate computed by
dead-reckoning may be compared to the previous one; due
to sensor errors, the two estimates will certainly differ. Let

(13)

If has been met before , the segments orderly connecting
to form an open polygon [see Fig. 6(a)]. Otherwise, the

segments orderly connecting to form a closed polygon
[see Fig. 6(b)]. The graph representing the environment should
be metrically consistent at each time during exploration, hence,
the two positional estimates for must be forced to exactly
agree; we assume the error on the stretch of each route to be
proportional to the positional uncertainty induced by that route.

For closed polygons, according to the mechanical model
described in Section III-B, should be hinged and a dis-
placement should be applied to ; thus, the constrained
nodes are . This displacement moves on
restoring the metric consistency of the graph; the displacements

calculated for the free nodes ( )

determine the new positions for the landmarks and the new
stretches and orientations for the routes in the polygon. Since
no external loads are applied, the unknown nodal displacements
may be calculated by (6) with

(14)

where .
While for closed polygons this approach is correct since

metric inconsistency is only due to the errors made by the
robot while covering the path starting and ending in, and
correction affects the corresponding set of routes, the same is
not true for open polygons. In fact, for example, in Fig. 6(a)
the path could be mostly correct while the
positional inconsistency could derive mainly from the path

. Taking also the errors made outside the
polygon into account implies considering a surrounding area
determined by the set of routes connecting thelandmarks
nearest to . The structure we define to model the problem
includes all the landmarks belonging to this area; among these,
the landmarks lying on the external border are hinged. Let
and be the sets of free and constrained nodes, respectively.

Restoring metric consistency requires both and (be-
longing to ) to be moved to the same position . In order to
accomplish this, an infinite number of couples of forcesand

, to be applied respectively to and , could be used. All
these couples satisfy the following linear system:

(15)

where , , and is a
matrix obtained from assuming that the only forces applied
to the truss are and . Within this infinite set, we choose the
couple and with minimum magnitude, which produces the
minimum truss deformation.

The problem of determining and can be formulated as
a constrained optimization problem where the function to be
minimized is while the constraint is expressed by (15).
This problem can be solved using the Lagrangian method [20]

(16)

determining the linear system

(17)

that admits an analytic solution.
Fig. 7 shows the error made by the robot while covering an

open polygon, how the inconsistency is solved and the corre-
sponding forces. In general, the two forces have both different
magnitudes and different directions, due to the truss structure
which induces different constraints on and .

D. Refinement Correction

Every time the robot covers a route it has already covered,
it can exploit the new information acquired to improve the cur-
rent estimate of the stretch and orientation ofand, thus, that
of the positions of its end landmarksand . Reasonably, the
estimates for should be equal, at each time, to the average
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(a) (b) (c)

Fig. 7. Open polygon correction on a rectangular mesh. Crosses represent the true positions of vertices. (a) The measured path (in gray) and the measured graph
(in black). (b) The forces applied to solve the polygon. (c) The corrected graph.

of the data measured so far. Let and be the current esti-
mates for the stretch and orientation, andand be the new
values measured. The new estimates are calculated as

if

if

if .

(18)

The desired displacements forand are calculated by imag-
ining rotating around its midpoint in order to let it assume
the new stretch and orientation

(19)

This solution, however, is not satisfactory since it does not
take into account all the knowledge of the environment collected
so far. Using global knowledge to correct the error on a single
route is essential when the certainty on the routes is not evenly
distributed. In fact, if the certainty on the last route experienced
is low and comparable to that on the other routes, overall de-
formation should be significantly determined by the new mea-
surement acquired. On the other hand, if the certainty on the
other routes is much higher, the new measurement taken should
only weakly affect the graph, which is mainly determined by the
other routes.

Another issue arising when correcting the error on a route is
how metric consistency for the graph representing the environ-
ment is maintained. In fact, correcting the stretch and orienta-
tion of implies modifying the stretches and orientations of
the adjacent routes. Nevertheless, putting all the correction on
the adjacent routes does not appear to be sound.

The mechanical model defined in Section III-B allows both
issues to be dealt with. Let be the graph representing the
environment, and be the last route experienced. Our
approach consists of the following two phases.

Fig. 8. Reference structure for calculating the forces to be applied.

