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Correction of Dead-Reckoning Errors in Map
Building for Mobile Robots

Matteo Golfarelli, Dario Maip Member, IEEEand Stefano Rizzi

Abstract—Map building is an importantissue for all the applica- A. Self-Positioning

tions in mobile robotics in which the environment is unknown and, T itioning techni tvoicall d I
in general, in order to have a robot exhibit a fully autonomous be- Wo positioning techniques are typically used, nanrefg-

havior. A major problem in map building is due to the imprecision ~ tive and absolute Relative positioning is based on odometers
of sensor measures. In this paper, we propose a technique, calledwhich estimate the current position by determining the offset
elastic correction, for correcting the dead-reckoning errors made from the initial position, computed by counting the revolutions
during the exploration of an environment by a robot capable of of the robot wheels [5]. Absolute positioning is based either

identifying landmarks. Knowledge being acquired is modeled by -
a relational graph whose vertices and arcs represent, respectively, on an absolute sensor such as a GPS [6] or on the possibility

landmarks and routes. Elastic correction is based on an analogy Of recognizing landmarks whose position in the environment
between the graph modeling the environment and a mechanical is known; landmarks may be identified by processing data ob-

structure: the map is regarded as a truss where each route is an tained by sensors such as sonars, lasers, cameras, etc. [7], [8].
elastic bar and each landmark a node. Errors are corrected as a Problems influencing the effectiveness of these techniques in

result of the deformations induced from the forces arising within th | Id d by the i - f t
the structure as inconsistent measures are taken. The elasticity pa- € real world are caused by the Imprecision ot measurements,

rameters characterizing the structure are used to model the uncer- Which produces metric errors. In particular, odometers typically
tainty on odometry. The paper presents results from simulations produce bothsystematicand nonsystemati@rrors: while the

showing the effectiveness of the method for reducing the overall former depend entirely on the characteristics of the mobile plat-
metric error and proving its robustness with reference to topolog- - foym ysed [9], the latter are due to undesired interactions be-
ical errors and to unpredictable sensor errors. tween the robot and the environment, such as sliding of the
Index Terms—Error correction, mobile robotics, odometry. wheels [10]. Systematic errors can be predicted; some are de-
terministic (e.qg., if the actual wheel diameter is smaller than the
nominal one, the platform will always overestimate the distance
_ ) covered), some can be modeled by a probabilistic distribution
OST mobile robots need a map of the environment {@ g the encoder finite resolution causes a normally distributed
successfully carry out the navigational tasks assigneddfor). The latter, which we will call dead-reckoning errors, are

them. In fact, a reliable map can be used by the robot t0 dgnerently associated to every sensor and play a significant role
termine its position and to plan a path to reach its destinatigngetermining the global error.

quickly and safely. Several techniques for environment repre-

sentation have been devised in the literature, including topoldag- Map Building
ical maps [1], s_ymbollc_gr_aphs labeled W'th metric mfor_mat_lon An autonomous robot should be capable of recognizing and
[2], and analogic descriptions [3]. Though in some applications

a detailed map of the environment is given to the rabptiori correcting the errors made while building the map of an un-
e . ; . _known environment. In [2], a technique which eliminates errors
[4], map building is still an important issue for all the appllcab& active navigation, using a landmark-based graph to represent

tions in which the environment is unknown (e.g., undersea apd, environment, is proposed. In [11], a graph-like topological

space exploration) and, in gen_eral, in order to have a robot erﬁ(ép is built and knowledge-derived constraints are used to cir-
hibit a fully autonomous behavior.

The problem of building an accurate man of the en 'ronme%?mscribe errors. The errors in building a graph-like map are
P urding u P VI classified as metric or topological in [12], and some techniques

is strictly related to that of self-positioning: on the one hand, tf}g overcome them are described. The main drawback of these

robot r]eeds to "”OV.V |ts' posﬂpn in order to pu”q amap, on thaepproaches is that they do not take all the information previ-
other, it can determine its position more easily if it has a map,

. INTRODUCTION

usly collected into account in order to evaluate the correctness
of the new measurements being acquired.
Our approach to map building, callethstic correction(EC),
can be applied to correct the dead-reckoning errors made by a
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Fig. 1. The robot pose at stepsandk + 1, while covering route'; ;.

alandmark it has already seen, self-positioning and error correc-
tion are achieved together by combining the new measurements
coIIe<_:ted_ with the I_(nOWIGdge accumUIate_d so far. The Orlglnﬂb_ 2. Positional uncertainty in five places along a sample path.
contribution of EC is to base error correction on an analogy be-

tween the graph modeling the environment and a mechanical " _ ) .
structure: the map is regarded as a truss where each route (98 Positional estimate is not affected by the errors made in

elastic bar and each landmark a node. Errors are corrected J3gsuring the robot's orientation at the previous steps.
result of the deformations induced by the forces arising within The position of a robot cglculated.by dee_ld_-reckonmg Is af-
the structure as inconsistent measurements are taken. The &€d Py errors due to the inherent imprecision of sensors. In
ticity parameters characterizing the structure model both the U] @n estimate of the positional uncertainty for arobot moving
certainty on odometry and the measurements collected so 4PN @ path and calculating its current position without a com-
this enables the exploitation of previously collected knowledgB2SS IS derived. Each position calculated is associated with a

Two other methods sharing this feature with EC are describganSity function expressing the probability that, due to errors in
in [14] and [15], and will be analyzed in Section III-E. measurements, the robot is positioned in the surrounding area.