1) Let , be the sets of routes (not including) en-
tering landmarks and , respectively. In the first phase,
the forces producing the desired displacementsand
on the ends of are calculated on a reference structure
including and the two routes, and , that have
maximum stiffness within and , respectively;
both and are hinged in the vertex not shared with

(see Fig. 8). Since all the nodes are constrained, (7)
with is used to calculate forces

(20)

where .
2) Let be the set of the landmarks nearest to the mid-

point of . In the second phase, the forces previously cal-
culated for and , and , are applied to the same
two vertices, but within a larger structure consisting of
the set of routes which includes and all the other
routes involving at least one landmark in . All the ver-
tices in are hinged;
those in are free. If turns out to be empty (i.e.,
less than landmarks have been visited so far), at least
one landmark must be hinged in order to avoid rigid rota-
tions of the whole structure; the most distant landmark is
chosen. Finally, (6) with is used to calculate the
unknown displacements

(21)

where .
In a few words, our approach heuristically restricts refinement

correction to a local area, containinglandmarks, around the
reobserved route . Choosing a value for the number of free
nodes in the structure entails determining an upper bound on
the computational complexity of each correction; conversely,
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the lower is, the less effective error correction is. In the tests
shown in Section IV we used .

E. Related Literature

Among the error correction techniques in the literature, those
proposed in [15], [14], and [21] (which we will call, respec-
tively, TH, ML, and HE) share with EC the capability of taking
all previously collected measurements into account and, at the
same time, that of using locally acquired knowledge to improve
positional estimates in the rest of the map.

In TH, the map building problem is formulated as a
constrained, probabilistic maximum-likelihood estimation
problem. Anexpectation stepand amaximization stepare al-
ternated. In the first, the current best map and the data collected
so far are used to compute a probabilistic estimate for the robot
position, while in the second the robot computes the most likely
map based on the probabilities computed in the expectation
step. While drawing a formal comparison between EC and TH
is very difficult, it is worth discussing some similarities and
differences. The hypotheses made about landmark recognition
and error modeling are substantially equivalent. While in EC
metric knowledge and uncertainty are condensed, respectively,
in the geometric and mechanical characteristics of the truss,
TH maintains a discrete grid storing probability of having a
landmark in each map position. Thus, in EC the complexity
is lower since it is proportional to the number of landmarks,
while in TH it depends on the grid size. Finally, when a new
observation takes place, the positions of the other landmarks
change, in EC, due to the forces propagated across the structure,
and in TH, by propagating backward in time the positional
uncertainty.

ML shares with EC the idea of posing constraints between
couples of nodes; in particular, it operates on a graph-based rep-
resentation of the poses assumed by the robot during naviga-
tion. The graph metrics is estimated by minimizing anenergy
function whose definition is based on the relationships (con-
straints) between couples of poses. As a matter of fact, solving
the stiffness equation (3) in EC can be seen as minimizing a dif-
ferent energy function, namely the elastic energy of the truss.
Besides, due to the sensor model adopted in ML, two types of
constraints are considered: those determined by odometry (weak
constraints) and those determined by matching two range scans
of the same object (strong constraints). The sensor model we as-
sumed in EC entails, besides the constraints on odometry (mod-
eled as in ML), the constraints arising from landmark recogni-
tion. A quantitative comparison between EC and ML is drawn
in Section IV-A.

Both EC and ML can be classified as relation-based ap-
proaches meaning that the map uncertainty is expressed by
uncertain relationships between objects; on the other hand,
also location-based approaches have been widely investigated.
In particular, in HE the locations of objects and of the robot
are considered as state variables, and the object variance/co-
variance matrices are represented as state information fusing
multiple observations by means of an extended Kalman filter.
The authors emphasize that, in order to avoid the uncertainty
to be underestimated, correlation between objects must be

maintained and propagated during exploration. This task is very
hard in HE, since covariance matrices for object poses must be
explicitly updated. On the contrary, EC does not require the
update to the covariance matrices to be propagated since the
uncertainty on the object poses is not explicitly represented but
is derived by “composing” the route uncertainties.