The paper is organized as follows. Section Il reports our aki€ @reéain which the robot may stand with non-negligible prob-

sumptions concerning the navigation model. Section I11 outlin@211tY is an ellipse whose shape and dimensions depend on the
the necessary background on the matrix methods for structdfg]9th and complexity of the path [17]. .
analysis and describes the EC algorithm. Section IV evaluated” (€ Appendix, we derive an estimate of the probability den-
the results obtained by simulating the behavior of a robot plasc'-ty_ function of the p.osmon.for a rpbot mounting a compass.
form mounting odometers and a magnetic compass, in partichgp'le from a theoretical point of view every density function

it proves the robustness of EC in the presence of topological §pUId be used, previous experience [14], [18], [16] shows that
rors and magnetic fields. the errors can be effectively modeled using a Gaussian distribu-

tion with null mean [3]. In this case, the uncertainty on the robot
position is distributed around the position calculated at &tep
p™®, according to the following normal density function:
Consider a mobile robot whose mission is to explore an

Il. THE NAVIGATION MODEL

unknown environment; as a minimum requirement, the robot §(z, y, C) = 1
mounts a couple of wheel encoders and is capable of identifying 2r|CR)|(1/2)
landmarks in the environment (for instance, it mounts a sonar e _l[x ) _ (k)]
array and/or a camera). *P y—u

— 2

By—1 | L — &
A. Self-Positioning ) (C( )) {y_ y(k)} ) )
Let theposeof the robot at time step be expressed by its . . _ _

position in a Cartesian plang™ = [z*) 4®)]7 and by whereC*) is the covariance matrix calculated recursively, as

its orientationy*). The dead-reckoning formula determines th&hown in (24).

pose at stefs + 1 as a function of the pose at stépand of Fig. 2 shows how positional uncertainty evolves while a robot
the data measured from sensors at gtep 1. In particular, if €duipped with a compass is moving along a path.

only odometry is sensed, the moduli of the linear and angular

velocities,w**+1) andv*+1), are used B. Map Building
() g5 * The map built by the robot is structured as a nondirected graph
p+D) — x(k) + w(k+1) cos ‘P(k) M = (V, R). Each vertex; € V represents alandmark sensed
Y+ Tw Sl @ and is labeled with its estimated positign,= [x; ;]*. Arc
@) = k) oy (RHD) (1) 7y € Rrepresents the route connectingandv; and is labeled

with the number of times the route has been covered se;far,
where " is the sampling interval of sensors (see Fig. 1). Cand with a covariance matri&;; expressing the uncertainty
the other hand, if a compass is mounted, wipfé*?) is still  onr;;. We will denote byd,;; = arctan(y; — v;)/(x; — ;)
calculated as in (1);**+1) may be measured directly; thus, eackroute orientation 0 < ¥;; < m) the absolute orientation of
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the segment connecting to v;, and bys;; (route stretch the Siyttry Jayltay

Euclidean distance betwegn andp;. ¢ 3 ﬁ‘
The very first landmark met within the environment is as- foi /,\\ fro

sumed to be in positiop, = 0. Every time the robot covers et = O ku@ O —>Jorltzs

router;; to reachy; from v;, a new estimate for the position of ! 2

v; is calculated by dead-reckoning, starting from the positiafig. 3. Truss basic element, including a linear elastic spring (in black) and a

estimated fow; (see Fig. 1). The covariance matrix expressingtational elastic spring (in gray).

the uncertainty on the new estimate is determined as shown in

the Appendix; its value depends on the length and the windingere

of the route covered. Finally;;; is calculated as the average of fia

Uiy

thet;; covariance matrices determined so far. £, fiy u u;
Apparently, this approach to map building requires therobot ¢— |...| = | ... u=|---| = ..
to be capable of recognizing exactly the landmarks it has already £, fra u, U
met. Depending on the nature of landmarks, recognizing them Fr Upy

univocally may be unfeasible; most probably, the robot will only ) )

be capable of distinguishing between a limited number of lan@l& respectively, the column matrixof andy-components of
mark categories. On the other hand, the estimate of positioH Nodal forces and of the nodal displacemektsis a sym-
uncertainty we associate to each pose may have a determifBREric square matrix with rarkn (stiffness matrix whose el-

role in achieving univocal identification of landmarks. When theMents are the stiffness coefficients of the structure.
robot reaches a landmarkit searches its map1 to see if it has The structures we are interested in analyzing are p|n-10|r_1ted
already met a landmark of the same category whose current f§SS€s whose elements can be modeled by combining a linear
sitional estimate inv falls within the area where the robot esti-lastic spring and a rotational elastic spring, as shown in Fig. 3.
matesv to be with non-negligible probability; as shown in Sec/S reported in [19], the stiffness mati associated to a single
tion II-A, this area is an ellipse centered in the position estimat&4Ss €lement of lengthand directed along the axis is

for ». If @ matching landmark is found, thenis recognized, k., 0 -k, O

otherwise, it is assumed to be a new landmark. Throughout the k, k,

next section, we will assume that perfect landmark identifica- K 0 = T2 4
tion is achieved. Of course, if two or more nondistinguishable <k, 0 k. 0 “)
landmarks were very close to each other, they would be erro- k, k,

neously recognized as a single landmark; in Section IV-B we 0 T2 52

will discuss the robustness of EC with reference to these to

. Rﬁﬁereka andk, are, respectively, the spring constants for the
logical errors.

linear and the rotational springs. In the general case in which the
truss element forms an angtewith the z axis, its stiffness ma-
[ll. ELASTIC CORRECTION trix can be obtained from the stiffness matkx of an element
with the same spring constants but directed along:tagis, by
. . - . ) '?otatingK by 9. The stiffness matrix for a complex structure is
a route is _co_vered for the flrst_tlmef|r(st-5|ght c_orrectlm) calculated by superimposing the stiffness matrices of the single
_and wh<_en it is covered againie(inement correction After elements belonging to the structure. Each member matrix is ex-
!ntrodu<_:|ng the necessary background_ on structural an_alyggnded to the order of the total structure matrix; this is done by
in Section 1lI-A, in Section 11I-B we define the mathematical dding columns and rows of zeros for the nodal displacements

model ur}derlymg our appfoach? n SeCt'o.nS l-C and “l'. hich are irrelevant for the member in question. The expanded
we describe, respectively, first-sight and refinement correction. \ber matrices are then summed together

In Se_ctlon I-E we dr_aw a comparison between EC and the Node is said to beconstrainedif its displacementu; is
techniques proposed in [14] and [15].

Elastic correction is applied in two different ways whe

known and assignealpriori, freeotherwise; a constrained node
for whichu; = 0 is said to beéhinged In order to solve the stiff-
A. Background on Matrix Methods for Structural Analysis  ess equation, the n nodes are partitioned into twocsatsd 3
Let an elastic structure which can be modeled as an a#dich include, respectively, the free and the constrained nodes.
semblage of members connected at node points be given. Tie relationship between displacements and forces can thus be
problem of determining the displacements of the nodes whegwritten as
one or more of them are loaded with a force can be solved by £, K., K.s
applying thestiffness methofl9]. _ o _ |:f8:| = [K,aa KWJ [
Let » be the number of nodes in an elastic bidimensional
structure; the relationships linking the displacements of thf¢heref, andf; represent, respectively, the loads applied to the

nodes to the forces applied to them are expressed in maff&e nodes and the reactions in the constrained nodes. Unknown
form by thestiffness equation nodal displacements are obtained by inverfiig, and solving
a linear system with degree twice the number of free nodes

o] 5)

11’@

f=Ku 3) u, =K} (fo — Kapug). (6)
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landmarks "+ routes

(b)

. 5. Equivalence between (a) an element including a rotational spring and

. . . - Fi
Fig. 4. ' Graph-based representation of an environment (top) and equival one including a linear spring. The triangular symbol denotes a hinged node.

truss (bottom).

Similarly, itis possible to calculate the average etkgrmade
y the robot in determining thg coordinate of the other end
of ». Unfortunately,k, does not express an axial deformation
alongy; in order to associaté, to Ay, it is necessary to de-
Further details on the stiffness method can be found in [1g{e"Mine the spring constakt of a linear spring, which under
certain conditions may be equivalent to the rotational one. When
B. Environment Modeling the robot goes from landmatk to landmark,, it evaluates the

. L ositional uncertainty for, by assuming that the position esti-
Elastic correction is based on the analogy between t y 0% DY 9 P

! S ted fory; is correct. Within our mechanical analogy, this cor-
environment mapM and a pin-jointed truss whose element%e?S
t

Unknown reactions are calculated by substituting (6) into (5)b

f5 = Kgo K A — (KoK Kos — Kgplug.  (7)

. onds to considering the structure shown in Fig. 5(a), ruled
and nodes represent, respectively, routes and landmarks %

. o . e following equation:
Fig. 4); the parameters defining the stiffness of each eleme geq
when loaded sum up the characteristics of the corresponding For = ke )
route. The more elastic an element, the greater the change in = 2y
Ie_ngth and orientation that 'F will experience V\_/hen loaded, thu\%ﬁeres is the length of the element. This structure is equivalent
stiffness should be proportional to the certainty on the stretg o

. : . 0 that shown in Fig. 5(b), ruled by

and orientation of the corresponding route.