The other correction methods proposed in the literature can
hardly be quantitatively compared with EC, since they are
either based on assumptions and sensory equipment radically
different from ours [12] or were devised within a different
framework [22]. For example, in [23], the authors present an al-
gorithm based on an adaptive place network (APN) containing
both metric and topological information about the structure
of the environment. The APN uses no landmarks to represent
the objects in the environment; it is instead made up of place
units, each corresponding to a region of Cartesian space, and
place links, representing the relationship between adjacent
place units. Corrections are local to the last covered route and
consist in a change of the link confidence; while calculating the
new confidence value, the algorithm does not take any kind of
information about the surrounding routes into account. In [24],
the authors propose a technique to learn metric information
about the environment, which requiresa priori topological
knowledge of the environment.

IV. EXPERIMENTAL RESULTS

We have extensively tested EC in simulation in order to eval-
uate its effectiveness and robustness. The sensorial model on
which most tests are based was derived by a Pioneer I robot,
which mounts a fluxgate compass. In particular, the sensory co-
variance matrix was measured experimentally; the (absolute)
average odometric and compass errors turned out to be, respec-
tively, 5% of the distance measured and 0.03 rad. The covariance
matrix adopted for each route was then obtained as shown in
(24).

We estimate the error on the map metric by two measure-
ments: the average percentage error on the stretch of the routes

(where and are, respectively, the true and the estimated
values for the stretch of and is the number of routes in the
map) and the average error on the orientation of the routes

A. Effectiveness

Fig. 9 shows the result of first-sight correction on a square-
meshed map including 100 landmarks and 180 routes; in order
to emphasize the effects of correction, higher sensor errors were
simulated (9% average odometric error, 0.09 rad compass er-
rors). This phase is primarily aimed at eliminating the metric
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Fig. 9. First-sight correction. The measured (inconsistent) map is gray, the
corrected one is black.

inconsistencies due to sensor errors; the resulting map is consis-
tent but still affected by a significant error:drops from 9.5%
to 7.9%, from 0.098 to 0.078 rad.

The other tests described in this section were made on an ir-
regular heterogeneous map which simulates a real-world envi-
ronment (190 landmarks, 445 routes). Fig. 10 shows the result
of EC when the map is toured several times; it is remarkable that

and are already reduced by half after four complete tours of
the map.

In order to prove the effectiveness of our technique, we com-
pared it with ML, the sensory models being equal. The assump-
tions on odometry are the same, thus the constraints on odom-
etry in our adaptation of ML were formulated as in [14]. Our
sensory model does not include laser scans, but assumes that
the robot can determine exactly the relative landmark positions;
hence, in our adaptation of ML, strong links are never formu-
lated on couples of unrelated poses, but only on couples of dif-
ferent poses for the same landmark. We performed the tests on
the map in Fig. 10 and averaged the errors on ten trials; Fig. 11
reports the average error and the standard deviation computed
on all the routes. It clearly appears how, on adopting EC, the
average errors on route stretch and orientation are significantly
decreased as the map is repeatedly toured. On the contrary, after
ten tours, the average errors on adopting ML are not signif-
icantly reduced; when few strong links are present (first 2–3
tours), ML does not succeed in effectively counterbalancing the
cumulated odometric errors. This result can be interpreted by
arguing that, under our sensory model, energy formulation in
EC is more effective than in ML.

Both error measurements used so far are referred to routes,
that is, to the relative positioning of landmarks, which we be-
lieve to be the most relevant issue from the point of view of plan-
ning and executing navigational tasks. Nevertheless, we also
considered the absolute positioning of landmarks; Fig. 12 shows
how the average error on the landmark positions, as compared

Fig. 10. Correction after 1 tour (top) and after 10 tours (bottom). The true
maps are gray, the corrected ones are black.

to the one measured before correction, reduces to 50% after the
first two tours.

B. Robustness

In order to evaluate the robustness of EC, we take into account
two kinds of problems which commonly occur in real-world
environments: topological errors and magnetic fields.

EC takes only metric errors into account. Unfortunately, the
map building process may be heavily affected by topological
errors. Due to their relevance several works discuss this issue
(for instance, see [15]). Although extending EC in order to cor-
rect topological errors is beyond the scope of this paper, we
conducted some tests aimed at showing how robust EC is to
them. Within our graph-based framework, topological errors
arise when the following occurs.