An element representing a routevith stretchs and orienta- — 10
. . . f2y - ru2y ( )
tion ¥ may be thought of as a bar losgoriented according to
¥ and behaving as follows. if and only if k,. = s?k’.. Thus, consistently with what occurred

« It can be compressed elastically along its axis to modelr thez axis, we may assum. o« 1/Ay, where
uncertainty on the route stretch.

« |t can neither be bent nor twisted. rr 2
« It can rotate elastically to model uncertainty on the route Ay = // 8z, y, C)lyl du dy = V —Cly
orientation. —o0
A bar with these characteristics can be modeled by combining =k x 3_2 (11)
a linear axial spring and a rotational spring (see Fig. 3) whose Ay

spring constant&, and k, must be defined in function of the
positional uncertainty of the robot.

For simplicity, we consider a bar representing a routei-
ented along the: axis (¢ = 0). Sincek, expresses an axial
deformation along;, it is reasonable to define it in terms of th
average erroAz made by the robot in determining thecoor-
dinate of the other end of, i.e., the average error made on th

andC,, is the lower-right element of.

The certainty on the stretch and orientation @fiso depends
on the numbet of timesr has been covered; in fact, the higher
t, the higher the amount of data concerningollected. Thus,
Srom (4) and (11), the stiffness matrix for a bar representing a
Er}outer oriented along the: axis turns out to be

stretch ofr: k, o 1/Ax, where [t 0o -t 0]
Az Az
r 2 0 ! 0 !
Ar= [ [ 8.y, O)lz|dedy =/ = Cra 8 Ay Ay
_ N N | Y oA !
andé is the density function as defined in (X}, is the covari- t t
ance matrix associated toandC,, is its upper-left element. i Ay 0 Ay ]
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determine the new positions for the landmarks and the new
stretches and orientations for the routes in the polygon. Since
no external loads are applied, the unknown nodal displacements
may be calculated by (6) with, = 0

, = -K ' K,su;5 (14)

whereug = [0 —u,,]*.

While for closed polygons this approach is correct since
metric inconsistency is only due to the errors made by the
robot while covering the path starting and endingui, and
correction affects the corresponding set of routes, the same is
not true for open polygons. In fact, for example, in Fig. 6(a)
the pathpg, pi1, ..., pl,, could be mostly correct while the
positional inconsistency could derive mainly from the path
P,.. --->» P—1, Po- Taking also the errors made outside the
polygon into account implies considering a surrounding area
determined by the set of routes connecting thandmarks
nearest ta,,. The structure we define to model the problem
includes all the landmarks belonging to this area; among these,
the landmarks lying on the external border are hinged.d et

] ] ] ] ) andg be the sets of free and constrained nodes, respectively.
where+ is a proportionality constant which we will assume Restoring metric consistency requires bptly andp?, (be-

(b)

Fig. 6. Error correction on (a) open and (b) closed polygons.

equal to 1. _ _ _ longing to) to be moved to the same positigy, . In order to
The stiffness matrix for a bar representing a routgiented  5ccomplish this, an infinite number of couples of for€eand
along direction/ is obtained as follows. £, to be applied respectively g, andp’/,, could be used. All
1) by rotating by—% the covariance matrig; these couples satisfy the following linear system:
2) by calculatingAz and Ay by (8) and (11);
3) by building the stiffness matriK by (12); Af=-1u, (15)

4) by rotatingK by ¥. _ Y , . en T _

Once the stiffness matrices for all the routes experienced hayaeretm = Pm — p”i’lf - [f. 71", andA is a (2 x 4).
been determined, the stiffness matrix for the whole structure! X obtamed/fronK/;m a.ss_um|r-lg-th§\tlthe onlyforces applied
assembled as described in Section I11-A. to the truss aré” andf”. Within this infinite set, we choose the

couplef’ andf” with minimum magnitude, which produces the
C. First-Sight Correction minimum truss deformation.

The problem of determininff andf” can be formulated as

¢ Suppsse th? r%bot ':} e>|<tplor|n? ?r:‘ unkknown ?rez Staiit"agconstrained optimization problem where the function to be
rom a known fandmarkio. It ME€Ls the UNKNown fandmarkSyyin;mize is||f||3 while the constraint is expressed by (15).

i
v1, ..., U, DYy covering a sequence of unknown routes, angd . : :

finally reaches a landmark,, which it has already met. Whenr{ams problem can be solved using the Lagrangian method [20]
v, IS reached, the new positional estimaté computed by L(f, \) = f7f — (Af +1,,,)T A (16)
dead-reckoning may be compared to the previousgipedue

to sensor errors, the two estimates will certainly differ. Let determining the linear system

W = Pli — Pl (13) { A~ ATA=0 17)
fTAT +ul, =0

If v,, has been met beforg, the segments orderly connecting
po to p”, form an open polygon [see Fig. 6(a)]. Otherwise, thiat admits an analytic solution.
Segments Order|y Connectimgn to pgl form a closed p0|ygon Flg 7 shows the error made by the robot while Covering an
[see Fig. 6(b)]. The graph representing the environment sho@@en polygon, how the inconsistency is solved and the corre-
be metrically consistent at each time during exploration, hen&®onding forces. In general, the two forces have both different
the two positiona| estimates f@‘;n must be forced to exacﬂy magnitudes and different direCtionS, due to the truss structure
agree; we assume the error on the stretch of each route toMtch induces different constraints gi), andpy;,.
proportional to the positional uncertainty induced by that route.

For closed polygons, according to the mechanical model
described in Section 1lI-Bp!,, should be hinged and a dis- Every time the robot covers a routg it has already covered,
placement-u,, should be applied tp’/,; thus, the constrained it can exploit the new information acquired to improve the cur-
nodes ar@ = {p/,,, p,}. This displacement moves’, onp/, rent estimate of the stretch and orientatiomgfand, thus, that
restoring the metric consistency of the graph; the displacemeatshe positions of its end landmarksandw;. Reasonably, the
U, calculated for the free nodesx (= {pm+1,..., Px}) estimates for;; should be equal, at each time, to the average

Refinement Correction
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(b)
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(©

Fig. 7. Open polygon correction on a rectangular mesh. Crosses represent the true positions of vertices. (a) The measured path (in gray) aed graepheasur

(in black). (b) The forces applied to solve the polygon. (c) The corrected graph.

of the data measured so far. Le} and?;; be the current esti-
mates for the stretch and orientation, apdandd;; be the new
values measured. The new estimates are calculated as

r_ tigSij £ Sij

ti; +1
(ti0: + s - 5 o
- __J if |9 — 9| < =
t“ + 1 ? | J J| — 2
£ _|_Q§ - . ~ ™ = Fig. 8.
19; = M7 if |19z _ 191| > A <Vis
J t“ 'i:]- J J 2 J J 1)
tijﬁij + 29“ — tiﬂr . ~ ™ ~
if [9;; — 5] >= Ay >0,
\ tij + 1 ’ | J J | > 2 J > J
(18)
The desired displacements fgrandwv; are calculated by imag-
ining rotatingr;; around its midpoint in order to let it assume
the new stretch and orientation
' 5o
B B % cos¥;; — % cos ¥
w, =—-u; = / . (19)
Sij o S 9.
- Sinv;,; — ? SIN V5
2)

This solution, however, is not satisfactory since it does not
take into account all the knowledge of the environment collected
so far. Using global knowledge to correct the error on a single
route is essential when the certainty on the routes is not evenly
distributed. In fact, if the certainty on the last route experienced
is low and comparable to that on the other routes, overall de-
formation should be significantly determined by the new mea-
surement acquired. On the other hand, if the certainty on the
other routes is much higher, the new measurement taken should
only weakly affect the graph, which is mainly determined by the
other routes.

Another issue arising when correcting the error on a route is
how metric consistency for the graph representing the environ-
ment is maintained. In fact, correcting the stretch and orienta-
tion of r;; implies modifying the stretches and orientations of
the adjacent routes. Nevertheless, putting all the correction on
the adjacent routes does not appear to be sound.

Reference structure for calculating the forces to be applied.

LetSR;, SR; be the sets of routes (not including) en-
tering landmarks; andv;, respectively. In the first phase,
the forces producing the desired displacem@pisndu;;

on the ends of;; are calculated on a reference structure
including 7;; and the two routes;;;, andr;, that have
maximum stiffness withinS R; and SR;, respectively;
bothr;;, andr;; are hinged in the vertex not shared with
r;; (see Fig. 8). Since all the nodes are constrained, (7)
with o = @ is used to calculate forcefs

fs = Kggug (20)
whereug = [w; u; 0 0]7%.
Let.SL be the set of the landmarks nearest to the mid-
pointofr;,. Inthe second phase, the forces previously cal-
culated fory; andv;, f; andf;, are applied to the same
two vertices, but within a larger structure consisting of
the setS R of routes which includes;; and all the other
routes involving at least one landmarksd. All the ver-
ticesing = {v, € SL | Iry. € SR} are hinged;
those ine = SL are free. If3 turns out to be empty (i.e.,
less thary landmarks have been visited so far), at least
one landmark must be hinged in order to avoid rigid rota-
tions of the whole structure; the most distant landmark is
chosen. Finally, (6) withug = 0 is used to calculate the
unknown displacements

ﬁfy = K(:(];fa

(21)

wheref, = [f; f; 0 0]%.