1) The robot misses a known or unknown landmark. The
topological consistency of the map decreases since a
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(a)

(b)

Fig. 11. Errors on (a) route stretch and (b) orientation in function of the number
of exploration tours for EC and ML.

Fig. 12. Absolute landmark positioning error.

“dummy” route is created. The effectiveness of EC is
reduced due to the higher positional uncertainty.

2) The robot mistakes a known or unknown landmark for a
different known one. EC is applied starting from wrong
premises.

3) The robot mistakes a known or unknown landmark for
an unknown one. The topological consistency decreases
since a dummy route and a dummy landmark are created;
EC is not applied.

We will not consider case 3 since it does not affect metric con-
sistency.

As to errors of type 1, their frequencydoes not have any
significant impact on the effectiveness of EC. In fact, even if

Fig. 13. Errors on route stretch and orientation in presence of topological error.

Fig. 14. Errors on route stretch and orientation in presence and in absence of
metallic objects.

several dummy routes are created, metric consistency is not rel-
evantly affected. For the map in Fig. 10, ifincreases from 0
to 0.2, increases from 2.7% to 2.9% whilekeeps constant at
0.021.

Fig. 13 shows how metric errors are corrected for different
frequencies of type-2 errors. The negative impact of topolog-
ical errors on metric consistency is reduced by EC since all the
topological relationships between the mistaken landmark and
the neighboring ones are considered, constraining map defor-
mation.

We close this section by discussing the robustness of EC with
reference to magnetic fields induced by big metallic objects
(heaters, cabinets, etc.), which may significantly alter the com-
pass readings within a few meters range. We modeled the mag-
netic field induced by each object as a set of adjacent dipoles;
the resulting field is calculated by composing it with the ter-
restrial magnetic field. The average error induced by a metallic
object on compass readings is 0.194, 0.468, and 0.661 rad when
the robot is placed, respectively, within 10, 5, and 3 m from it.
Fig. 14 compares the effects of EC in the presence and in the
absence of metallic objects for the map in Fig. 15 (187 land-
marks, 327 routes). Though first-sight correction increases both
stretch and orientation errors while restoring metric consistency,
refinement correction is still capable of substantially reducing
their magnitude. As in the case of topological errors, valid data
successfully constrain the deformations due to wrong measures.
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Fig. 15. Correction after five tours. The true map is gray, the corrected one is black; black squares represent metallic objects.

V. CONCLUSION

In this paper, we have presented a technique for correcting
sensory errors during a map building process carried out by a
mobile robot. The results of experimental tests confirm the ef-
fectiveness of the EC technique in reducing the global metric
error and prove its robustness with reference to topological er-
rors and to external magnetic fields. EC works independently of
the specific sensors used for dead-reckoning: in fact, it can be
used by a robot mounting a compass as well as by a robot using
only odometers. Of course, since in the first case the robot’s po-
sitional uncertainty is lower, the residual error after EC will be
significantly smaller.

EC is suitable for real-world applications since its computa-
tional complexity is essentially due to the inversion of the stiff-
ness matrix, i.e., where is the number of free nodes in
the structure. For instance, for the map in Fig. 10, each correc-
tion takes approximately 20 ms on a Pentium 333-MHz archi-
tecture.

APPENDIX

In this section, we derive a formula for calculating the posi-
tional uncertainty of a robot mounting a compass. Let the sen-
sory data be expressed by , where is the linear
velocity and is the robot orientation. We denote with and

, respectively, the true and the calculated positions at step;
we denote with and , respectively, the true and
the measured sensory data at step . Let

where expresses the noise on sensors. In a conven-
tional dead-reckoning method, may be assumed to be
distributed normally with zero mean and covariance matrix.

Within the dead-reckoning model for a robot mounting a
compass, the position at step is expressed in terms of the
position and the sensory measures at stepas follows:

(22)

The true position at step may be expressed by adding a sto-
chastic variable to the calculated position

where . By applying (22) to and
and by considering a modeling error distributed nor-

mally with null mean value and covariance matrix, we find

which can be linearized in point

(23)

where and are the Jacobian matrices ofin and
, respectively:
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From the results above, we obtain for the following
recursive expression:

The normally distributed stochastic variable ex-
presses the positional error accumulated so far; the associated
covariance matrix can be calculated recursively as

(24)
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