In a few words, our approach heuristically restricts refinement

The mechanical model defined in Section 11I-B allows botlorrection to a local area, containipgandmarks, around the
issues to be dealt with. Le¥t be the graph representing thereobserved route;;. Choosing a value for the number of free
environment, and;; € M be the last route experienced. Ounodes in the structure entails determining an upper bound on

approach consists of the following two phases.

the computational complexity of each correction; conversely,
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the lowery is, the less effective error correction is. In the testmaintained and propagated during exploration. This task is very
shown in Section IV we useg = 50. hard in HE, since covariance matrices for object poses must be
explicitly updated. On the contrary, EC does not require the
update to the covariance matrices to be propagated since the
uncertainty on the object poses is not explicitly represented but
Among the error correction techniques in the literature, thogederived by “composing” the route uncertainties.
proposed in [15], [14], and [21] (which we will call, respec- The other correction methods proposed in the literature can
tively, TH, ML, and HE) share with EC the capability of takinghardly be quantitatively compared with EC, since they are
all previously collected measurements into account and, at #ither based on assumptions and sensory equipment radically
same time, that of using locally acquired knowledge to improwfferent from ours [12] or were devised within a different
positional estimates in the rest of the map. framework [22]. For example, in [23], the authors present an al-
In TH, the map building problem is formulated as gorithm based on an adaptive place network (APN) containing
constrained, probabilistic maximum-likelihood estimatiooth metric and topological information about the structure
problem. Anexpectation stepnd amaximization stepre al- of the environment. The APN uses no landmarks to represent
ternated. In the first, the current best map and the data collectbe objects in the environment; it is instead made up of place
so far are used to compute a probabilistic estimate for the robutits, each corresponding to a region of Cartesian space, and
position, while in the second the robot computes the most likgijace links, representing the relationship between adjacent
map based on the probabilities computed in the expectatiplace units. Corrections are local to the last covered route and
step. While drawing a formal comparison between EC and T¢#nsist in a change of the link confidence; while calculating the
is very difficult, it is worth discussing some similarities andhew confidence value, the algorithm does not take any kind of
differences. The hypotheses made about landmark recognitioformation about the surrounding routes into account. In [24],
and error modeling are substantially equivalent. While in Ethe authors propose a technique to learn metric information
metric knowledge and uncertainty are condensed, respectivelgput the environment, which requires priori topological
in the geometric and mechanical characteristics of the trukspwledge of the environment.
TH maintains a discrete grid storing probability of having a
landmark in each map position. Thus, in EC the complexity V. EXPERIMENTAL RESULTS

is lower since it is proportional to the number of landmarks, We h tensively tested EC in simulation in order |
while in TH it depends on the grid size. Finally, when a new € have extensively teste In simuation in order to eval-

observation takes place, the positions of the other IandmaH%;e its effectiveness and robustness. The sensorial model on

E. Related Literature

change, in EC, due to the forces propagated across the structlf ch most tests are based was derived by a Pioneer | robot,

and in TH, by propagating backward in time the positionéﬂ’ ich mounts a fluxgate compass. In particular, the sensory co-
un certainty’ variance matri¥M was measured experimentally; the (absolute)

. . . . average odometric and compass errors turned out to be, respec-
ML shares with EC the idea of posing constraints between . :
. . . ively, 5% of the distance measured and 0.03 rad. The covariance
couples of nodes; in particular, it operates on a graph-based

. : "latrix C adopted for each route was then obtained as shown in
resentation of the poses assumed by the robot during nawgfz)

tion. The graph metrics is estimated by minimizingearergy We estimate the error on the map metric by two measure-

function whose definition is based on the relationshigsn¢ .
. . ments: the average percentage error on the stretch of the routes
straint9 between couples of poses. As a matter of fact, solving

the stiffness equation (3) in EC can be seen as minimizing a dif- 1 150 — 81

ferent energy function, namely the elastic energy of the truss. c== Y S

Besides, due to the sensor model adopted in ML, two types of "oer U

constraints are considered: those determined by odonvedak( . )
constraint3 and those determined by matching two range scaf¥éheres;; ands;; are, respectively, the true and the estimated
of the same objecstrong constraints The sensor model we as-values for the stretch of;; andn is the numb_er of routes in the
sumed in EC entails, besides the constraints on odometry (m8¥P) and the average error on the orientation of the routes
eled as in ML), the constraints arising from landmark recogni-

tion. A quantitative comparison between EC and ML is drawnp = 1 > lnin{ Vg —Vi5
in Section IV-A. n i €R
Both EC and ML can be classified as relation-based ap- 03 5
. rela Big, 027} — max{dy;, 0;; }
proaches meaning that the map uncertainty is expressed by win{dij, Vg —max{ iy, dijt+ 7

uncertain relationships between objects; on the other hand,

also location-based approaches have been widely investigated. .

In particular, in HE the locations of objects and of the robdt- Efféctiveness

are considered as state variables, and the object variance/cd-ig. 9 shows the result of first-sight correction on a square-
variance matrices are represented as state information fusingshed map including 100 landmarks and 180 routes; in order
multiple observations by means of an extended Kalman filtéa emphasize the effects of correction, higher sensor errors were
The authors emphasize that, in order to avoid the uncertaisiynulated (9% average odometric error, 0.09 rad compass er-
to be underestimated, correlation between objects must roes). This phase is primarily aimed at eliminating the metric
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Fig. 9. First-sight correction. The measured (inconsistent) map is gray, the
corrected one is black.

inconsistencies due to sensor errors; the resulting map is consig ../

tent but still affected by a significant errar:drops from 9.5%

to 7.9%,p from 0.098 to 0.078 rad. AN h
The other tests described in this section were made on aniit { ;;-“’”

regular heterogeneous map which simulates a real-world envi |

ronment (190 landmarks, 445 routes). Fig. 10 shows the resu |/

of EC when the map is toured several times; it is remarkable tha

o andp are already reduced by half after four complete tours of

the map. !
In order to prove the effectiveness of our technique, we com-

pared it with ML, the sensory models being equal. The assump

tions on odometry are the same, thus the constraints on odon

etry in our adaptation of ML were formulated as in [14]. Our

sensory model does not include laser scans, but assumes tt

the robot can determine exactly the relative landmark positions;

hence, in our adaptation of ML, Strong links are never formurg. 10. Correction after 1 tour (top) and after 10 tours (bottom). The true

lated on couples of unrelated poses, but only on couples of df2Ps 8@ 9ray, the corrected ones are black.

ferent poses for the same landmark. We performed the tests on )

the map in Fig. 10 and averaged the errors on ten trials; Fig. tﬂthe one measured before correction, reduces to 50% after the

reports the average error and the standard deviation comput&st two tours.

on all the routes. It clearly appears how, on adopting EC, the

; . 2 . Robustness

average errors on route stretch and orientation are significantly

decreased as the map is repeatec”y toured. On the Contrary' aftélﬂ order to evaluate the robustness of EC, we take into account

ten tours, the average errors on adopting ML are not signi®v0 kinds of problems which commonly occur in real-world

icantly reduced; when few strong links are present (first 2-&gwironments: topological errors and magnetic fields.

tours), ML does not succeed in effectively counterbalancing theEC takes only metric errors into account. Unfortunately, the

cumulated odometric errors. This result can be interpreted Bap building process may be heavily affected by topological

arguing that, under our sensory model, energy formulation @4rors. Due to their relevance several works discuss this issue

EC is more effective than in ML. (for instance, see [15]). Although extending EC in order to cor-
Both error measurements used so far are referred to rouf@st topological errors is beyond the scope of this paper, we

that is, to the relative positioning of landmarks, which we bé&onducted some tests aimed at showing how robust EC is to

lieve to be the most relevant issue from the point of view of plathem. Within our graph-based framework, topological errors

ning and executing navigational tasks. Nevertheless, we aftse when the following occurs.

considered the absolute positioning of landmarks; Fig. 12 showsl) The robot misses a known or unknown landmark. The

how the average error on the landmark positions, as compared topological consistency of the map decreases since a
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m== O (v=0.1) ~w~ p (v=0.1)
—— O (V=0.3) s e p (v=0.3)
— 0 (v=0.5) —e p (v=0.5)

0.09
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0.05 - Fig. 13. Errors onroute stretch and orientation in presence of topological error.
0.04 -
8% ~--0met. ~..p met. 0.08
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0.06
0.02
L o. p
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0 et 0.02
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Fig.11. Errorson (a) route stretch and (b) orientation in function of the number n er of tours

of exploration tours for EC and ML.
Fig. 14. Errors on route stretch and orientation in presence and in absence of

metallic objects.

3100% several dummy routes are created, metric consistency is not rel-
b 80% 7 evantly affected. For the map in Fig. 10, fincreases from 0
% s0% 4 to0 0.2,0 increases from 2.7% to 2.9% whilekeeps constant at
Q
5 40% T 0.021L. : :
2 Fig. 13 shows how metric errors are corrected for different
2 20% 7 frequencies of type-2 errors. The negative impact of topolog-
T 0% e ical errors on metric consistency is reduced by EC since all the
0 1 2 3 4 5 6 7 8 910 topological relationships between the mistaken landmark and
number of tours the neighboring ones are considered, constraining map defor-
mation.
Fig. 12.  Absolute landmark positioning error. We close this section by discussing the robustness of EC with

reference to magnetic fields induced by big metallic objects

sdummy” route is created. The effectiveness of EC igheaters, cabinets, etc.), which may significantly alter the com-
reduced due to the higher positional uncertainty. pass rgadi_ngs within a few meFers range. We merIed thg mag-
2) The robot mistakes a known or unknown landmark for etic fleldllndu.ced.by each object as a set ,Of aQJagent dipoles;
different known one. EC is applied starting from wron e resulting field is calculated by composing it with the ter-
premises. estrial magnetic field. The average error induced by a metallic
3) The robot mistakes a known or unknown landmark f&bject on compass readings is 0.194, 0.468, and 0.661 rad when

an unknown one. The topological consistency decrea§Q§ robot is placed, respectively, within 10,5 and 3 m ffom it
since a dummy route and a dummy landmark are creatdc 9- 14 compares the effects of EC in the presence and in the
EC is not applied. absence of metallic objects for the map in Fig. 15 (187 land-

marks, 327 routes). Though first-sight correction increases both

We will not consider case 3 since it does not affect metric costretch and orientation errors while restoring metric consistency,
sistency. refinement correction is still capable of substantially reducing
As to errors of type 1, their frequeneydoes not have any their magnitude. As in the case of topological errors, valid data

significant impact on the effectiveness of EC. In fact, even #fuccessfully constrain the deformations due to wrong measures.
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Fig. 15. Correction after five tours. The true map is gray, the corrected one is black; black squares represent metallic objects.

V. CONCLUSION Within the dead-reckoning model for a robot mounting a

. ) compass, the position at stépt 1 is expressed in terms of the
In this paper, we have presented a technique for Correc“ﬂgsition and the sensory measures at étap follows:
sensory errors during a map building process carried out by a

mopile robot. The results of _expe.rimentalltests confirm the ef- (k1) 2 ®) 4 Pp+D) cog R+
fectiveness of the EC technique in reducing the global metric p = |:y(k) + Tapk+D) Sinsp(k+l):|
error and prove its robustness with reference to topological er-
rors and to external magnetic fields. EC works independently of =g (P(k), m(k+l)> . (22)
the specific sensors used for dead-reckoning: in fact, it can be
used by a robot mounting a compass as well as by a robot usirtge true position at step may be expressed by adding a sto-
only odometers. Of course, since in the first case the robot’s phastic variable\p® to the calculated position
sitional uncertainty is lower, the residual error after EC will be
significantly smaller. p®) = p® 4 Ap®

EC is suitable for real-world applications since its computa-
tional complexity is essentially due to the inversion of the stifivherep™® = g(p*~—1, m®)). By applying (22) top*) and
ness matrix, i.e.Q(n®) wheren is the number of free nodes inm*+1) and by considering a modeling erte distributed nor-
the structure. For instance, for the map in Fig. 10, each corregally with null mean value and covariance matlxwe find
tion takes approximately 20 ms on a Pentium 333-MHz archi-

tecture. paHD — ¢ (p<k> + Ap® m*+D 4 Am<k+1)) + Ae®

APPENDIX which can be linearized in poirip®), m®*+1))

In this section, we derive a formula for calculating the posi- A (x+1) ~g (p(k) m(k-i—l))
tional uncertainty of a robot mounting a compass. Let the sen- ’

sory data be expressedhy = [w |7, wherew is the linear +3,PAp™ + 3, FAMEHD L Ae®  (23)
velocity andy is the robot orientation. We denote wii?*) and

p®, respectively, the true and the calculated positions atistepvhered,, ™ andJ,," are the Jacobian matrices @fn p and
we denote withih*+1) andm®+1) | respectively, the true and m, respectively:

the measured sensory data at step 1. Let

3,0 = dg(p, m)

B [1 0}
—]0 1
=p) m=mk+1)
kD) = D) | AR+ ) p=p",
J. R _ g(p, m)

where Am*+1) expresses the noise on sensors. In a conven- p=p*), m=m+1
tional dead-reckoning methodm*+1) may be assumed to be [Tcos @R Tap(kH1) gin (k+D) }

distributed normally with zero mean and covariance matfix Tsin®tD T+ cos pkt+D)
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From the results above, we obtain fap*+1 the following
recursive expression:

ApF+D = plD) _ p0eD) — g1 _ g (p<k>7 m<k+1>)
zJp(k)Ap(k) + I, P AmMEHD 1 Ae®)

The normally distributed stochastic variablep(*+1) ex-

(17]

(18]

[19]

(20]

presses the positional error accumulated so far; the associatédl]

covariance matrixC**1 can be calculated recursively as

(22]

Q1) —

(1]

(2]

(3]

[4]

(5]
(6]

(71
(8]
[9]

[10]

[11]
(12]

(23]

(14]

[15]

[16]

3,Hc® (Jp<k>)T 4 3. M (Jm<k>)T +E.
(24)

[24]
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